
Nature Protocols

nature protocols

https://doi.org/10.1038/s41596-025-01301-1Review article

1

Tutorial: annotation of animal genomes
 

Zoe A. Clarke    1,2,9, Dustin J. Sokolowski    1,3,9, Ciaran K. Byles-Ho    4, 
Ruth Isserlin    2, Michael D. Wilson    1,4, Jared T. Simpson1,3 & 
Gary D. Bader    1,2,5,6,7,8 

As DNA sequencing technologies improve, it is becoming easier to sequence 
and assemble new genomes from non-model organisms. However, before 
a newly assembled genome sequence can be used as a reference, it must 
be annotated with genes and other features. This can be conducted by 
individual laboratories using publicly available software. Modern genome 
annotations integrate gene predictions from the assembled DNA sequence 
with gene homology information from other high-quality reference 
genomes and take into account functional evidence (e.g., protein sequences 
and RNA sequencing information). Many genome annotation pipelines exist 
but have varying accuracies, resource requirements and ease of use. This 
genome annotation Tutorial describes a streamlined genome annotation 
pipeline that can create high-quality genome annotations for animals in 
the laboratory. Our workflow integrates existing state-of-the-art genome 
annotation tools capable of annotating protein-coding and non-coding 
RNA genes. This Tutorial also guides the user on assigning gene symbols and 
annotating repeat regions. Finally, we describe additional tools to assess 
annotation quality and combine and format the results.

Non-model organisms can provide a wealth of information, often reveal-
ing unique biological phenomena arising from their DNA sequence1–3. 
To study an organism’s genome, its genes must first be identified and 
labeled with useful gene symbols. A high-quality genome sequence with 
accurate annotations improves downstream analysis, reducing false 
positives or negatives in diverse applications (e.g., RNA sequencing) 
and helping to identify novel traits in a species of interest.

Genomics for a non-model species starts with a de novo genome 
assembly, defined as the reconstruction of an organism’s genomic DNA 
sequence from DNA sequencing data4–6. Recent advances in long-read 
genome sequencing now allow a single laboratory to generate a high-
quality de novo genome assembly4–7. This research benefits from acces-
sible methods to locate and label the genes and repeats in the assembly.

Genome annotation, defined as the identification of func-
tional, structural and repetitive elements along a genome assembly, 

is continuously improving alongside sequencing and assembly meth-
odologies8–11. Historically, genomes have been annotated by using com-
prehensive resources like RefSeq, Ensembl and ‘Matched Annotation 
from NCBI and EBI’ (MANE; https://useast.ensembl.org/info/genome/
genebuild/mane.html)12,13. However, the increasing rate of production of 
new genome assemblies presents challenges for these traditional anno-
tation hubs. Furthermore, they require that the genome assembly and 
associated functional data (e.g., RNA seq) be publicly available. This may 
present challenges if the genome assembly cannot be made publicly avail-
able or if the genome assemblers want to use annotations to evaluate and 
improve their assembly before making it public. As such, a community-
driven approach to end-to-end genome annotation that can be performed 
in a single laboratory would be beneficial to many researchers.

Many bioinformatic tools exist to annotate assembled genomes, 
with each tool focusing on a different aspect of annotation (e.g., finding 
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identify repeats in the target genome. The user can specify what clade 
of species they are working with, which indicates which repeat database 
Earl Grey should use (Box 2).

Earl Grey directly outputs a soft-masked genome (a widely used 
convention indicating repetitive DNA sequences by using lowercase 
characters in the FASTA file), as well as coordinates indicating repeat 
identity in a GFF or browser extensible data (BED) file. The GFF and BED 
files also indicate which repeat families the repetitive regions belong 
to, including TE class and family, repetitive non-coding RNA (e.g., small 
nucleolar RNA (snoRNA)) and simple repeats (e.g., low-complexity 
sequences consisting of one, or a few, bases consecutively repeated). 
Some genome annotation tools that are not used in this Tutorial require 
a hard-masked genome (repetitive element sequences converted to 
‘N’ characters). Generally, genome annotation tools specify which 
type of masking is required in their documentation. Users who want to 
customize their repeat masking (e.g., refrain from masking snoRNA or 
hard mask) can customize the BED file output by Earl Grey and manu-
ally mask their genome assembly by using BEDTools27. Automated TE 
annotation relies on a curated database, like the DFam database28. 
Manual annotations may increase the resolution of species-specific TE 
families or TE families residing in complex, repetitive heterochromatic 
regions (e.g., specific centromeric alpha-satellites)10, but performing 
such annotations is beyond the scope of this Tutorial.

Step 2: generating protein-coding gene models
Gene models are hypotheses about the locations of genes in the genome 
and their features (e.g., mRNA, exons and introns). These are supported 
by various evidence sources, some of which are easily accessible ‘stand-
ard’ sources (e.g., protein sequence databases and genome annotations 
from well-studied reference species like human and house mouse), and 
others are less accessible (‘premium’) sources that are specific to the 
target species being annotated (e.g., RNA-seq from the target species 
and genome annotations from a close relative; Fig. 1). Gene models can 
represent true positives (correctly located gene), false positives (e.g., 
a random ORF-like sequence) and false negatives (e.g., a real gene that 
was missed in the annotation process)29 (Fig. 2). To reduce errors, it is 
important to use high-quality evidence for the existence of genes and 
annotation tools that perform well (Supplementary Table 2).

In this Tutorial, we describe and integrate two complementary 
approaches to generate high-quality gene models: homology-based 
annotation and transcriptome- and protein-guided annotation 
(Fig. 1). Broadly, homology-based genome annotation assumes that 
thousands of gene models will be shared between a reference species 
(e.g., house mouse) and a target species (e.g., woodchuck) at the level 
of DNA sequence similarity and gene structure (e.g., number of exons). 
The proportion of successfully mapped genes from the reference spe-
cies to the target species depends on how closely related the species 
are and the quality of the reference genome’s assembly and annotation. 
In contrast, transcriptome- and protein-guided genome annotation 
assumes that the location of uniquely mapped paired-end RNA-seq 
data represents an expressed region of the genome and is therefore a 
candidate for a gene model.

Resulting annotations vary depending on the quality of (i) the 
genome sequence being annotated, (ii) the evidence provided to 
inform the annotation (e.g., RNA-seq and homology) and (iii) the bio-
informatic tool applied. Therefore, gene model selection, the process 
of identifying, merging and curating the best gene models from a set 
of candidate gene models, is crucial for generating a high-quality final 
genome annotation (Step 3; Box 3).

Homology-based genome annotation. Homology-based genome 
annotation involves the transfer of gene model information from a 
reference species (e.g., house mouse) to a target species of interest. 
Most gene structures and sequences are conserved across related 
species, making homologous alignments from a reference species 

gene models, labeling gene symbols or finding repetitive elements)14–17. 
Although global genome assembly efforts such as the Vertebrate 
Genome Project and the Earth Biogenome Project have made high-level 
genome annotation recommendations, they tend to provide limited 
information on specific software pipelines10,12,13,18–20. The genomics 
community is currently missing clear documentation for bioinformati-
cians on how to integrate these tools and recommendations to generate 
complete genome annotations. Therefore, it is currently challenging 
to generate complete genome annotations without considerable bio-
informatics and genomics expertise.

Our genome annotation Tutorial presents a systematic framework 
for annotating animal genomes on the basis of existing recommenda-
tions, benchmarks11 and tools to support building and integrating 
genome annotations from multiple sources of biological evidence. 
The code associated with this Tutorial guides the user through the 
various command-line tools and scripts implemented in the pipeline 
(https://github.com/BaderLab/GenAnT).

Genome annotation workflow
Genome annotation involves installing, configuring and combining 
a diverse set of tools that integrate DNA sequences, public databases 
and often other sequencing data types (e.g., RNA sequencing results). 
The field of genome annotation contains considerable terminology 
(see Supplementary Table 1 for a glossary) and diverse file types 
(for further information, see Supplementary Methods: Genome file 
formats). Broadly, genome annotation consists of five steps: (i) iden-
tifying repetitive elements and masking repeats that can interfere with 
gene identification, (ii) identifying protein-coding/mRNA gene models, 
(iii) optimizing gene models by using multiple lines of evidence, 
(iv) adding non-coding RNA (ncRNA) gene models and (v) labeling 
gene models with the likely gene identity (i.e., gene symbol). Each step 
is described further in the subsequent sections of this Tutorial (Fig. 1). 
The tools used in this Tutorial were chosen because of their general 
accuracy, ease of use, performance in recent benchmarking studies11 
and ability to incorporate various data types to assimilate their results 
(Supplementary Table 2). Although many of the specific tools described 
in this Tutorial may be updated or replaced over time, these broad 
steps of genome annotation will remain the same. Alternative tools 
to the ones that we recommend are listed in Supplementary Table 3, 
and computational resources and bioinformatic skills required for the 
Tutorial are described in Box 1.

Step 1: repeat annotation and masking
The first step in genome annotation is to identify and mask repetitive 
regions and transposable elements (TEs; Fig. 1). The prevalence of these 
regions interferes with many sequence alignment–based tasks, like 
orthology mapping and syntenic alignments, because they create an 
intractable number of alignment matches. Furthermore, some TEs 
contain open reading frames (ORFs), which can be falsely identified as 
protein-coding genes. Thus, repeats should be masked (i.e., flagged or 
hidden) to reduce the computational time needed for the annotation 
process and the number of mistakes made when generating gene models.

Earl Grey21 is a comprehensive and bioinformatically friendly tool 
that integrates and streamlines popular repeat annotation methods. 
Specifically, Earl Grey integrates multiple common repeat masking 
tools such as RepeatMasker22, which maps repetitive elements from 
a database of known repeat sequences, and RepeatModeler23, which 
identifies repeats de novo. It also uses multiple tools such as cd-hit-
est24, LTR_finder25, rcMergeRepeats23 and custom scripts to identify, 
annotate, filter and aggregate repeat regions genome wide. Earl Grey 
produces figure-quality summaries of a genome’s TE landscape in con-
junction with repeats annotated in general feature format (GFF), which 
are required for downstream analysis (GFF and other file formats are 
explained in Supplementary Methods: Genome file formats). Earl Grey 
relies on databases of repeat elements, such as Dfam26, that are used to 
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with high-quality gene structures an accurate and computationally 
efficient method to annotate the target species. One consideration 
of using homology-based annotations alone is that they cannot find 

species-specific gene models. In addition, any errors existing in the 
reference annotation will propagate to the new, target annotation. 
Errors are inevitable and exist in all annotations. Even the human 
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Fig. 1 | Genome annotation workflow. This genome annotation Tutorial 
identifies and classifies an animal genome assembly’s repetitive and gene 
elements. We expect up to five sources of evidence when annotating a genome 
with the Tutorial. ‘Standard’ sources of evidence rely on the DNA sequence of the 
genome being annotated and publicly available resources. These include public 
databases, reference genome assemblies and annotations (e.g., house mouse 
and human) and the genome sequence being annotated. ‘Premium’ sources of 
evidence are not guaranteed to exist for every species but will improve genome 
annotations if used. These sources include transcriptome- and protein-sequence 
data and high-quality genome assemblies and annotations for closely related 
species (e.g., the same genus). The Tutorial is split into five steps. Step 1 uses 
the Earl Grey pipeline to identify and mask common repeats and transposable 
elements in the genome to reduce noise for subsequent steps. Step 2 uses 

homology between a reference and target genome, transcriptome- and protein-
sequence data and analysis of the DNA sequence of the target assembly to predict 
protein-coding and long non-coding RNA gene models. We use four tools, 
Liftoff, TOGA, BRAKER3, and StringTie, to predict these gene models. Step 3 
uses Mikado to evaluate the gene models from each source and integrate these 
gene models into complete mRNA and long non-coding RNA transcripts. Step 4 
identifies candidate short ncRNA genes by aligning the target genome to the 
RNA families database and then evaluating these candidate sequences’ predicted 
secondary structures against known ncRNA secondary structures. Finally, Step 5 
uses OrthoFinder, Liftoff and TOGA to assign gene symbols to the gene models 
identified in Steps 2 and 3 by comparing transcript sequences, homology and 
gene order to one (or multiple) reference species. ID, identifier.

http://www.nature.com/NatProtocol
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genome annotation is being iteratively improved upon30. Errors can 
be mitigated by selecting more-closely related reference species with 
high-quality genome assemblies and annotations10.

Broadly, we recommend using reference genomes generated 
with long-read technologies with chromosomal-level resolution and 
a quality value score >40, indicating a low error rate of base calls31. 
These technologies and statistics should be reported in any assembly 
release. Currently, genomes assembled by consortia such as the Ver-
tebrate Genome Project reliably surpass these standards. Genome 
assemblies using Pacbio HiFi reads (or equivalent) also reliably exceed 
these standards32.

High-quality annotations can be assumed if such a genome is 
annotated by an annotation hub (i.e., RefSeq, Ensembl and MANE), 
although annotation completeness will still vary on the basis of avail-
able evidence for the species (e.g., RNA-seq from multiple tissues). 
We recommend that the user search these databases for a few of the 
most-closely related species, comparing these genome statistics and 
selecting the assembly and annotation (or assemblies and annota-
tions from multiple references) with the most favorable statistics as a 
reference for gene liftover.

Two homology-based tools that often create high-quality annota-
tions are Liftoff16 and the Tool to infer Orthologs from Genome Align-
ments (TOGA)17. Liftoff is a gene liftover tool that aligns gene sequences 
from the reference genome to the target genome by using a single line 
of Unix code, making it quick and easy to use (Supplementary Table 2 
and Fig. 3a). It uses minimap233 to align the genes from the reference 
genome to the target genome with high accuracy and relatively low 
computational resources. The alignment algorithms in minimap233 
are optimized to work with sequences of the same or closely related 
species, making Liftoff ideal when the reference species is in the same 
genus as the target species. Liftoff takes a FASTA file and GFF or gene 

transfer format (GTF) file from a reference species and the FASTA file 
from the target species and creates a GFF/GTF output file for the target 
based on the reference annotations (Supplementary Table 2). It also 
provides the user with a list of unmapped genes, which may indicate 
alignment challenges. Because Liftoff is quick and easy to use, the user 
can generate annotations from multiple reference species and compare 
the resulting annotation quality to pick the best result (Box 3).

The second homology-based annotation tool that we recommend 
is TOGA, which can accurately annotate genes across vertebrates 
with higher rates of divergence (e.g., house mouse to naked mole-rat, 
~70 million years diverged)34,35. TOGA can annotate more-divergent spe-
cies because it relies on a chain file, which stores pairwise alignments 
connecting the reference and target species that allows for gaps in both 
sequences. It also relies on an exon-specific aligner, CESAR36 to anno-
tate exons, which aids in finding alignments between more divergent 
sequences compared to Liftoff (Supplementary Table 2). TOGA also 
uses syntenic information (i.e., gene order) to infer orthology. Generat-
ing the various files for TOGA is more bioinformatically involved and 
computationally expensive than using Liftoff; however, all processing 
can be done by using scripts provided by the Comparative Genomics 
Toolkit37 (https://github.com/ComparativeGenomicsToolkit). In sum-
mary, both Liftoff and TOGA confer distinct advantages and can be used 
to identify distinct gene models that are combined in Step 3.

Transcriptome- and protein-guided genome annotation. Another 
way to annotate genomes is to use RNA- and/or protein-sequence 
alignment evidence to inform gene models. Alignment-based methods 
work by aligning RNA or protein sequences to the genome to determine 
the location of transcribed and/or protein-coding genes. The specific 
tools used to perform alignment-based annotation depend on the 
sequencing data available.

BOX 1

Computational requirements and technical challenges
Genome annotation is a computationally intensive process 
that requires significant computational time and resources. 
The requirements of the pipeline are dictated by the minimum 
requirements of the most intensive tools that we recommend. The 
most time-consuming and computationally intensive tools are Earl 
Grey21, BRAKER39 and TOGA17.

A high-performance computing cluster is recommended 
to run the Tutorial workflow in its entirety. Because different 
genomes require varying computational resources based on 
their characteristics (e.g., genome size and repeat content) 
and the amount of evidence used as input for the pipeline, the 
computational requirements are inherently unpredictable. 
Generally, each step of the Tutorial has required a maximum of 
150 h of run time and 64 GB of random access memory (RAM). In 
our experience, StringTie, Liftoff and Mikado are desktop friendly, 
and it is technically possible to run all tools on a desktop computer 
(although TOGA is limited to small or partial genomes due to 
inherent workflow management), but we do not recommend it. The 
high-performance computing cluster system must be compatible 
with Singularity or Apptainer75 container technologies, and we 
strongly recommend compatibility with the conda package and 
environment manager (https://conda.io). It is possible to use the 
Tutorial workflow to build protein-coding and lncRNA gene models 
without conda by using other methods of installation, but it takes a 
lot of manual work and is more challenging to control software tool 
dependencies.

Instructions for installing all tools and dependencies are available 
on GitHub (https://github.com/BaderLab/GenAnT), and here 
we offer three computational strategies for genome annotation. 
The first is a step-by-step Tutorial that walks a user through the 
genome annotation process line by line. This approach expects an 
intermediate level of bioinformatic experience, with some experience 
of bash scripting and R. Second, we provide a shell script that 
exports user-provided arguments into an environmental variable 
before running the Tutorial with no flow control (used for testing the 
pipeline). Third, we offer a Snakemake pipeline that allows the Tutorial 
to be run through a single configuration file76. This requires the user 
to be comfortable generating a YAML file and has a steeper learning 
curve than running the shell script, but it is the most computationally 
efficient and least prone to human error.

Common challenges that the user may experience are described 
in more detail in the documentation on GitHub, along with potential 
solutions. Tool-specific challenges are common, and much of 
the GitHub repository associated with the Tutorial is dedicated to 
facilitating the use of tools that are challenging to install and get 
working. For example, TOGA and BRAKER3 have specific formatting 
requirements for their input files that will otherwise cause the tools 
to crash. On GitHub, we provide scripts for editing input files to try to 
prevent such errors from happening. In addition, some tools produce 
intermediate files that need to be deleted before rerunning the tool 
if the tool crashes. We have specified in the Tutorial when this step is 
necessary and what files need to be deleted.

http://www.nature.com/NatProtocol
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If the user has access to RNA-seq data with the minimum require-
ments of 100-bp read length, a paired-end sequencing protocol and 
high sequencing depth (e.g., 50 million reads for most tissues and 
100 million reads for tissues with high transcript diversity like brain 
and gonads)38,39, then these data can be used to generate gene models 
through RNA-seq alignment (e.g., by using HISAT2 (ref. 40)) followed 
by a gene model caller (e.g., StringTie41)11. Long-read RNA-seq (e.g., 
Iso-Seq) is becoming more commonplace and can capture entire tran-
scripts (including intron-exon structure, transcript direction and 
poly(A) tail information at high resolution) within a single read42. 
Including RNA-seq/Iso-Seq data from a diverse range of tissues also 
helps minimize false negatives, because gene expression profiles vary 
across tissues. Tissue-specific transcripts can be captured, and certain 
tissues, such as the brain, lungs and gonads, are particularly valuable 
because they exhibit a broad range of gene expression, thereby improv-
ing the completeness of the annotation (for advice on how to combine 
RNA-seq data across various tissues, see Supplementary Methods: 
Combining RNA-seq derived transcripts).

One tool that integrates RNA-seq alignment information with 
protein sequence data and ab initio gene prediction (i.e., by using 
a trained algorithm to assign gene features, like the start and stop 
codon, from the genome sequence) is the most recent iteration of 
BRAKER39 (Supplementary Table 2 and Fig. 3a). The RNA sequences 
come from the species being annotated, whereas the protein sequences 
are typically from an online database of homologous sequences, like 
OrthoDb43. Internally, BRAKER3 uses HISAT2 (ref. 40) to align the short 
paired-end RNA-seq reads to the genome, StringTie41 to create can-
didate gene models from these alignments and ProtHint44 to predict 
coding sequence (CDS) regions by using these protein alignments 

(Supplementary Table 2). BRAKER3 is also compatible with stranded 
RNA-seq and long-read data as an alternative to traditional RNA-seq. 
These data are then used as ‘hints’ (i.e., estimations of CDS region 
and intron placements) when generating ab initio gene models with 
GeneMark-ETP45 and Augustus46. BRAKER3 can also identify tRNAs, 
snoRNAs and untranslated regions (UTRs)14, and if RNA-seq data is 
not available for the species (e.g., DNA derived from a sample with no 
RNA extraction possible, such as a wild-derived tail-clipping), then 
BRAKER3-protein (i.e., no RNA-seq) can generate useful gene models. 
In this Tutorial, we use both StringTie and BRAKER3 before combining 
results with the homology-based genome annotations and filtering 
gene models as described in Step 3 (Fig. 1).

Step 3: combining and filtering gene models
Completing steps one and two yields gene models from multiple homol-
ogy-based and transcriptome- and protein-guided annotations. Many 
gene models will be identified across all annotations; however, some 
gene models will be method specific (Fig. 3c). Mikado is a tool that can 
combine, evaluate and filter gene models across multiple annotations 
in a way that mimics manual assembly curation. Mikado takes differ-
ent GFF files as input and outputs a filtered GFF file that is often more 
accurate than any of the input annotation or evidence files on their 
own (Supplementary Table 2 and Fig. 3b).

Mikado functions by using information from external tools and 
internal filtering systems to identify the most likely gene models 
(Supplementary Table 2). For instance, Mikado filters out chimeric, frag-
mented or short transcripts with disrupted coding sequences15. It also 
scores gene models on the basis of their likelihood of being a real gene 
by using BLAST+47 to compare predicted gene models to an existing 

BOX 2

Parameter selection and adapting the Tutorial workflow to 
different clades
All software tools that we recommend require input parameters to 
be set, defined as required or optional arguments that influence 
the output of the tool. Because of the many parameters available, 
there are many possible parameter combinations. The Tutorial 
workflow was designed to minimize parameter selection in a number 
of ways. First, we prioritized bioinformatic tools that score highly 
across eukaryotic species in recent benchmarks11, decreasing the 
likelihood that a method needs to be replaced until it is updated 
or outperformed by a new tool. Second, we prioritized tools that 
internally perform training or alignment steps (e.g., BRAKER3, TOGA 
and OrthoFinder) or contain pre-configured files and databases for 
a wide array of clades (e.g., Earl Grey, Mikado, and MirMachine). 
The parameters listed in the Github Tutorial ‘config.yaml’ file are 
sufficient to annotate vertebrate and invertebrate animal genomes. 
We have briefly categorized classes of parameters to consider 
below.

First, parameters designating which data are input are required 
for genome annotation. For example, TOGA and Liftoff require the 
genome assembly and annotations of the reference species to 
be specified, and StringTie and BRAKER3 require RNA-seq data to 
be specified. StringTie and BRAKER3 have additional parameters 
designating the ‘type’ of RNA-seq included (e.g., no RNA-seq versus 
unstranded RNA-seq versus stranded RNA-seq versus Iso-Seq). 
The scripts in the GitHub for our Tutorial will automatically pick the 
most appropriate version of each tool given the evidence provided. 
Therefore, if the user accidentally does not include their RNA-seq 

data in the ‘config.yaml’ file, the script will generate annotations in 
non-RNA-seq mode.

Second, parameters designating the clade of the target species 
need to be set for genome annotation. When running the Tutorial 
workflow, Earl Grey will annotate repeats on the basis of clade-
specific repeat libraries, BRAKER3 will use clade-specific protein 
databases, MirMachine will use clade-specific pre-computed 
covariance matrices and Mikado will use clade-specific scoring files 
for transcript assembly. These parameters usually need to be input by 
the user, but some tools may default to a ‘Eukaryote’ clade when they 
are not specified. Specifying a clade will improve gene models.

Finally, parameters within each annotation tool can be 
subcategorized into: (i) alignment parameters, which adjust the 
stringency of RNA-seq, genome-to-genome and genome-to-database 
alignments; (ii) definitional parameters, which provide cutoffs for 
what should be considered a gene (e.g., a lncRNA is defined as having 
an ORF of <100 bp); and (iii) algorithm fine-tuning (e.g., to make 
StringTie-Iso-Seq gene models weigh more than StringTie-RNA-seq 
in Mikado). Manually tuning these parameters may improve genome 
annotations in specific cases, in which case we suggest generating 
an annotation by using default parameters in parallel as a positive 
control to see if the fine-tuning improves the results. The quality of 
each result can be compared to help determine how to optimize 
parameters for the best annotation (see Box 3). Details on how to 
adjust these parameters are outlined in the documentation on GitHub 
and the documentation for the individual tools.

http://www.nature.com/NatProtocol
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protein database and therefore favors conserved genes; it also uses an 
internal scoring system to pick the best gene models from all sources 
of evidence and outputs a single GFF file (Supplementary Methods: 
Explanation of the Mikado scoring file (e.g. mammalian.yaml)). This 
scoring system can be adapted by user-provided parameters to preserve 
certain characteristics of the input gene models.

Integrated genome annotations are expected to be more com-
prehensive than those generated by any single method; however, 
automated methods evaluating hundreds of thousands of features will 
have some false-positives and false-negatives. For example, because 
Mikado prefers the longest gene model that passes its filters, a long 
gene model derived from a homologous sequence may incorrectly 
replace an alternative gene model that better matches a gene in the 
Benchmarking Universal Single Copy Orthologs (BUSCO)48 database 
(for a description of BUSCO, see Box 3). The resulting annotation can 
still be improved by looking at additional evidence sources not used 
by Mikado, such as missing BUSCO genes that were present in any of 
the input assemblies but dropped by Mikado, manually evaluating 
gene order along a sequence (i.e., ‘synteny’) in a genome browser or 
visualizing functional genomics data that have been aligned to the 
annotated genome (Fig. 2).

Step 4: annotating non-coding RNA genes
NcRNA genes encode a diverse array of functional RNA molecules 
with various gene lengths and secondary structures. In this Tutorial, 
we describe methods to annotate long non-coding RNAs (lncRNAs), 
and various short non-coding RNA genes (e.g., small nuclear RNAs, 
snoRNAs, tRNAs, rRNAs, miRNAs).

LncRNAs are RNA molecules that are longer than 200 nt and do 
not contain an ORF longer than 100 aa49. LncRNAs sometimes have 
introns (i.e., sequences removed by splicing)50 and may generate  
small peptides that play regulatory functions in the cell49. As such, 
it can be challenging to strictly delineate lncRNAs from mRNA50. This 
phenomenon translates to lncRNA being identified as gene models that 
are greater than 200 nt and that fail to be classified as mRNA. In our 
pipeline, lncRNA and mRNA are simultaneously classified by using 
Mikado (during Step 3).

Short non-coding RNA genes contain classes of non-coding mol-
ecules that serve a diverse array of regulatory functions within the 
cell. These ncRNA gene classes generate relatively short transcripts 
and, crucially, contain conserved sequences and secondary struc-
tures across species. These conserved features can be found in the 
RNA families database (RFam), an open-access database that stores 
alignments, secondary structures and covariance matrices of >4,000 
ncRNA familes28.

Short ncRNAs are annotated in two steps. The first step is called 
‘seeding’, in which regions of the assembly are identified as ncRNA 
candidates by querying known gene models, repeat annotations and 
RNA families (by a BLAST search against the RFam database). The 
second step is the ncRNA evaluation step, in which potential ncRNA 
genes are classified by using INFERence of RNA ALignment (Infernal)51 
(Supplementary Table 2). This Tutorial uses MirMachine52, which relies 
on Infernal but has clade-specific miRNA-specific secondary structures 
trained from MirGeneDB53 (Supplementary Table 2 and Box 2). MiRNA 
annotations inferred by MirMachine provide additional gene models 
that cannot be detected with RFam alone.
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Fig. 2 | Visualizing evidence in a genome browser. Illustration of using 
various sources of evidence to evaluate misannotated ‘Gene C’, which is a falsely 
annotated fusion of ‘Gene D’ and ‘Gene E’. (1) Two genes that show evidence of 
high-quality annotations, ‘Gene A’ and ‘Gene B’. The predicted gene model is 
a combination of each source of evidence before Mikado integration. Intron 
(translucent rectangle) and exon (rectangle) boundaries match splice junctions 
from RNA-seq data. The gene order and length also match the gene order and 
length found in a related species. (2) A gene model found in only one annotation 
method, with some evidence from RNA-seq data. Model (2) was filtered and not 
included by Mikado. (3) A falsely annotated intron that incorrectly connects 

‘Gene D’ and ‘Gene E’ to form ‘Gene C’. The false intron in (3) is not found in any 
source of evidence before Mikado, there is no evidence of splice junctions in RNA-
seq data and the two connected models represent two genes in a related species, 
namely ‘Gene D’ and ‘Gene E’. (4) ‘Gene E’ is a universal single-copy ortholog 
(BUSCO) gene. Overall, the evidence suggests that there is a low likelihood 
that ‘Gene E’ has been fused to surrounding genes. (5) RNA-seq alignment data, 
which contain the most-robust evidence for exon junctions and intron-exon 
relationships in animal genome annotations. (6) The gene size and gene order 
of the same cluster of genes in a related species, which aids in annotating gene 
symbols.
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Step 5: sequence similarity–based transfer of gene symbols
Decades of research in model organisms have identified biological, 
molecular and cellular functions for many protein-coding and non-
coding gene sequences in animal genomes. These gene functions are 
characterized by a gene symbol (e.g., estrogen receptor 1, ESR1). Iden-
tifying which sequences are predicted orthologs (i.e., derived from a 
single ancestral sequence) between species of interest and the most 
closely related model organism allows these gene functions and gene 
symbols to be applied to the species of interest. Assigning gene symbols 
is challenging because most genes in animal genomes originated from 
another gene (e.g., tandem duplication, gene fusion or translocation)54, 
meaning that many genes have at least one paralogous gene with high 
sequence similarity in exons.

Both Liftoff and TOGA annotate the target species’ gene structures 
and assign reference gene symbols to the target with a high rate of 
agreement with the gene symbols found in Ensembl annotations17,55. 
Therefore, these tools can be used to predict gene symbols for the 
final, integrated annotation (Supplementary Table 2). We transfer 
gene models by matching exons derived from TOGA and Liftoff to the 
final gene models, before transferring the gene symbol to the Mikado-
filtered gene identifier data file column.

In addition, OrthoFinder56, a tool that maps sequence-similarity 
relationships between proteins across two or more species on the 
basis of their sequences, can be used to identify predicted orthologs. 
OrthoFinder builds gene trees, considers gene duplication events, 
is considered to be one of the most accurate ortholog inference 
methods57 and was used for gene naming in the DNA zoo annotation 
project58. OrthoFinder outputs lists of protein-protein sequence-
similarity relationships that can be used to infer gene-gene relation-
ships. An alternative to OrthoFinder is the Orthologous MAtrix (OMA) 

database and tool, which similarly maps orthologous relationships 
between species59. OMA uses a more-sensitive alignment algorithm, 
which may help discern some one-to-one orthologs missed by 
OrthoFinder; however, it is more challenging and computationally 
intensive to run. We have provided documentation on how to run 
OrthoFinder and add orthologous relationship output from any tool 
(including OMA) on the Tutorial’s GitHub site.

Lastly, protein family and domain information can be added to 
coding sequences by using InterProScan60. These additional annota-
tions provide evidence for gene function in genes that could not be 
identified with a unique gene symbol (e.g., unnamed gene-X has a 
zinc-finger domain)8,60,61.

Each of the above methods will assign gene symbols indepen-
dently, and most gene symbols should agree across methods and 
species. If gene symbols appear to disagree between methods, they 
may be aliases for the same gene (e.g., ABC2 versus ABCbeta). This is 
especially noticeable if a species other than human or house mouse 
has been used for gene symbol prediction, because genes that have 
an easily recognizable gene symbol in humans may have a system-
atically assigned gene symbol in less-well-studied species (e.g., 
IZUMO1 in humans is LOC101976381 in the 13-lined ground squirrel). 
Other cases of gene symbol disagreement may occur if each method 
assigns a different member of the same gene family to a gene (e.g., 
ABC1 versus ABC2). Occasionally, each method may call different 
one-to-one orthologs for the same gene (e.g., ABC1 versus DEF7). 
These instances could be manually resolved by comparing syntenic 
gene orders between the target species and a reference species 
in that region (Fig. 2). Resolving these gene symbols is inherently 
annotation specific and would be performed downstream of this 
Tutorial.

BOX 3

Testing annotation quality
Genome annotation quality across species improves with genomic 
data quality, availability and tool development. However, it is 
important to recognize that no genome annotation will be perfect. 
Therefore, a user should aim for the highest quality genome 
annotation possible while considering the limitations of data quality 
and the human effort required for refinement. The quality of all 
annotated features should be rigorously assessed for each annotation 
generated in Step 2 of our Tutorial. This can tell the user if the data 
that they are using to generate the annotation is of sufficient quality 
and/or how well each tool is working with the data provided.

A commonly used way to assess the completeness and quality 
of the annotation is to compare the gene models found in the 
target genome to the BUSCO database48, a tool that serves both as 
a database and statistical software. The BUSCO database consists 
of curated gene sequences from single-copy orthologs for all 
domains of life stored in the OrthoDB database43. When used in 
protein mode, the BUSCO software returns statistics indicating if 
the expected protein sequences are found, fragmented or missing 
(Fig. 3b). BUSCO scores are compared across annotations as a 
judge of quality, with higher BUSCO scores indicating higher-quality 
annotations. Generating a BUSCO score with the entire genome as 
the target indicates the maximum BUSCO score possible for that 
assembly.

It is also helpful to analyze feature statistics of a particular 
annotation (e.g., average exons per transcript, number of monoexonic 
transcripts and gene lengths), because outliers may indicate 
that there are inaccuracies. For instance, if an RNA-sequencing 

alignment–based annotation has a large number of monoexonic 
transcripts compared to a homology-based annotation, this suggests 
that the former annotation may be fragmented into artificially small 
transcripts. Mikado comes with a command that outputs a text file of 
summary statistics.

Different GFF files mapping to the same genome assembly can be 
compared with GffCompare77. Briefly, GffCompare inputs a ‘query’ 
GFF and a ‘reference’ GFF and outputs a parseable text file (‘.stats’) 
describing how well the base pairs, exons, introns and transcripts 
match each other. It can be valuable if the researcher has a set of 
experimentally validated or manually curated gene models for their 
species or when multiple GFF files exist for a species from one or 
multiple annotation efforts.

Finally, genomes contain collinear regions called syntenic blocks 
that are conserved across large evolutionary time spans78. In the 
context of a reference and target species for genome annotation 
(e.g., house mouse and woodchuck), these syntenic blocks typically 
contain a large number of genes in both species, and the orientation 
of these genes is often the same (Fig. 2). Synteny can also be used 
to manually or systematically identify missing annotations or 
misassembly by comparing genome browser snapshots between 
the reference and target species17,79. Although low throughput, the 
importance of manually inspecting genome annotations within the 
genome browser cannot be overstated. Genomes, annotations and 
functional data can be loaded into the Interactive Genome Viewer 
(IGV), a point-and-click program to support manual review (Fig. 2 and 
Supplementary Methods: Viewing annotations on IGV).
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Summary and future directions
In this Tutorial, we present a workflow consisting of various tools that 
perform the different components of the genome annotation process 
and integrate the resulting gene models. We provide descriptions of 
key file types and methods involved in the genome annotation pro-
cess, as well as a detailed, practical guide on how to use and integrate 
these methods, assuming that the user has an intermediate level of 
bioinformatics experience. This pipeline was originally designed for 
mammalian genomes but can be effective across diverse animal species.

The aim of this Tutorial is to guide users through the genome anno-
tation process on the basis of what is feasible and recommended with 
current technologies. Although we are confident that our workflow 

produces high-quality annotations based on current standards, 
limitations exist and should be recognized by the user; notably, we 
recommend specific genome annotation tools based on limited bench-
marking literature11 and established practices in the field. We found that 
TOGA, BRAKER3, StringTie11 and Liftoff (Z.A.C. and D.J.S., unpublished 
data) were consistently top performers across various metrics, includ-
ing BUSCO score, CDS length and false-positive rate when compared to 
existing annotations from Ensembl and RefSeq. There are also several 
new tools that take advantage of miniprot62–65, which may result in 
improved annotations, and could therefore be incorporated into future 
workflows. Other recommended tools that do not directly contribute to 
the annotation of protein-coding genes (e.g., ncRNA gene annotation 
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Fig. 3 | Tools used to generate protein-coding gene models. a, The four tools 
that we use to identify gene models in this Tutorial are: Liftoff, which transfers 
protein-coding and non-protein-coding models from between two closely 
related species (i.e., the same genus); TOGA, which transfers protein-coding 
models between two more distantly related species; StringTie, which builds gene 
models from RNA-seq alignment information; and BRAKER3, which uses RNA-seq 
and protein information to predict exon and intron location before using ab 
initio gene prediction to generate gene models. b, The distribution of universal 

single-copy ortholog (BUSCO) genes captured in each method. Gene models 
from each method are selected and integrated by using the Mikado gene selector, 
which should have more complete BUSCO scores than each individual method. 
c, The distribution of the number of gene models in the final genome annotation 
that came from each method after being filtered with Mikado. In this example, 
many gene models are derived from Liftoff and StringTie, which represent 
annotations from premium sources of evidence, namely homology of a close 
relative and RNA-seq data of multiple tissues, respectively.
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and repeat masking) were chosen because they are one of the few that 
could perform a specific task.

Furthermore, although our Tutorial discusses annotating repeti-
tive and genic features, it does not cover annotating cis-regulatory 
elements such as promoters, enhancers and repressed elements. 
Regulatory elements are species-, tissue-, developmental stage– 
and disease-specific and can be measured with experiments that 
profile the epigenome (e.g., ChIP-seq)66. Without performing such 
experiments, there is not yet an effective way to annotate these fea-
tures. ChromHMM is the most popular tool to build these chromatin 
states67. This may change as epigenetic experiments become more scal-
able, but annotating these features is currently not typical of genome 
annotation projects.

As technology improves, genome annotation tools will perform 
more accurately and efficiently, and homology-based genome annota-
tion will probably continue to be optimized in response to the influx 
of reference-grade or telomere-to-telomere de novo genome assem-
blies32,68. With these technological improvements will come the discov-
ery of more clade-specific genes, isoform-level transcript resolution69 
and new feature types (e.g., promoter-enhancer pairs and methylation 
profiles66,70). These improvements will also help annotate activity in 
complex immune-system gene families (e.g., the T-cell receptor, immu-
noglobin genes and major histocompatibility complex genes71). There 
are also several less-commonly implemented, but promising innova-
tions in genome annotation, such as using deep-learning models to 
annotate genes, TEs and splice sites72 and using large language models 
in gene and regulatory feature annotation73,74, that may become more 
prevalent in the future.

Although annotation tools and algorithms will continue to 
improve, the fundamental process of combining and filtering various 
annotations—along with rigorous quality assessment and manual 
refinement—will remain critical. For example, deep-learning models 
rely on high-confidence, well-curated annotations for training data, 
meaning that the iterative refinement of genome annotations using 
high-quality RNA-seq, protein and orthology-based evidence will 
remain essential for advancing automated annotation accuracy. 
As such, our Tutorial provides the genomics community with the 
infrastructure to generate high-quality genome annotations in indi-
vidual laboratories now, while helping build the foundation for future 
high-throughput genome annotation efforts.

Data availability
Example data for the Tutorial are available at https://zenodo.org/
records/14962941.

Code availability
Code containing Linux and R scripts to (i) guide the user step-by-step 
through the genome annotation process and (ii) provide a stream-
lined genome annotation workflow that includes a small example are 
available at https://github.com/BaderLab/GenAnT.
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