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As DNA sequencing technologies improve, it isbecoming easier to sequence

and assemble new genomes from non-model organisms. However, before
anewly assembled genome sequence can be used as areference, it must

be annotated with genes and other features. This can be conducted by
individual laboratories using publicly available software. Modern genome
annotations integrate gene predictions from the assembled DNA sequence
with gene homology information from other high-quality reference
genomes and take into account functional evidence (e.g., protein sequences
and RNA sequencing information). Many genome annotation pipelines exist
but have varying accuracies, resource requirements and ease of use. This
genome annotation Tutorial describes a streamlined genome annotation
pipeline that can create high-quality genome annotations for animals in

the laboratory. Our workflow integrates existing state-of-the-art genome
annotation tools capable of annotating protein-coding and non-coding
RNA genes. This Tutorial also guides the user on assigning gene symbols and
annotating repeat regions. Finally, we describe additional tools to assess
annotation quality and combine and format the results.

Non-model organisms can provide awealth of information, oftenreveal-
ing unique biological phenomenaarising from their DNA sequence'.
To study an organism’s genome, its genes must first be identified and
labeled with useful gene symbols. A high-quality genome sequence with
accurate annotations improves downstream analysis, reducing false
positives or negatives in diverse applications (e.g., RNA sequencing)
and helping to identify novel traits in a species of interest.

Genomics for anon-model species starts with a de novo genome
assembly, defined as the reconstruction of an organism’s genomic DNA
sequence from DNA sequencing data*®. Recent advancesinlong-read
genome sequencing now allow a single laboratory to generate a high-
quality de novo genome assembly*~". This research benefits fromacces-
sible methodstolocate and label the genes and repeats in the assembly.

Genome annotation, defined as the identification of func-
tional, structural and repetitive elements along a genome assembly,

is continuously improving alongside sequencing and assembly meth-
odologies®™. Historically, genomes have been annotated by using com-
prehensive resources like RefSeq, Ensembl and ‘Matched Annotation
from NCBI and EBI' (MANE; https://useast.ensembl.org/info/genome/
genebuild/mane.html)'>, However, the increasing rate of production of
new genome assemblies presents challenges for these traditional anno-
tation hubs. Furthermore, they require that the genome assembly and
associated functional data (e.g., RNA seq) be publicly available. This may
present challengesifthe genome assembly cannot be made publicly avail-
ableorifthe genome assemblers want to use annotations to evaluate and
improve their assembly before makingit public. As such, acommunity-
drivenapproachtoend-to-end genomeannotationthat canbe performed
inasingle laboratory would be beneficial to many researchers.

Many bioinformatic tools exist to annotate assembled genomes,
with eachtoolfocusingonadifferentaspect of annotation (e.g., finding
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genemodels, labeling gene symbols or finding repetitive elements)** .
Although global genome assembly efforts such as the Vertebrate
Genome Project and the Earth Biogenome Project have made high-level
genome annotation recommendations, they tend to provide limited
information on specific software pipelines'*>*'82°_ The genomics
community is currently missing clear documentation for bioinformati-
ciansonhowtointegrate these tools and recommendations to generate
complete genome annotations. Therefore, it is currently challenging
togenerate complete genome annotations without considerable bio-
informatics and genomics expertise.

Our genome annotation Tutorial presents asystematic framework
for annotating animal genomes on the basis of existing recommenda-
tions, benchmarks' and tools to support building and integrating
genome annotations from multiple sources of biological evidence.
The code associated with this Tutorial guides the user through the
various command-line tools and scripts implemented in the pipeline
(https://github.com/BaderLab/GenAnT).

Genome annotation workflow

Genome annotation involves installing, configuring and combining
adiverse set of tools that integrate DNA sequences, public databases
and often other sequencing datatypes (e.g., RNA sequencing results).
The field of genome annotation contains considerable terminology
(see Supplementary Table 1 for a glossary) and diverse file types
(for further information, see Supplementary Methods: Genome file
formats). Broadly, genome annotation consists of five steps: (i) iden-
tifying repetitive elements and masking repeats that caninterfere with
geneidentification, (ii) identifying protein-coding/mRNA gene models,
(iii) optimizing gene models by using multiple lines of evidence,
(iv) adding non-coding RNA (ncRNA) gene models and (v) labeling
gene models withthelikely gene identity (i.e., gene symbol). Each step
isdescribed furtherinthe subsequent sections of this Tutorial (Fig.1).
The tools used in this Tutorial were chosen because of their general
accuracy, ease of use, performance in recent benchmarking studies™
and ability toincorporate various data types to assimilate their results
(Supplementary Table 2). Although many of the specific tools described
in this Tutorial may be updated or replaced over time, these broad
steps of genome annotation will remain the same. Alternative tools
to the ones that we recommend are listed in Supplementary Table 3,
and computational resources and bioinformatic skills required for the
Tutorial are described in Box 1.

Step 1: repeat annotation and masking
The first step in genome annotation is to identify and mask repetitive
regions and transposable elements (TEs; Fig.1). The prevalence of these
regions interferes with many sequence alignment-based tasks, like
orthology mapping and syntenic alignments, because they create an
intractable number of alignment matches. Furthermore, some TEs
contain open reading frames (ORFs), which can be falsely identified as
protein-coding genes. Thus, repeats should be masked (i.e., flagged or
hidden) to reduce the computational time needed for the annotation
process and the number of mistakes made when generating gene models.
Earl Grey” is acomprehensive and bioinformatically friendly tool
that integrates and streamlines popular repeat annotation methods.
Specifically, Earl Grey integrates multiple common repeat masking
tools such as RepeatMasker?, which maps repetitive elements from
a database of known repeat sequences, and RepeatModeler?, which
identifies repeats de novo. It also uses multiple tools such as cd-hit-
est?, LTR finder”, rcMergeRepeats® and custom scripts to identify,
annotate, filter and aggregate repeat regions genome wide. Earl Grey
produces figure-quality summaries of agenome’s TE landscapein con-
junctionwithrepeats annotated in general feature format (GFF), which
arerequired for downstream analysis (GFF and other file formats are
explained in Supplementary Methods: Genome file formats). Earl Grey
relies on databases of repeat elements, such as Dfam?®, that are used to

identify repeatsin the target genome. The user can specify what clade
of species they are working with, which indicates which repeat database
Earl Grey should use (Box 2).

Earl Grey directly outputs a soft-masked genome (a widely used
convention indicating repetitive DNA sequences by using lowercase
characters in the FASTA file), as well as coordinates indicating repeat
identity ina GFF or browser extensible data (BED) file. The GFF and BED
files also indicate which repeat families the repetitive regions belong
to, including TE class and family, repetitive non-coding RNA (e.g., small
nucleolar RNA (snoRNA)) and simple repeats (e.g., low-complexity
sequences consisting of one, or a few, bases consecutively repeated).
Some genome annotationtools that are not used in this Tutorial require
a hard-masked genome (repetitive element sequences converted to
‘N’ characters). Generally, genome annotation tools specify which
type of maskingisrequired in their documentation. Users who want to
customize their repeat masking (e.g., refrain from masking snoRNA or
hard mask) can customize the BED file output by Earl Grey and manu-
ally mask their genome assembly by using BEDTools”. Automated TE
annotation relies on a curated database, like the DFam database?.
Manual annotations may increase the resolution of species-specific TE
families or TE families residing in complex, repetitive heterochromatic
regions (e.g., specific centromeric alpha-satellites)'°, but performing
such annotationsis beyond the scope of this Tutorial.

Step 2: generating protein-coding gene models

Gene models are hypotheses about the locations of genesin the genome
andtheirfeatures (e.g., mRNA, exons and introns). These are supported
by various evidence sources, some of which are easily accessible ‘stand-
ard’sources (e.g., protein sequence databases and genome annotations
fromwell-studied reference species like human and house mouse), and
others are less accessible (‘premium’) sources that are specific to the
target species being annotated (e.g., RNA-seq fromthe target species
and genome annotations fromaclose relative; Fig.1). Gene models can
represent true positives (correctly located gene), false positives (e.g.,
arandom ORF-like sequence) and false negatives (e.g., areal gene that
was missed in the annotation process)® (Fig. 2). To reduce errors, it is
important to use high-quality evidence for the existence of genes and
annotation tools that perform well (Supplementary Table 2).

In this Tutorial, we describe and integrate two complementary
approaches to generate high-quality gene models: homology-based
annotation and transcriptome- and protein-guided annotation
(Fig. 1). Broadly, homology-based genome annotation assumes that
thousands of gene models will be shared between areference species
(e.g.,house mouse) and a target species (e.g., woodchuck) at the level
of DNA sequence similarity and gene structure (e.g., number of exons).
The proportion of successfully mapped genes from the reference spe-
cies to the target species depends on how closely related the species
areand the quality of the reference genome’s assembly and annotation.
In contrast, transcriptome- and protein-guided genome annotation
assumes that the location of uniquely mapped paired-end RNA-seq
datarepresents an expressed region of the genome and is therefore a
candidate for agene model.

Resulting annotations vary depending on the quality of (i) the
genome sequence being annotated, (ii) the evidence provided to
inform the annotation (e.g., RNA-seq and homology) and (iii) the bio-
informatictool applied. Therefore, gene model selection, the process
of identifying, merging and curating the best gene models from a set
of candidate gene models, is crucial for generating a high-quality final
genome annotation (Step 3; Box 3).

Homology-based genome annotation. Homology-based genome
annotation involves the transfer of gene model information from a
reference species (e.g., house mouse) to a target species of interest.
Most gene structures and sequences are conserved across related
species, making homologous alignments from a reference species
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Fig.1| Genome annotation workflow. This genome annotation Tutorial
identifies and classifies an animal genome assembly’s repetitive and gene
elements. We expect up to five sources of evidence when annotating a genome
with the Tutorial. ‘Standard’ sources of evidence rely on the DNA sequence of the
genome being annotated and publicly available resources. These include public
databases, reference genome assemblies and annotations (e.g., house mouse
and human) and the genome sequence being annotated. ‘Premium’ sources of
evidence are not guaranteed to exist for every species but willimprove genome
annotations if used. These sources include transcriptome- and protein-sequence
dataand high-quality genome assemblies and annotations for closely related
species (e.g., the same genus). The Tutorial is split into five steps. Step 1 uses

the Earl Grey pipeline to identify and mask common repeats and transposable
elementsin the genome to reduce noise for subsequent steps. Step 2 uses
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homology between areference and target genome, transcriptome- and protein-
sequence data and analysis of the DNA sequence of the target assembly to predict
protein-coding and long non-coding RNA gene models. We use four tools,

Liftoff, TOGA, BRAKER3, and StringTie, to predict these gene models. Step 3

uses Mikado to evaluate the gene models from each source and integrate these
gene models into complete mRNA and long non-coding RNA transcripts. Step 4
identifies candidate short ncRNA genes by aligning the target genome to the
RNA families database and then evaluating these candidate sequences’ predicted
secondary structures against known ncRNA secondary structures. Finally, Step 5
uses OrthoFinder, Liftoff and TOGA to assign gene symbols to the gene models
identified in Steps 2 and 3 by comparing transcript sequences, homology and
gene order to one (or multiple) reference species. ID, identifier.

with high-quality gene structures an accurate and computationally
efficient method to annotate the target species. One consideration
of using homology-based annotations alone is that they cannot find

species-specific gene models. In addition, any errors existing in the
reference annotation will propagate to the new, target annotation.
Errors are inevitable and exist in all annotations. Even the human
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BOX1

Computational requirements and technical challenges

Genome annotation is a computationally intensive process
that requires significant computational time and resources.
The requirements of the pipeline are dictated by the minimum
requirements of the most intensive tools that we recommend. The
most time-consuming and computationally intensive tools are Earl
Grey”', BRAKER3® and TOGA".

A high-performance computing cluster is recommended
to run the Tutorial workflow in its entirety. Because different
genomes require varying computational resources based on
their characteristics (e.g., genome size and repeat content)
and the amount of evidence used as input for the pipeline, the
computational requirements are inherently unpredictable.
Generally, each step of the Tutorial has required a maximum of
150 h of run time and 64 GB of random access memory (RAM). In
our experience, StringTie, Liftoff and Mikado are desktop friendly,
and it is technically possible to run all tools on a desktop computer
(although TOGA is limited to small or partial genomes due to
inherent workflow management), but we do not recommend it. The
high-performance computing cluster system must be compatible
with Singularity or Apptainer’ container technologies, and we
strongly recommend compatibility with the conda package and
environment manager (https://conda.io). It is possible to use the
Tutorial workflow to build protein-coding and IncRNA gene models
without conda by using other methods of installation, but it takes a
lot of manual work and is more challenging to control software tool
dependencies.

genome annotation is being iteratively improved upon®. Errors can

be mitigated by selecting more-closely related reference species with
high-quality genome assemblies and annotations.

Broadly, we recommend using reference genomes generated
with long-read technologies with chromosomal-level resolution and
a quality value score >40, indicating a low error rate of base calls™.
Thesetechnologies and statistics should be reported in any assembly
release. Currently, genomes assembled by consortia such as the Ver-
tebrate Genome Project reliably surpass these standards. Genome
assemblies using Pacbio HiFireads (or equivalent) also reliably exceed
these standards™.

High-quality annotations can be assumed if such a genome is
annotated by an annotation hub (i.e., RefSeq, Ensembl and MANE),
although annotation completeness will still vary on the basis of avail-
able evidence for the species (e.g., RNA-seq from multiple tissues).
We recommend that the user search these databases for a few of the
most-closely related species, comparing these genome statistics and
selecting the assembly and annotation (or assemblies and annota-
tions from multiple references) with the most favorable statistics asa
reference for gene liftover.

Two homology-based tools that often create high-quality annota-
tions are Liftoff'® and the Tool to infer Orthologs from Genome Align-
ments (TOGA)". Liftoffis a gene liftover tool that aligns gene sequences
fromthereference genometo the target genome by using asingle line
of Unix code, making it quick and easy to use (Supplementary Table 2
and Fig. 3a). It uses minimap2* to align the genes from the reference
genome to the target genome with high accuracy and relatively low
computational resources. The alignment algorithms in minimap2*
are optimized to work with sequences of the same or closely related
species, making Liftoffideal when the reference speciesisin the same
genus as the target species. Liftoff takes a FASTA file and GFF or gene

Instructions for installing all tools and dependencies are available
on GitHub (https://github.com/BaderLab/GenAnT), and here
we offer three computational strategies for genome annotation.

The first is a step-by-step Tutorial that walks a user through the
genome annotation process line by line. This approach expects an
intermediate level of bioinformatic experience, with some experience
of bash scripting and R. Second, we provide a shell script that
exports user-provided arguments into an environmental variable
before running the Tutorial with no flow control (used for testing the
pipeline). Third, we offer a Snakemake pipeline that allows the Tutorial
to be run through a single configuration file’®. This requires the user
to be comfortable generating a YAML file and has a steeper learning
curve than running the shell script, but it is the most computationally
efficient and least prone to human error.

Common challenges that the user may experience are described
in more detail in the documentation on GitHub, along with potential
solutions. Tool-specific challenges are common, and much of
the GitHub repository associated with the Tutorial is dedicated to
facilitating the use of tools that are challenging to install and get
working. For example, TOGA and BRAKER3 have specific formatting
requirements for their input files that will otherwise cause the tools
to crash. On GitHub, we provide scripts for editing input files to try to
prevent such errors from happening. In addition, some tools produce
intermediate files that need to be deleted before rerunning the tool
if the tool crashes. We have specified in the Tutorial when this step is
necessary and what files need to be deleted.

transfer format (GTF) file from a reference species and the FASTA file
fromthetarget species and creates a GFF/GTF output file for the target
based on the reference annotations (Supplementary Table 2). It also
provides the user with a list of unmapped genes, which may indicate
alignment challenges. Because Liftoffis quick and easy to use, the user
cangenerate annotations from multiple reference speciesand compare
the resulting annotation quality to pick the best result (Box 3).

The second homology-based annotationtool that we recommend
is TOGA, which can accurately annotate genes across vertebrates
with higher rates of divergence (e.g., house mouse to naked mole-rat,
~70 million years diverged)***. TOGA can annotate more-divergent spe-
cies because it relies on a chain file, which stores pairwise alignments
connectingthe reference and target species that allows for gapsinboth
sequences. It also relies on an exon-specific aligner, CESAR* to anno-
tate exons, which aids in finding alignments between more divergent
sequences compared to Liftoff (Supplementary Table 2). TOGA also
uses syntenic information (i.e., gene order) to infer orthology. Generat-
ing the various files for TOGA is more bioinformatically involved and
computationally expensive than using Liftoff; however, all processing
can be done by using scripts provided by the Comparative Genomics
Toolkit” (https://github.com/ComparativeGenomicsToolkit). In sum-
mary, both Liftoffand TOGA confer distinct advantages and can be used
toidentify distinct gene models that are combined in Step 3.

Transcriptome- and protein-guided genome annotation. Another
way to annotate genomes is to use RNA- and/or protein-sequence
alignment evidence to inform gene models. Alignment-based methods
work by aligning RNA or protein sequences to the genome to determine
thelocation of transcribed and/or protein-coding genes. The specific
tools used to perform alignment-based annotation depend on the
sequencing data available.
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BOX2

Parameter selection and adapting the Tutorial workflow to

different clades

All software tools that we recommend require input parameters to
be set, defined as required or optional arguments that influence

the output of the tool. Because of the many parameters available,
there are many possible parameter combinations. The Tutorial
workflow was designed to minimize parameter selection in a number
of ways. First, we prioritized bioinformatic tools that score highly
across eukaryotic species in recent benchmarks", decreasing the
likelihood that a method needs to be replaced until it is updated

or outperformed by a new tool. Second, we prioritized tools that
internally perform training or alignment steps (e.g., BRAKER3, TOGA
and OrthoFinder) or contain pre-configured files and databases for
a wide array of clades (e.g., Earl Grey, Mikado, and MirMachine).

The parameters listed in the Github Tutorial ‘config.yaml’ file are
sufficient to annotate vertebrate and invertebrate animal genomes.
We have briefly categorized classes of parameters to consider
below.

First, parameters designating which data are input are required
for genome annotation. For example, TOGA and Liftoff require the
genome assembly and annotations of the reference species to
be specified, and StringTie and BRAKERS3 require RNA-seq data to
be specified. StringTie and BRAKER3 have additional parameters
designating the ‘type’ of RNA-seq included (e.g., no RNA-seq versus
unstranded RNA-seq versus stranded RNA-seq versus Iso-Seq).

The scripts in the GitHub for our Tutorial will automatically pick the
most appropriate version of each tool given the evidence provided.
Therefore, if the user accidentally does not include their RNA-seq

Ifthe user has access to RNA-seq data with the minimum require-
ments of 100-bp read length, a paired-end sequencing protocol and
high sequencing depth (e.g., 50 million reads for most tissues and
100 million reads for tissues with high transcript diversity like brain
and gonads)®***, then these data can be used to generate gene models
through RNA-seq alignment (e.g., by using HISAT2 (ref. 40)) followed
by a gene model caller (e.g., StringTie*)". Long-read RNA-seq (e.g.,
Iso-Seq) is becoming more commonplace and can capture entire tran-
scripts (including intron-exon structure, transcript direction and
poly(A) tail information at high resolution) within a single read*.
Including RNA-seq/Iso-Seq data from a diverse range of tissues also
helps minimize false negatives, because gene expression profiles vary
across tissues. Tissue-specific transcripts can be captured, and certain
tissues, such as the brain, lungs and gonads, are particularly valuable
because they exhibit abroad range of gene expression, thereby improv-
ingthe completeness of the annotation (for advice on how to combine
RNA-seq data across various tissues, see Supplementary Methods:
Combining RNA-seq derived transcripts).

One tool that integrates RNA-seq alignment information with
protein sequence data and ab initio gene prediction (i.e., by using
atrained algorithm to assign gene features, like the start and stop
codon, from the genome sequence) is the most recent iteration of
BRAKER3’ (Supplementary Table 2 and Fig. 3a). The RNA sequences
come fromthe species being annotated, whereas the protein sequences
are typically from an online database of homologous sequences, like
OrthoDb*. Internally, BRAKER3 uses HISAT2 (ref. 40) to align the short
paired-end RNA-seq reads to the genome, StringTie* to create can-
didate gene models from these alignments and ProtHint** to predict
coding sequence (CDS) regions by using these protein alignments

data in the ‘config.yaml’ file, the script will generate annotations in
non-RNA-seq mode.

Second, parameters designating the clade of the target species
need to be set for genome annotation. When running the Tutorial
workflow, Earl Grey will annotate repeats on the basis of clade-
specific repeat libraries, BRAKER3 will use clade-specific protein
databases, MirMachine will use clade-specific pre-computed
covariance matrices and Mikado will use clade-specific scoring files
for transcript assembly. These parameters usually need to be input by
the user, but some tools may default to a ‘Eukaryote’ clade when they
are not specified. Specifying a clade will improve gene models.

Finally, parameters within each annotation tool can be
subcategorized into: (i) alignment parameters, which adjust the
stringency of RNA-seq, genome-to-genome and genome-to-database
alignments; (ii) definitional parameters, which provide cutoffs for
what should be considered a gene (e.g., a IncRNA is defined as having
an ORF of <100 bp); and (iii) algorithm fine-tuning (e.g., to make
StringTie-lso-Seq gene models weigh more than StringTie-RNA-seq
in Mikado). Manually tuning these parameters may improve genome
annotations in specific cases, in which case we suggest generating
an annotation by using default parameters in parallel as a positive
control to see if the fine-tuning improves the results. The quality of
each result can be compared to help determine how to optimize
parameters for the best annotation (see Box 3). Details on how to
adjust these parameters are outlined in the documentation on GitHub
and the documentation for the individual tools.

(Supplementary Table 2). BRAKER3 is also compatible with stranded
RNA-seq and long-read data as an alternative to traditional RNA-seq.
These data are then used as ‘hints’ (i.e., estimations of CDS region
and intron placements) when generating ab initio gene models with
GeneMark-ETP* and Augustus*®. BRAKER3 can also identify tRNAs,
snoRNAs and untranslated regions (UTRs)™, and if RNA-seq data is
not available for the species (e.g., DNA derived from a sample with no
RNA extraction possible, such as a wild-derived tail-clipping), then
BRAKER3-protein (i.e., no RNA-seq) can generate useful gene models.
Inthis Tutorial, we use both StringTie and BRAKER3 before combining
results with the homology-based genome annotations and filtering
gene models as described in Step 3 (Fig. 1).

Step 3: combining and filtering gene models

Completing steps one and two yields gene models from multiple homol-
ogy-based and transcriptome- and protein-guided annotations. Many
gene models will be identified across all annotations; however, some
gene models will be method specific (Fig. 3c). Mikadois a tool that can
combine, evaluate and filter gene models across multiple annotations
in a way that mimics manual assembly curation. Mikado takes differ-
ent GFF files asinput and outputs a filtered GFF file that is often more
accurate than any of the input annotation or evidence files on their
own (Supplementary Table 2 and Fig. 3b).

Mikado functions by using information from external tools and
internal filtering systems to identify the most likely gene models
(Supplementary Table2). Forinstance, Mikado filters out chimeric, frag-
mented or short transcripts with disrupted coding sequences®. It also
scores gene models on the basis of their likelihood of being areal gene
by using BLAST+* to compare predicted gene models to an existing
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annotated fusion of ‘Gene D’ and ‘Gene F'. (1) Two genes that show evidence of
high-quality annotations, ‘Gene A’ and ‘Gene B'. The predicted gene model is
acombination of each source of evidence before Mikado integration. Intron
(translucent rectangle) and exon (rectangle) boundaries match splice junctions
from RNA-seq data. The gene order and length also match the gene order and
length found inarelated species. (2) A gene model found in only one annotation
method, with some evidence from RNA-seq data. Model (2) was filtered and not
included by Mikado. (3) A falsely annotated intron that incorrectly connects

‘Gene D’ and ‘Gene E’ to form ‘Gene C. The false intronin (3) is not found inany
source of evidence before Mikado, there is no evidence of splice junctions in RNA-
seq data and the two connected models represent two genes in arelated species,
namely ‘Gene D’ and ‘Gene E'. (4) ‘Gene E is a universal single-copy ortholog
(BUSCO) gene. Overall, the evidence suggests that there is a low likelihood

that ‘Gene E’has been fused to surrounding genes. (5) RNA-seq alignment data,
which contain the most-robust evidence for exon junctions and intron-exon
relationships in animal genome annotations. (6) The gene size and gene order
ofthe same cluster of genesin arelated species, which aids in annotating gene
symbols.

protein database and therefore favors conserved genes; italso usesan
internal scoring system to pick the best gene models from all sources
of evidence and outputs a single GFF file (Supplementary Methods:
Explanation of the Mikado scoring file (e.g. mammalian.yaml)). This
scoring system canbe adapted by user-provided parametersto preserve
certain characteristics of the input gene models.

Integrated genome annotations are expected to be more com-
prehensive than those generated by any single method; however,
automated methods evaluating hundreds of thousands of features will
have some false-positives and false-negatives. For example, because
Mikado prefers the longest gene model that passes its filters, a long
gene model derived from a homologous sequence may incorrectly
replace an alternative gene model that better matches a gene in the
Benchmarking Universal Single Copy Orthologs (BUSCO)* database
(for adescription of BUSCO, see Box 3). The resulting annotation can
still be improved by looking at additional evidence sources not used
by Mikado, such as missing BUSCO genes that were present in any of
the input assemblies but dropped by Mikado, manually evaluating
gene order along a sequence (i.e., ‘synteny’) in a genome browser or
visualizing functional genomics data that have been aligned to the
annotated genome (Fig. 2).

Step 4: annotating non-coding RNA genes

NcRNA genes encode a diverse array of functional RNA molecules
with various gene lengths and secondary structures. In this Tutorial,
we describe methods to annotate long non-coding RNAs (IncRNAs),
and various short non-coding RNA genes (e.g., small nuclear RNAs,
snoRNAs, tRNAs, rRNAs, miRNAs).

LncRNAs are RNA molecules that are longer than 200 nt and do
not contain an ORF longer than 100 aa*. LncRNAs sometimes have
introns (i.e., sequences removed by splicing)*® and may generate
small peptides that play regulatory functions in the cell*’. As such,
it can be challenging to strictly delineate IncRNAs from mRNA*°, This
phenomenon translates to IncRNA beingidentified as gene models that
are greater than 200 nt and that fail to be classified as mRNA. In our
pipeline, IncRNA and mRNA are simultaneously classified by using
Mikado (during Step 3).

Short non-coding RNA genes contain classes of non-coding mol-
ecules that serve a diverse array of regulatory functions within the
cell. These ncRNA gene classes generate relatively short transcripts
and, crucially, contain conserved sequences and secondary struc-
tures across species. These conserved features can be found in the
RNA families database (RFam), an open-access database that stores
alignments, secondary structures and covariance matrices of >4,000
ncRNA familes?®.

Short ncRNAs are annotated in two steps. The first step is called
‘seeding’, in which regions of the assembly are identified as ncRNA
candidates by querying known gene models, repeat annotations and
RNA families (by a BLAST search against the RFam database). The
second step is the ncRNA evaluation step, in which potential ncRNA
genesare classified by using INFERence of RNA ALignment (Infernal)*!
(Supplementary Table 2). This Tutorial uses MirMachine®, which relies
onInfernal but has clade-specific miRNA-specific secondary structures
trained from MirGeneDB> (Supplementary Table 2 and Box 2). MiRNA
annotations inferred by MirMachine provide additional gene models
that cannot be detected with RFam alone.
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BOX3

Testing annotation quality

Genome annotation quality across species improves with genomic
data quality, availability and tool development. However, it is
important to recognize that no genome annotation will be perfect.
Therefore, a user should aim for the highest quality genome
annotation possible while considering the limitations of data quality
and the human effort required for refinement. The quality of all
annotated features should be rigorously assessed for each annotation
generated in Step 2 of our Tutorial. This can tell the user if the data
that they are using to generate the annotation is of sufficient quality
and/or how well each tool is working with the data provided.

A commonly used way to assess the completeness and quality
of the annotation is to compare the gene models found in the
target genome to the BUSCO database®, a tool that serves both as
a database and statistical software. The BUSCO database consists
of curated gene sequences from single-copy orthologs for all
domains of life stored in the OrthoDB database®®. When used in
protein mode, the BUSCO software returns statistics indicating if
the expected protein sequences are found, fragmented or missing
(Fig. 3b). BUSCO scores are compared across annotations as a
judge of quality, with higher BUSCO scores indicating higher-quality
annotations. Generating a BUSCO score with the entire genome as
the target indicates the maximum BUSCO score possible for that
assembly.

It is also helpful to analyze feature statistics of a particular
annotation (e.g., average exons per transcript, number of monoexonic
transcripts and gene lengths), because outliers may indicate
that there are inaccuracies. For instance, if an RNA-sequencing

Step 5: sequence similarity-based transfer of gene symbols
Decades of research in model organisms have identified biological,
molecular and cellular functions for many protein-coding and non-
coding gene sequences in animal genomes. These gene functions are
characterized by agene symbol (e.g., estrogenreceptor1, ESRI).Iden-
tifying which sequences are predicted orthologs (i.e., derived from a
single ancestral sequence) between species of interest and the most
closely related model organism allows these gene functions and gene
symbols tobe applied to the species of interest. Assigning gene symbols
is challenging because most genes in animal genomes originated from
another gene (e.g., tandem duplication, gene fusion or translocation)*,
meaning that many genes have at least one paralogous gene with high
sequence similarity in exons.

Both Liftoffand TOGA annotate the target species’ gene structures
and assign reference gene symbols to the target with a high rate of
agreement with the gene symbols found in Ensembl annotations*.
Therefore, these tools can be used to predict gene symbols for the
final, integrated annotation (Supplementary Table 2). We transfer
gene models by matching exons derived from TOGA and Liftoff to the
finalgene models, before transferring the gene symbol to the Mikado-
filtered gene identifier data file column.

In addition, OrthoFinder®, a tool that maps sequence-similarity
relationships between proteins across two or more species on the
basis of their sequences, can be used to identify predicted orthologs.
OrthoFinder builds gene trees, considers gene duplication events,
is considered to be one of the most accurate ortholog inference
methods® and was used for gene naming in the DNA zoo annotation
project®®. OrthoFinder outputs lists of protein-protein sequence-
similarity relationships that can be used to infer gene-gene relation-
ships. Analternative to OrthoFinder is the Orthologous MAtrix (OMA)

alignment-based annotation has a large number of monoexonic
transcripts compared to a homology-based annotation, this suggests
that the former annotation may be fragmented into artificially small
transcripts. Mikado comes with a command that outputs a text file of
summary statistics.

Different GFF files mapping to the same genome assembly can be
compared with GffCompare”’. Briefly, GffCompare inputs a ‘query’
GFF and a ‘reference’ GFF and outputs a parseable text file (‘.stats’)
describing how well the base pairs, exons, introns and transcripts
match each other. It can be valuable if the researcher has a set of
experimentally validated or manually curated gene models for their
species or when multiple GFF files exist for a species from one or
multiple annotation efforts.

Finally, genomes contain collinear regions called syntenic blocks
that are conserved across large evolutionary time spans’®. In the
context of a reference and target species for genome annotation
(e.g., house mouse and woodchuck), these syntenic blocks typically
contain a large number of genes in both species, and the orientation
of these genes is often the same (Fig. 2). Synteny can also be used
to manually or systematically identify missing annotations or
misassembly by comparing genome browser snapshots between
the reference and target species'”’°. Although low throughput, the
importance of manually inspecting genome annotations within the
genome browser cannot be overstated. Genomes, annotations and
functional data can be loaded into the Interactive Genome Viewer
(IGV), a point-and-click program to support manual review (Fig. 2 and
Supplementary Methods: Viewing annotations on IGV).

database and tool, which similarly maps orthologous relationships
between species®. OMA uses a more-sensitive alignment algorithm,
which may help discern some one-to-one orthologs missed by
OrthoFinder; however, it is more challenging and computationally
intensive to run. We have provided documentation on how to run
OrthoFinder and add orthologous relationship output from any tool
(including OMA) on the Tutorial’s GitHub site.

Lastly, protein family and domain information can be added to
coding sequences by using InterProScan®’. These additional annota-
tions provide evidence for gene function in genes that could not be
identified with a unique gene symbol (e.g., unnamed gene-X has a
zinc-finger domain)®°%¢.,

Each of the above methods will assign gene symbols indepen-
dently, and most gene symbols should agree across methods and
species. If gene symbols appear to disagree between methods, they
may be aliases for the same gene (e.g., ABC2 versus ABCbeta). This is
especially noticeableif aspecies other than human or house mouse
has beenused for gene symbol prediction, because genes that have
an easily recognizable gene symbol in humans may have a system-
atically assigned gene symbol in less-well-studied species (e.g.,
[1ZUMOIinhumansis LOC101976381 inthe13-lined ground squirrel).
Other cases of gene symbol disagreement may occur if each method
assigns a different member of the same gene family to a gene (e.g.,
ABCI versus ABC2). Occasionally, each method may call different
one-to-one orthologs for the same gene (e.g., ABCI versus DEF7).
These instances could be manually resolved by comparing syntenic
gene orders between the target species and a reference species
in that region (Fig. 2). Resolving these gene symbols is inherently
annotation specific and would be performed downstream of this
Tutorial.
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Fig.3| Tools used to generate protein-coding gene models. a, The four tools
that we use to identify gene models in this Tutorial are: Liftoff, which transfers
protein-coding and non-protein-coding models from between two closely
related species (i.e., the same genus); TOGA, which transfers protein-coding
models between two more distantly related species; StringTie, which builds gene
models from RNA-seq alignment information; and BRAKER3, which uses RNA-seq
and protein information to predict exon and intron location before using ab
initio gene prediction to generate gene models. b, The distribution of universal

single-copy ortholog (BUSCO) genes captured in each method. Gene models
from each method are selected and integrated by using the Mikado gene selector,
which should have more complete BUSCO scores than each individual method.

¢, The distribution of the number of gene models in the final genome annotation
that came from each method after being filtered with Mikado. In this example,
many gene models are derived from Liftoff and StringTie, which represent
annotations from premium sources of evidence, namely homology of a close
relative and RNA-seq data of multiple tissues, respectively.

Summary and future directions
In this Tutorial, we present a workflow consisting of various tools that
performthe different components of the genome annotation process
and integrate the resulting gene models. We provide descriptions of
key file types and methods involved in the genome annotation pro-
cess, as well as a detailed, practical guide on how to use and integrate
these methods, assuming that the user has an intermediate level of
bioinformatics experience. This pipeline was originally designed for
mammaliangenomes but can be effective across diverse animal species.
The aim of this Tutorial is to guide users through the genome anno-
tation process on the basis of what is feasible and recommended with
current technologies. Although we are confident that our workflow

produces high-quality annotations based on current standards,
limitations exist and should be recognized by the user; notably, we
recommend specific genome annotation tools based on limited bench-
markingliterature” and established practices in the field. We found that
TOGA, BRAKER3, StringTie" and Liftoff (Z.A.C.and D.).S., unpublished
data) were consistently top performers across various metrics, includ-
ing BUSCO score, CDS length and false-positive rate when compared to
existing annotations from Ensembl and RefSeq. There are also several
new tools that take advantage of miniprot®®, which may result in
improved annotations, and could therefore be incorporated into future
workflows. Other recommended tools that do not directly contribute to
the annotation of protein-coding genes (e.g., ncRNA gene annotation
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and repeat masking) were chosen because they are one of the few that
could perform a specific task.

Furthermore, although our Tutorial discusses annotating repeti-
tive and genic features, it does not cover annotating cis-regulatory
elements such as promoters, enhancers and repressed elements.
Regulatory elements are species-, tissue-, developmental stage-
and disease-specific and can be measured with experiments that
profile the epigenome (e.g., ChIP-seq)®®. Without performing such
experiments, there is not yet an effective way to annotate these fea-
tures. ChromHMM is the most popular tool to build these chromatin
states®. This may change as epigenetic experiments become more scal-
able, but annotating these featuresis currently not typical of genome
annotation projects.

As technology improves, genome annotation tools will perform
more accurately and efficiently,and homology-based genome annota-
tion will probably continue to be optimized in response to the influx
of reference-grade or telomere-to-telomere de novo genome assem-
blies***%, With these technological improvements will come the discov-
ery of more clade-specific genes, isoform-level transcript resolution®
and new feature types (e.g., promoter-enhancer pairs and methylation
profiles®®’?). These improvements will also help annotate activity in
compleximmune-system gene families (e.g., the T-cell receptor, immu-
noglobin genes and major histocompatibility complex genes™). There
are also several less-commonly implemented, but promising innova-
tions in genome annotation, such as using deep-learning models to
annotate genes, TEs and splice sites’*and using large language models
ingene and regulatory feature annotation”>’, that may become more
prevalentin the future.

Although annotation tools and algorithms will continue to
improve, the fundamental process of combining and filtering various
annotations—along with rigorous quality assessment and manual
refinement—will remain critical. For example, deep-learning models
rely on high-confidence, well-curated annotations for training data,
meaning that the iterative refinement of genome annotations using
high-quality RNA-seq, protein and orthology-based evidence will
remain essential for advancing automated annotation accuracy.
As such, our Tutorial provides the genomics community with the
infrastructure to generate high-quality genome annotations in indi-
vidual laboratories now, while helping build the foundation for future
high-throughput genome annotation efforts.

Data availability
Example data for the Tutorial are available at https://zenodo.org/
records/14962941.

Code availability

Code containing Linux and R scripts to (i) guide the user step-by-step
through the genome annotation process and (ii) provide a stream-
lined genome annotation workflow that includes a small example are
available at https://github.com/BaderLab/GenAnT.
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