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Therapeutic effect of CLDN1 mAb in vivo
CLND1 expression is increased in PSC in cholangiocytes, 

progenitor cells and hepatocytes
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Impact and implications 100 

Primary sclerosing cholangitis (PSC) is a chronic fibrosing cholangiopathy with limited 101 

therapeutic options. Here, we identified the cell surface protein Claudin-1 as a mediator 102 

and therapeutic target for PSC. Claudin-1 expression in patients is associated with 103 

disease stage and outcome. A conditional liver epithelial-specific Claudin-1 knockout in 104 

mice resulted in reduced liver injury, fibrosis and cholestasis. Monoclonal antibodies 105 

targeting Claudin-1 inhibit fibrosis and cholestasis across state-of-the-art mouse models 106 

of PSC by inhibiting pro-inflammatory and fibrogenic signaling and the ductular reaction. 107 

The results of this preclinical study pave the way for the clinical development of Claudin-108 
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1-specific antibodies for the treatment of PSC. It is therefore of impact for physicians, 109 

scientists and drug developers in the field of biliary disease. 110 

  111 
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Abstract 112 

Background and aim: Primary sclerosing cholangitis (PSC) is a cholangiopathy 113 

associated with high risk of development into end-stage liver disease and hepatobiliary 114 

cancer. The pathogenesis is poorly understood, and current clinical care offers limited 115 

therapeutic options, primarily relying on liver transplantation. Claudin-1 (CLDN1), a 116 

transmembrane protein highly expressed in liver epithelial cells, plays a crucial role in 117 

cell-cell communication and signaling. Here we aimed to investigate the functional role of 118 

CLDN1 as a mediator and therapeutic target for PSC using patient cohorts combined with 119 

murine and patient-derived intervention models. Methods: CLDN1 expression patterns 120 

and cell phenotypes were analyzed in liver tissues of five PSC patient cohorts using 121 

scRNAseq, spatial transcriptomics and multi-plex proteomics. Proof-of-concept studies 122 

using CLDN1-specific monoclonal antibodies (mAbs) and genetic loss-of-function were 123 

performed in state-of-the-art mouse models for PSC and cholangiopathies. Perturbation 124 

studies in human cell-based models were applied for mechanistic studies. Results: In 125 

liver tissues of patients with PSC, CLDN1 expression was highly up-regulated and 126 

associated with disease progression. Spatial transcriptomics and proteomics uncovered 127 

high expression of CLDN1 in diseased cholangiocytes and cholestatic periportal 128 

hepatocytes with concomitant upregulation of pro-inflammatory and profibrotic signaling 129 

pathways. Therapeutic administration of CLDN1-specific mAbs or genetic knock-out 130 

improved liver function in PSC mouse models by reducing hepatobiliary fibrosis and 131 

cholestasis. Mechanistic studies revealed that mAb treatment inhibited pro-inflammatory 132 

and pro-fibrotic signaling in cholangiocytes and hepatocytes perturbed in liver tissues of 133 

patients with PSC. Conclusions: Our results uncover a functional role of CLDN1 in the 134 
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pathogenesis of PSC and biliary fibrosis. Completed in vivo proof-of-concept studies 135 

combined with expression analyses in PSC patients pave the way for the clinical 136 

development of CLDN1-specific mAbs to treat PSC. 137 

Keywords: antibody therapy, biliary fibrosis, cholangiopathies, signaling, proof-of-138 

concept   139 
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Introduction 140 

Primary sclerosing cholangitis (PSC) is a progressive cholestatic liver disease of unknown 141 

origin. Genetic and autoimmune mechanisms have been suggested as predisposing 142 

factors, although the exact pathogenesis remains elusive.1,2 The natural course of PSC 143 

leads to biliary fibrosis and strictures, resulting in chronic cholestasis and progressing to 144 

liver cirrhosis and failure. Liver cancer is a major complication of PSC at any stage. The 145 

risk of cholangiocellular carcinoma (CCA) is estimated at 20%.3 Liver transplantation is 146 

the only therapeutic option available for patients with advanced disease, limited by 147 

recurrence in up to 25% of recipients.3 Histological hallmarks of the disease are 148 

inflammation, fibrosis, cholestasis, and the ductular reaction, which is considered a 149 

mediator of disease progression.4,5 While a large series of compounds have been 150 

investigated in clinical trials, none has shown to alter the natural progression of PSC.1,6,7 151 

The lack of approved disease-modifying drugs shows the high unmet clinical need for 152 

new therapeutic strategies. 153 

CLDN1 is a transmembrane protein highly expressed in epithelial cells mediating 154 

cell-cell communication and signaling.8 CLDN1 has been shown to play a functional role 155 

in the disease biology of inflammation, fibrosis and cancer.8–11 In the liver, it is expressed 156 

in a junctional and nonjunctional (nj) form9,10 exposed at the basolateral membrane of 157 

polarized hepatocytes, mediating liver fibrosis progressing to hepatocellular carcinoma 158 

(HCC).8,9,12 We have previously developed monoclonal antibodies (mAbs) targeting a 159 

conformational epitope in the CLDN1 extracellular loop 1 comprising motif W(30)-160 

GLW(51)-C(54)-C(64). The mAbs are highly specific for non-junctional CLDN1 without 161 

cross-reactivity to other Claudins.13 In a metabolic dysfunction-associated steatohepatitis 162 
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(MASH)-driven HCC mouse model, mAb treatment inhibits liver fibrosis progressing to 163 

HCC with an excellent safety profile in non-human primates and healthy volunteers.8,12,14 164 

While patients with genetic CLDN1 mutations can present with sclerosing cholangitis,15 165 

the functional role of CLDN1 in PSC disease biology is unknown. Here, we investigated 166 

the functional role of CLDN1 as a mediator and therapeutic target in PSC.    167 

Materials and Methods 168 

Patient selection. CLDN1 expression was investigated in five cohorts of patients with 169 

cholangiopathies. Liver transcriptomic datasets of patients with PSC and their respective 170 

controls were retrieved from ArrayExpress (EMBL-EBI), accession number E-GEOD-171 

6126016, and Gene Expression Omnibus (NIH), accession numbers GSE1183734, 172 

GSE24398117. FFPE liver samples of patients with PSC were retrospectively obtained 173 

from the biobanks of the Norwegian PSC Research Center of Oslo, Norway (Table S1), 174 

the Department of Medicine and Surgery of the University of Milano-Bicocca, Italy (Table 175 

S2), and the University Hospital Leuven, Belgium (Table S3). Biopsies were assessed by 176 

an expert liver pathologist. The use of human samples was approved by the respective 177 

local ethical committees with informed patient consent. 178 

Computational analyses of patient samples. Raw count matrices from microarray 179 

studies were pre-processed and normalized using the oligo package in R. scRNAseq 180 

PSC expression data17 were analyzed using Seurat, rstatix, and fgsea packages in R. 181 

PSC spatial transcriptomics dataset17 was analyzed using Seurat package in R. Detailed 182 

technical information is described in the supplementary material and methods. 183 
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Immunohistochemistry, immunofluorescence, and multiple iterative labelling by 184 

antibody neodeposition (MILAN). Detailed technical information is described in the 185 

supplementary material and methods. 186 

Antibodies. Monoclonal anti-CLDN1 and IgG isotype control antibodies have been 187 

described.8,18 Staining antibodies are described in Tables S5-S6. 188 

Animal experiments. The bile duct ligation (BDL), DDC and Mdr2-/- mouse models,19 189 

expressing a human/mouse chimeric CLDN1 as a knock-in, were used to study the 190 

efficacy and safety of CLDN1 mAbs in vivo. Details are described in supplemental data.  191 

Bioinformatic and statistical analyses. Bioinformatic procedures are described in 192 

supplementary data. Continuous data were compared using Student’s t test when 193 

normally distributed (Shapiro-Wilk test) or non-parametric tests (Mann-Whitney U test and 194 

Kruskal-Wallis test) when non-normally distributed. Correlation was assessed by 195 

Spearman correlation test. Categorical data were analyzed using Fisher’s Exact test. 196 

Outlier identification was carried out using the ROUT method (Q=1%). p-values<0.05 197 

were considered statistically significant. Statistical analyses were performed using 198 

GraphPad Prism 9 and R. 199 

Results 200 

Claudin-1 expression is up-regulated in the liver of patients with PSC and 201 

correlates with disease progression. To investigate the role of CLDN1 in clinical 202 

disease biology, CLDN1 expression was analyzed in PSC cohorts by 203 

immunohistochemistry (IHC) and quantitative proteomics at the single-cell level. 204 
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Furthermore, publicly available single cell17, spatial17, and bulk RNA transcriptomic4,16 205 

data sets of PSC patients were analyzed (Fig. 1-3).  206 

CLDN1 gene expression was markedly and significantly up-regulated in liver 207 

tissues of PSC patients, including the pro-fibrogenic ductular reaction (Fig. 1A). IHC 208 

staining of PSC samples from two well characterized cohorts (Milan, Oslo, Tables S1-2) 209 

revealed that CLDN1 protein up-regulation was robustly associated with disease 210 

progression (Fig. 1B, Tables S1-2), as shown by markedly increased CLDN1 expression 211 

with progressing liver fibrosis stage (Fig. 1B), independent of inflammatory bowel disease 212 

(IBD) co-morbidity (Fig.S1A). CLDN1 expression in patient liver tissues correlated with 213 

clinically validated prognostic scores including the Amsterdam-Oxford PSC score, the 214 

Mayo Risk Score for PSC, and the PREsTO score20,21(Fig. 1C and S1B). CLDN1 215 

expression also correlated with the magnitude of the ductular reaction (Fig. 1C), 216 

associated with poor prognosis in PSC.5 Immunohistopathology analyses revealed that 217 

CLDN1 is robustly expressed in cholangiocytes lining damaged bile ducts as well as 218 

ductular reactive cells (Fig. 1D). Hepatocytes close to portal spaces showed elevated 219 

CLDN1 expression with a membranous pattern, likely in association with a cholestatic 220 

metaplastic phenotype (Fig. 1D). Multi-color fluorescent staining validated high CLDN1 221 

protein expression in virtually all cytokeratin (CK) 19+ ductular cells in PSC liver tissues 222 

(Fig. 1E). Consistently, CLDN1 protein expression increased with disease progression 223 

from early to advanced fibrosis stages in non-cirrhotic PSC liver samples, along with 224 

ductular reactive cells and liver fibrotic content in immunohistochemistry analyses (Fig. 225 

1F). 226 
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The marked upregulation of CLDN1 in PSC tissues, the expression of CLDN1 in 227 

PSC-driving cells, along with its association with disease progression suggest that 228 

CLDN1 plays a pathogenic role in PSC disease biology and is a therapeutic candidate 229 

target. 230 

 231 

Spatial transcriptomics and multi-plex proteomics in PSC patient liver tissues 232 

reveals co-localization of CLDN1 with known drivers of inflammation, fibrogenesis 233 

and stemness. To investigate the biological role of CLDN1 in PSC progression, its 234 

expression in liver samples of PSC was investigated by single cell-resolved and spatial 235 

transcriptomics. At the single-cell level, the highest CLDN1 expression levels were found 236 

in cells expressing markers of the biliary lineage, including cholangiocytes and biliary 237 

epithelial cells (Fig. 2A). An unbiased analysis of marker genes in CLDN1High 238 

cholangiocytes (Fig. 2B) revealed that top 4 differentially expressed genes included TNF-239 

related weak inducer of apoptosis receptor (TWEAK receptor, TNFRSF12A), cytokeratin 240 

7 (KRT7), Chemokine (C-X-C motif) ligand 6 (CXCL6), and SRY-Box Transcription Factor 241 

4 (SOX4) (Fig. 2B and Fig. S2A). Confirmatory studies at the protein level revealed that 242 

CLDN1+ CK19+ biliary epithelial cells were the major source of TNFα in PSC liver tissues 243 

(Fig. S2B). Gene set Enrichment Analysis (GSEA) of CLDN1High vs CLDN1Low 244 

differentially expressed genes revealed that high CLDN1 expression was associated with 245 

gene sets of bile duct proliferation, cholangitis, and senescence (Fig. 2C, left). Signaling 246 

pathways associated with CLDN1 expression included KRAS, NFκB, EMT, STAT3, and 247 

AKT (Fig. 2C, middle). Additionally, stemness-related gene sets were enriched in 248 

CLDN1high cholangiocytes (Fig. 2C, right). Analysis of a published spatial transcriptomics 249 
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dataset17 revealed that CLDN1 gene expression co-localized with the expression of 250 

known drivers of PSC, including CDKN1A (p21), NFκB effector RELA (p65), and CXCL8 251 

(IL-8), at the edges of PSC scar lesions (Fig. 2D). Interestingly, CLDN1 expression 252 

correlated with the expression of pro-inflammatory and pro-fibrogenic genes, including 253 

CXCL8 (Fig. 2E-F and Fig. S2C-D) and CXCL6 and MMP7 in transcriptomic regions 254 

neighboring high CLDN1 expression (Fig. 2G and Fig. S2E). These findings suggest that 255 

high CLDN1 expression is associated with expression of pro-inflammatory and pro-256 

fibrogenic pathways. 257 

 To validate key findings of single cell gene expression at the protein level, 291’283 258 

cells were phenotyped across samples of an independent cohort of PSC patients (Fig. 259 

3A, Table S3) using multiplex spatial proteomic analysis based on Multiple Iterative 260 

Labeling by Antibody Neodeposition (MILAN).22 Quantitative cytometry in PSC versus 261 

non-diseased tissues revealed a marked increase of CK19+CK7+ cholangiocytes 262 

including ductular reactive cells and CK18+CK7+CK19- intermediate epithelial cells such 263 

as dedifferentiating hepatocytes (Fig. 3B). A robust and significant increase of the total 264 

number of CLDN1+ cells in PSC compared to non-diseased liver tissues was observed 265 

(Fig. 3C), along with the increase of CLDN1 signal intensity per cell (Fig. 3D), validating 266 

the results obtained by immunohistochemistry (Fig. 1, 2) at single-cell resolution in an 267 

independent cohort. Protein expression analysis indicated co-localization of CLDN1 with 268 

mediators of biliary inflammation and fibrosis such as the pro-inflammatory cytokine 269 

TNFα, and immune and fibrosis modulator secreted phosphoprotein 1 (SPP1, 270 

osteopontin) in cholangiocytes and intermediate epithelial cells (Fig. 3E). 271 

CLDN1+TNFα+SPP1+ cells were observed surrounding to surround peri-biliary fibrotic 272 

Jo
urn

al 
Pre-

pro
of



Confidential draft 

  
15 

lesions (Fig. 3F-G, S3A-B), suggesting a potential role for CLDN1 in the biology of 273 

diseased cholangiocytes. 274 

Treatment with CLDN1-specific monoclonal antibodies improves liver function and 275 

survival by reducing fibrosis and cholestasis in state-of-the-art mouse models of 276 

PSC. To study the functional role of CLDN1 in the disease biology of PSC and investigate 277 

the role of CLDN1 as a therapeutic target, proof-of-concept studies were performed in 278 

three complementary PSC animal models using highly specific CLDN1-specific 279 

antibodies.  280 

Since the mAbs partially cross-react with mouse CLDN1,8 we engineered a mouse 281 

model expressing a human/mouse (h/m) hybrid CLDN1 in all organs and cells where 282 

native CLDN1 is expressed. This was achieved by exchanging three amino acids in the 283 

mouse CLDN1 EL1-coding region using homologous recombination. The BDL model was 284 

applied first as it recapitulates cholestasis-driven fibrosis, as well as cholangiocyte 285 

reactivity and ductular reaction.19,23 Forty 8-10 weeks-old male mice underwent surgical 286 

ligation of the common bile duct. Mice received 25 mg/kg CLDN1 mAb (n=20) or vehicle 287 

control (n=20) i.p. immediately after surgery and again on day 4 (Fig. 4A). Survival 288 

analysis of BDL mice showed that CLDN1 mAb treatment improved survival at day 7 (Fig. 289 

4B). Liver function tests revealed an improvement of markers of liver injury, liver function, 290 

and cholestasis in CLDN1 mAb versus control-treated mice as shown by reduced levels 291 

of ALT, AST (Fig. 4C), total bilirubin and alkaline phosphatase (Fig. 4D). Bile acids 292 

remained unchanged (Fig. S4A). Furthermore, significantly increased levels of albumin 293 

(Fig. 4E) indicated liver function improvement. Automated analysis of the collagen 294 

proportionate area (CPA) (Fig. 4F-G, S4B) of Sirius Red-stained livers revealed a 295 
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significant reduction of liver fibrosis in CLDN1 mAb versus control-treated mice. 296 

Transcriptomic analyses revealed that CLDN1 mAb treatment modulated gene 297 

expression of fibrosis-related markers Col1a1, Tgfb1, Acta2, and Timp1 in both RNAseq 298 

(Fig. 4H) and qPCR (Fig. S4C) analyses. Moreover, a robust reduction of the expression 299 

of markers of the ductular reaction including Epcam, Krt19, Spp1 (Fig. 4I) and cytokeratin-300 

7 (Fig. 4J) was observed. Additionally, CLDN1 mAb-treated mice exhibited reduced 301 

expression of pro-inflammatory cytokines (Fig. 4K).   302 

Next, the DDC mouse model was applied, a chemical model for PSC recapitulating 303 

key features of sclerosing cholangitis and peribiliary fibrosis.24 Forty 8-weeks-old male 304 

mice were fed with a 0.1% DDC-supplemented diet for four weeks. Following 305 

establishment of peri-biliary fibrosis in week 1,24 mice were assigned 1:1 to receive weekly 306 

i.p. injections of 25 mg/kg CLDN1 mAb or vehicle control for three weeks (Fig. 5A). 307 

CLDN1 mAb treatment did not change survival (Fig. S5A) and decreased liver-to-body 308 

weight ratio (Fig. 5B). Analysis of liver function tests revealed significant decrease of 309 

plasma ALT (Fig. 5C), plasma bile acids (Fig. 5D) but not alkaline phosphatase (ALP)(Fig. 310 

S5B). Treatment with CLDN1 mAb resulted in a significant and robust reduction of liver 311 

fibrosis as shown by CPA analysis (Fig. 5E). CLDN1 treatment also resulted in inhibition 312 

of porto-portal bridging fibrosis – a key marker of disease progression in patients (Fig. 5F, 313 

S5C). The decreased expression of cytokeratin-19 (Krt19) and cytokeratin-7 indicated 314 

that CLDN1 mAb treatment reduced the ductular reaction (Fig. 5G). Analysis of 315 

differentially expressed genes by RNAseq and qPCR (Fig. S5D) revealed the 316 

downregulation of several pro-inflammatory mediators in CLDN1 mAb-treated mice (Fig. 317 

5H and Fig. S5D). Confirming the histopathology findings, expression of genes involved 318 
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in fibrogenesis and extra-cellular matrix remodeling was significantly decreased, including 319 

fibulin 2 (Fbln2), integrin subunit beta 6 (Itgb6), matrix metallopeptidase 7 (Mmp7), matrix 320 

metallopeptidase 9 (Mmp9)(Fig. 5H), and transforming growth factor beta 2 (Tgfb2)(Fig. 321 

S5D). 322 

Since CLDN1 has been shown to be up-regulated in the colon of patients with 323 

IBD,25 the effect of CLDN1 mAb treatment on the colon was investigated. MAb treatment 324 

did not result in significant differences in colon length, colon weight, and intestinal 325 

permeability (Fig. S6A-E). Furthermore, no colon histopathological changes were 326 

observed, as previously shown for healthy mice across organs.14 Treatment effects were 327 

similar in male and female mice (Fig. S6B and S7A-C), suggesting that there is likely no 328 

sex-dependency for CLDN1 mAb efficacy. A control group without diet served as a 329 

baseline to distinguish the specific effects of the diet from other variables (Fig. S7A-D). 330 

The effects of CLDN1 mAb were target-specific, since an isotype control did not show 331 

therapeutic effects (Fig. S7A-D). Moreover, CLDN1 mAb treatment did not modulate liver 332 

function tests in h/mCLDN1 KI mice under non-disease modeling conditions (Fig. S7D). 333 

To further validate the functional role of CLDN1 in the pathogenesis of biliary 334 

fibrosis, the generation of an Alb.Cre/Cldn1fl/fl mouse model enabled investigation of 335 

biliary fibrosis development in mice with Cldn1 conditional knock-out in liver epithelial 336 

cells. When challenged with 0.1% DDC feeding (Fig. 5I), Alb.Cre/Cldn1fl/fl robustly 337 

maintained the Cldn1 knock-out phenotype as shown by absence of CLDN1 expression 338 

in the liver (Fig. 5J), while exhibiting significantly less liver injury (Fig. 5K), less cholestasis 339 

(Fig. 5L), and less collagen deposition (Fig. 5M-N) compared to Alb.Cre controls. 340 
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The Mdr2-/- mouse model is a state-of-the-art model for PSC, as it recapitulates 341 

chronic disease progression modeling biliary fibrosis, cholestasis and hepatobiliary 342 

cancer, similar to the clinical course of PSC.26 Mdr2-/- mice were treated in a therapeutic 343 

approach with CLDN1 mAb or control at the age of 6 weeks, when fibrosis and portal 344 

PSC–like lesions are already established.26 After 12 weeks of treatment, mice were 345 

sacrificed, and plasma and livers harvested (Fig. 6A). While this model is characterized 346 

by low mortality, our data indicate that treatment with CLDN1 mAb improved survival 347 

compared to control animals (Fig. 6B). In a per-protocol analysis of relative weight 348 

change, CLDN1 mAb treatment significantly increased growth rate (Fig. 6C). CLDN1 349 

mAb-treated Mdr2-/- mice exhibited a robust improvement of cholestasis as shown by 350 

reduced total bilirubin (Fig. 6D, S8A), plasma bile acids (Fig. 6D, S8B), and ALP (Fig. 351 

6D). ALP levels, which are used as endpoints in clinical trials1, were normalized in 73% 352 

of CLDN1 mAb-treated mice vs 28% of control-treated mice (Fig. 6D). The improvement 353 

of cholestasis was accompanied by reduced liver injury as shown by decreased AST and 354 

ALT levels (Fig. 6E). Importantly, CLDN1 mAb treatment resulted in reduced liver fibrosis 355 

including the inhibition of bridging fibrosis as shown by CPA analyses (Fig. 6F-G, S8C). 356 

The histopathological features of fibrosis reduction were accompanied by reduced gene 357 

expression of pro-inflammatory mediators (Fig. 6H). Analysis of cell fate marker 358 

expression revealed that CLDN1 mAb treatment downregulated biliary-fate marker SRY-359 

Box Transcription Factor 9 (Sox9) while upregulating hepatic nuclear factor 4 alpha 360 

(Hnf4a) (Fig. 6I), while markers of the ductular reaction remained unchanged (Fig. S8D). 361 

The expression of extracellular matrix components collagen type IV alpha-1 chain 362 
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(Col4a1), collagen type V alpha-2 chain (Col5a2), and laminin subunit beta 1 (Lamb1) 363 

was significantly downregulated in CLDN1 mAb-treated mice (Fig. 6J, S8E). 364 

Collectively, proof-of-concept studies in three state-of-the-art PSC mouse models 365 

showed improvement of CLDN1 mAb treatment on liver function, cholestasis, and fibrosis. 366 

 367 

CLDN1 mAb treatment inhibits pro-inflammatory and pro-fibrogenic signaling in 368 

PSC mouse and patient-derived models. To investigate the mechanism of action of 369 

CLDN1 mAb treatment, liver gene expression from the three animal models was analyzed 370 

using RNAseq and compared with the perturbed liver transcriptome of PSC patients.16 371 

GSEA revealed that 1101 gene sets which were up-regulated in their expression in PSC 372 

patients were downregulated following CLDN1 mAb treatment across all mouse models 373 

(Fig. 7A). At the same time, 48 gene sets downregulated in PSC patients were restored 374 

in their expression across all mouse models (Fig. 7A). CLDN1 mAb treatment robustly 375 

suppressed the expression of PSC disease drivers and pathogenic signaling pathways 376 

(Fig. 7B). These included NFκB signaling, T cell receptor and macrophage signaling, 377 

TGFβ response, collagen formation as well as Notch and KRAS signaling and epithelial-378 

to-mesenchymal transition (EMT). Of note, the suppression of bile acid metabolism in 379 

patients with PSC was also restored by CLDN1 mAb treatment. The perturbation of key 380 

pro-inflammatory and pro-fibrotic signaling pathways was validated in the BDL mouse 381 

model on the protein level using IHC and immunoblotting (Fig. 7C, S9A-B). CLDN1 mAb 382 

treatment significantly suppressed NFkB signaling as shown by decreased p65-positive 383 

area in reactive ductules in the BDL model in vivo (Fig. 7C), accompanied by marked 384 

reduction of nuclear p65 translocation (Fig. S9A). Moreover, CLDN1 treatment resulted 385 
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in inhibition of pro-fibrotic SRC, AKT and RAS signaling as shown by decreased 386 

phosphorylation of SRC, AKT, and decreased RAS protein expression in immunoblot 387 

analyses of mouse liver tissues treated with mAb (Fig. 7C, S9B). Since the majority of 388 

these proteins have been shown to bind/interact with CLDN1 in the cell membrane8,27 and 389 

the CLDN1 antibody was not internalized following binding to the cholangiocyte cell 390 

membrane (Fig. S10A-B), it is likely the mAb inhibits signaling by interfering with protein-391 

protein interactions at the cell membrane.  392 

Liver scRNA-seq analysis of BDL mice informed of further mechanistic events 393 

induced by antibody treatment at single-cell resolution (Fig. 8A). All the major liver cell 394 

types were captured, hepatocytes, and macrophages being the most abundant cell types 395 

(Fig. S9C). Given the CLDN1 expression profile in scRNA-seq and spatial transcriptomics 396 

analyses in patients (Fig. 1, 2), we first focused on epithelial cell biology. CLDN1 mAb 397 

treatment induced a significant downregulation of PSC-associated cholangiocyte and 398 

hepatocyte marker genes (Fig. 8B). scGSVA analysis revealed that CLDN1 mAb 399 

treatment reduced the expression of TNFα-NFκB, NOTCH1, AKT, and SRC signaling 400 

pathways in both hepatocytes and cholangiocytes (Fig. 8C). The inhibition of 401 

proinflammatory and pro-fibrogenic signaling was validated on the protein level where 402 

CLDN1 mAb treatment modulated SRC, IKBα, and p65 phosphorylation (Fig. S11A-B) in 403 

primary human cholangiocytes. The inhibition of epithelial cell signaling resulted in a 404 

modulation of macrophage and myofibroblast functions, the effector cell types involved in 405 

PSC and biliary fibrosis.17,28 Single cell-resolved gene expression analysis of the pro-406 

fibrotic niche of the BDL mouse model revealed that CLDN1 mAb treatment suppressed 407 

the expression of key pro-inflammatory and pro-fibrotic cytokines in nonparenchymal cells 408 
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(Fig. 8D) resulting in the suppression of the expression of major ECM components in 409 

fibroblasts, including Col1a1 (Fig. 8D). 410 

Collectively, these results unravel the targeted cell types and the mechanistic 411 

events, by which CLDN1 mAb treatment results in the improvement of cholestatic liver 412 

disease. 413 

  414 

Discussion 415 

In this study, we identify CLDN1 as a previously undiscovered driver and therapeutic 416 

candidate target for PSC. This discovery is based on the following key findings: (1) 417 

CLDN1 is overexpressed in liver tissues of PSC patients and its level of expression 418 

correlates with disease progression (Fig. 1). (2) CLDN1 expression co-localizes with 419 

disease drivers and pathways in the diseased livers of PSC patients (Fig. 2-3). (3) A 420 

monoclonal antibody targeting exposed CLDN1 on cholangiocytes and hepatocytes 421 

reduces fibrosis, inflammation and cholestasis – hallmarks of PSC - in three state-of-the-422 

art mouse models (Fig. 4-6). (4) A loss-of-function study using a liver-specific CLDN1 423 

knock-out mouse model supports a functional role of CLDN1 in PSC disease biology (Fig. 424 

5 I-N).  425 

Mechanistically, our data are consistent with a model that CLDN1 overexpression 426 

in cholangiocytes and hepatocytes induces pro-inflammatory and pro-fibrogenic signaling 427 

(Fig. 7, 8E) resulting in the perturbation of epithelial cell fate and induction of the ductular 428 

reaction. Subsequent macrophage and fibroblast activation mediates inflammation, 429 

cholestasis and fibrosis (Fig. 7, 8F). Since the pathogenic role of the ductular reaction 430 
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and these signaling pathways have been well described in PSC disease biology,5,8,29 it is 431 

likely that their inhibition mediates the effects of CLDN1 mAb treatment. 432 

Our study has some limitations: first, we cannot exclude that other signaling 433 

pathways described for CLDN1 or additional mechanistic events are at play in mediating 434 

the effects of CLDN1 mAb. Second, although we used a large panel of complementary 435 

model systems for PSC disease biology, these model systems only partially recapitulate 436 

the complex pathogenesis of fibrosing cholangiopathies in patients (e.g. absence of IBD 437 

or intestinal biology). Third, analysis of fibrosis was limited to Sirius Red staining and 438 

collagen gene expression. Fourth, further studies will be needed to study whether CLDN1 439 

mAb treatment will reduce the development of CCA in PSC-CCA models.   440 

The overexpression of CLDN1 in PSC tissues across several patient cohorts 441 

combined with the robust effect of CLDN1 mAb treatment across three state-of-the-art in 442 

vivo models without detectable adverse events identify CLDN1 as previously 443 

undiscovered therapeutic target in PSC. The correlation of CLDN1 expression with 444 

disease biology (Fig. 1) identifies CLDN1 as a candidate biomarker for patient 445 

stratification. The modulation of secretory proteins TIMP1, metalloproteinases (Fig. 4 and 446 

5) or CCL20, a cytokine associated with PSC30 suppressed by antibody-treatment in all 447 

models (Fig. 4-6), provide opportunities for noninvasive target engagement markers in 448 

patients. Given the absence of approved therapeutic options and the limited success of 449 

compounds in clinical development, the treatment with CLDN1 mAb provides a new 450 

opportunity to improve the dismal prognosis of PSC patients.  451 

Interestingly, we observed that the therapeutic effect of CLDN1 treatment on 452 

cholestasis, fibrosis and survival was most pronounced in the BDL model, suggesting that 453 
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BDL best models the pathways targeted by the antibody. Whether this finding eventually 454 

translates to clinical treatment of patients e.g. large duct versus small duct disease or 455 

major strictures remains to be determined.     456 

A clinical challenge in PSC is the high risk of CCA and HCC and the lack of 457 

effective surveillance. Since CLDN1 is overexpressed in CCA and HCC and CLDN1 458 

mAbs have been shown to potently inhibit the development and growth of hepatobiliary 459 

cancers in patient-derived tumor models,8,12,31 it is likely that treatment with mAb will also 460 

reduce the risk of CCA and HCC, key determinators for outcome and survival of PSC 461 

patients. Furthermore, CLDN1 mAbs have been shown to be safe including non-human 462 

primates12 as well as healthy volunteers.32 Collectively, the results of this study pave the 463 

way for clinical development of CLDN1 mAbs as a first-in-class candidate treatment for 464 

PSC.  465 

 466 

  467 
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Figure Legends 468 

Fig. 1. CLDN1 is up-regulated in liver tissues from patients with PSC and correlates 469 

with disease progression. (A) CLDN1 gene expression in whole-liver tissues (Mann-470 

Whitney, p=0.0175)(E-GEOD-61260)16 and laser micro-dissected ductular reaction areas 471 

of patients with PSC (Mann-Whitney, p=0.0043)(GSE118373)4. (B) Quantification of 472 

CLDN1 expression in CLDN1-stained liver biopsies from two independent cohorts of 473 

patients with PSC, showing marked CLDN1 upregulation in patients, associated with 474 

fibrosis stage (Milan cohort: Mann-Whitney, p=0.009; Oslo cohort, continuous line 475 

indicates Kruskal-Wallis p=0.0036; dashed lines indicate pairwise Mann-Whitney: control 476 

vs Early-ALPhigh p=0.0286; control vs cirrhosis p=0.002; Early-ALPlow vs cirrhosis 477 

p=0.008. (C) CLDN1 protein expression correlates with clinical prognostic scores, 478 

including the magnitude of the ductular reaction (Spearman’s correlation, p=0.019, 479 

p=0.004, p=0.004, p=0.004, p=0.004, p=0.004, p=0.04, p=0.04 top to bottom). (D) 480 

Immunohistochemical staining on a PSC liver explant reveals strong CLDN1 expression 481 

in damaged bile ducts, ductular reaction, and cholestatic peri-portal hepatocytes. (E) 482 

Immunofluorescent staining showing robust CLDN1 expression in CK19-positive cells in 483 

PSC samples. Scale bars: 50 µm. (F) CLDN1 IHC staining of PSC samples at different 484 

stages, showing CLDN1 expression increasing along with disease stage, ductular 485 

reaction, and fibrotic content. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001. 486 

 487 

Fig. 2. CLDN1 expression co-localizes with known PSC disease drivers in patients. 488 

(A) In a published PSC scRNAseq atlas,17 CLDN1 is up-regulated in cholangiocytes of 489 

patients with PSC. (B) Differentially expressed genes (DEGs) analysis in PSC-derived 490 
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CLDN1High vs CLDN1Low biliary epithelial cells. Analysis of a spatial transcriptomic atlas 491 

of PSC.17 (C) Pathway enrichment analyses revealed that CLDN1High biliary cells are 492 

characterized by distinct signaling, phenotype, and plasticity features compared to 493 

CLDN1Low counterparts. (D) Analysis of a spatial transcriptomic atlas of PSC[18]. CLDN1 494 

expression co-localizing with CDKN1A, RELA, and CXCL8 at the interface of scar lesions. 495 

Insets show the interface region between a peri-biliary scar and surrounding non-fibrotic 496 

liver tissue. Dashed lines delineate a fibrotic scar. (E) Whole-PSC liver unbiased analysis 497 

of top 40 genes significantly correlating with CLDN1 expression. (F) Top 20 genes 498 

significantly correlating with CLDN1 expression in the ‘Cholangiocyte’ cluster. (G) Genes 499 

significantly correlating with CLDN1 expression in a neighboring transcriptomic spot. 500 

 501 

Fig. 3. Spatial multiplex proteomics reveals an increase in CLDN1-expressing liver 502 

epithelial cells in PSC liver tissues at the single cell level. (A) UMAP clustering of 503 

spatial proteomics-phenotyped liver tissue cells. (B) Quantitative cytometry shows 504 

increased numbers of cholangiocytes and intermediate epithelial cells in PSC compared 505 

to non-diseased livers (Mann-Whitney, p<0.0001). Expression of CK19+CK7+ was used 506 

to identify cholangiocytes including ductular reactive cells, staining of CK18+CK7+CK19- 507 

cells were used to identify intermediate epithelial cells such as dedifferentiating 508 

hepatocytes. (C) Quantitative cytometry shows increased numbers of CLDN1+ cells in 509 

PSC compared to non-diseased livers (Mann-Whitney, p=0.0002). (D) Quantitative 510 

cytometry showing increased CLDN1 staining intensity in CLDN1+ cells in PSC compared 511 

to non-diseased livers (Mann-Whitney, p=0.0034). (E) Protein expression of CLDN1, 512 

TNFα, and SPP1/Osteopontin in the cluster of cholangiocytes and intermediate epithelial 513 
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cells. (F) Digital reconstruction of representative TMA cores, phenotyped by spatial 514 

proteomics. (G) Individual panels showing representative TMA cores stained for CLDN1, 515 

CK19, SPP1, CLDN1+CK19+SPP1, and TNFα (upper to lower). *** p<0.001; **** 516 

p<0.0001. 517 

 518 

Fig 4. CLDN1 mAb treatment improves survival, liver function, cholestasis, and 519 

liver fibrosis in the bile duct ligation mouse model. (A) Illustration of the experimental 520 

approach. (B) Survival analysis of bile-duct ligated mice revealed that CLDN1 mAb 521 

improved survival at 7 days (Log-rank test, p=0.08). (C-E) CLDN1 mAb treatment 522 

significantly ameliorated liver function tests, included ALT (Mann-Whitney, p=0.0163) and 523 

AST (Mann-Whitney, p=0.0185) (C), total bilirubin (Mann-Whitney, p=0.0118) and 524 

alkaline phosphatase (ALP, Mann-Whitney, p=0.0168) as markers of cholestasis (D), and 525 

albumin (Mann-Whitney, p=0.0006) as marker of liver biosynthetic function (E). (F) 526 

CLDN1 mAb treatment reduced fibrosis levels as measured by Sirius Red Collagen 527 

Proportionate Area (Mann-Whitney, p<0.0001). (G) Representative images of Sirius Red-528 

stained livers of control and CLDN1 mAb-treated mice. Scale bars: 500 µM. (H-K) 529 

Expression of fibrosis (H), cell-fate and ductular reaction (I-J) and inflammation (K) 530 

markers in the livers of control and CLDN1 mAb-treated mice (Col1a1: p=0.0079; Tgfb1: 531 

p=0.0079; Acta2: p=0.0317; Timp1: p=0.0079, Krt19: p=0.0056; Spp1: p=0.0011; Ck7: 532 

p=0.0357; Ccl24: p=0.0079; Tnf: p=0.0079; Il1b: p=0.0079; Mann-Whitney). Scale bars: 533 

250 µM. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001. AST (C, right) and bilirubin (D, 534 

left) panels show n=7 control and n=10 CLDN1 mAb-treated mice. The plasma of 8 control 535 

and 5 treated mice could not be analyzed due to hemolysis interfering with analyte 536 
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measurements. Data in (H) and (K) were obtained from RNAseq analyses of a subset of 537 

5 representative liver tissues (n=5 vs n=5). 538 

 539 

Fig. 5. CLDN1 mAb treatment ameliorates liver injury and fibrosis in the DDC mouse 540 

model. (A) Illustration of the experimental approach. (B) Analysis of the liver index (liver-541 

to-body weight ratio) suggesting reduced cell proliferation in treated mice (Mann-Whitney, 542 

p=0.0055). (C) CLDN1 mAb treatment ameliorated liver injury as shown by decreased 543 

levels of alanine aminotransferase (ALT)(Mann-Whitney, p=0.0009). (D) CLDN1 mAb 544 

treatment reduced cholestasis as measured by plasma concentrations of bile acids 545 

(Mann-Whitney, p=0.0559). (E) CLDN1 mAb treatment reduced fibrosis levels as 546 

measured by Sirius Red Collagen Proportionate Area (Mann-Whitney, p<0.0001). (F) 547 

Representative images of Sirius Red-stained livers of control and CLDN1 mAb-treated 548 

mice. Scale bars: 500 µM. (G) CLDN1 mAb treatment reduced the magnitude of ductular 549 

reaction, as measured by Krt19 gene expression (Mann-Whitney, p=0.0777) and 550 

cytokeratin-7 immunostaining (Mann-Whitney, p=0.0159). Scale bars: 250 µM. (H) Liver 551 

expression (RNAseq analyses of 5 liver tissues of each group, n=5 vs n=5) of genes 552 

encoding for inflammation and fibrosis markers (Ccl20: p=0.0079; Ccl17 p=0.0079; Cxcl5: 553 

p=0.0079; Fbln2: p=0.0079, Itgb6: p=0.0159; Mmp7: p=0.0317; Mmp9: p=0.0079; Mann-554 

Whitney). (I) Experimental approach of Alb.Cre/Cldn1fl/fl mice with conditional Cldn1 555 

knock-out in liver epithelial cells and subjected to DDC diet. (J) Liver Cldn1 expression in 556 

Alb.Cre and Alb.Cre/Cldn1fl/fl mice, validating the loss of CLDN1 expression in DDC feed 557 

KO mice. (K) Plasma ALT (Mann-Whitney, p=0.0039) and (L) ALP (Mann-Whitney, 558 

p=0.2799) levels were decreased in Alb.Cre/Cldn1fl/fl mice. (M) Cldn1 knock-out in liver 559 
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epithelial cells significantly reduced fibrosis development in the DDC mouse model 560 

(Mann-Whitney, p=0.0011). (N) Representative images of Sirius Red-stained liver of 561 

Alb.Cre and Alb.Cre/Cldn1fl/fl mice. Scale bars: 500 µM. * p<0.05; ** p<0.01; *** p<0.001; 562 

**** p<0.0001. 563 

 564 

Fig. 6. CLDN1 mAb treatment improves survival, liver function, and liver fibrosis in 565 

the Mdr2-/- mouse model. (A) Illustration of the experimental approach. (B) Survival 566 

analysis of Mdr2-/- mice revealing improved survival in CLDN1 mAb-treated group (log-567 

rank test, p=0.0887). (C) Increased growth rate in CLDN1 mAb-treated Mdr2-/- mice (extra 568 

sum-of-squares F-test, p<0.0001). Error bars: mean ± SEM. (D) CLDN1 mAb treatment 569 

significantly decreased markers of cholestasis (Bilirubin: p=0.0023; Bile acids: p=0.0519, 570 

Mann-Whitney, and ALP: p=0.077, t-test), resulting in the normalization of plasma ALP 571 

levels in 73% of mice (Fisher’s exact test, p=0.01). (E) Plasma levels of AST (Mann-572 

Whitney, p=0.0242) and ALT (Mann-Whitney, p=0.0936) as markers of liver injury were 573 

reduced in CLDN1 mAb-treated group. (F) CLDN1 mAb treatment reduced fibrosis levels 574 

as measured by Sirius Red Collagen Proportionate Area (Mann-Whitney, p<0.0001). (G) 575 

Representative images of Sirius Red-stained livers of control and CLDN1 mAb-treated 576 

mice. Scale bars: 500 μm. (H-J) Liver gene expression (RNAseq, n=5 vs n=5) of key 577 

inflammation (H), cell fate (I), and fibrosis markers (J). (Ccl20: p=0.0317; Ccl12 p=0.0317; 578 

Tlr4: p=0.0159; Sox9: p=0.0159, Hnf4a: p=0.0079; Col4a1: p=0.0317; Col5a2: p=0.0317; 579 

Lamb1: p=0.0317, Mann-Whitney). * p<0.05; ** p<0.01; **** p<0.0001. Bilirubin (D, left) 580 

and AST (E, left) panels show n=14 control and n=21 CLDN1 mAb-treated mice. The 581 
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plasma of 4 control and 1 treated mice could not be analyzed due to hemolysis interfering 582 

with analyte measurements. 583 

 584 

Fig. 7. CLDN1 mAb treatment suppresses pro-inflammatory, pro-fibrotic and pro-585 

carcinogenic signaling pathways in vivo. (A) Venn diagrams of pathways differentially 586 

enriched in the livers of patients with PSC and in the liver of mouse models. (B) 587 

Comparison of PSC liver transcriptome with transcriptomic changes induced by CLDN1 588 

mAb treatment in mouse models. Heatmaps illustrate NES of representative altered gene 589 

sets, each condition versus their respective control. (C) Quantification of IHC and 590 

immunoblot signals validating transcriptomic findings on the protein level in the BDL 591 

mouse model (NFκB-p65: p=0.0004; AKT: p<0.0001; SRC: p=0.0475; RAS: p=0.0226, 592 

Mann-Whitney). * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001. 593 

 594 

Fig. 8. CLDN1 mAb treatment suppresses pro-inflammatory and pro-fibrotic 595 

signaling in liver epithelial cells with inhibition of macrophage and fibroblast 596 

activation.  (A) scRNA-Seq clustering of livers from the BDL mouse model. (B) scGSVA 597 

enrichment analysis of gene signatures of PSC cholangiocytes and PSC hepatocytes 598 

(Mann-Whitney, both p<0.0001). (C) scGSVA enrichment analysis of TNF-NFkB, SRC, 599 

NOTCH1, and AKT signaling pathways (Mann-Whitney, all p<0.0001). (D) Cell type-600 

specific gene expression of key mediators of the pro-fibrotic niche in biliary fibrosis, 601 

showing CLDN1 mAb ultimate effect on collagen production by myofibroblasts (Mann-602 

Whitney, all p<0.0001). (E) Mechanistic model of CLDN1 mAb-mediated inhibition of liver 603 
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and biliary signaling based on transcriptomic and proteomic analyses. (F) Mechanistic 604 

model of CLDN1 mAb-mediated anti-fibrotic and anti-inflammatory efficacy in preclinical 605 

models for PSC based on scRNA-Seq analyses.  * p<0.05; ** p<0.01; *** p<0.001; **** 606 

p<0.0001. 607 

  608 
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Highlights 

• Claudin-1 is overexpressed in PSC cholangiocytes and its expression correlates 

with PSC prognosis in patients 

• Spatial transcriptomics, proteomics, and loss-of-function studies unravel Claudin-

1 as disease driver 

• Treatment with a Claudin-1-specific monoclonal antibody improves survival, 

fibrosis, inflammation and cholestasis in PSC mouse models 

• Claudin-1 antibodies inhibit profibrotic and proinflammatory signaling in 

cholangiocytes   

• Completed preclinical proof-of-concept offers the perspective for an effective and 

safe first-in-class treatment in patients.  
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