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Abstract 

Time-series single-cell RNA sequencing (scRNAseq) can capture heterogeneity in cell 

states and transitions during dynamic biological processes, such as development and 

differentiation. Many trajectory inference methods have been developed to order cells by their 

progression through a dynamic process and infer the cells’ movement trajectory. These methods, 

however, do not consider time information when ordering cells. In this thesis, I present a novel 

method, called Tempora, that uses pathway expression profiles and experiment timepoint 

information to infer the lineage relationships among different cell populations captured in time-

series scRNAseq experiments. Tempora accurately inferred developmental lineages and important 

time-dependent signaling pathways in human skeletal myoblast differentiation and murine cerebral 

cortex development time-series scRNAseq data. These results demonstrate the power of using time 

information, when available, to supervise trajectory inference, as well as suggests that pathway 

expression profiles are an informative alternative to gene expression profiles in representing 

individual cells for scRNAseq analysis. 
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Chapter 1  
Introduction 

 Dynamic processes in biology 

Living organisms are biological systems that maintain their existence and wellbeing 

through a network of continuous processes to respond to stimuli, regenerate and reproduce1. These 

dynamic processes involve constant changes of constituents at different scales, from molecular 

changes in metabolic processes to emergence of differentiated cell types from stem cells during 

development. They are initiated and regulated by multiple interactions among regulators, including 

genes, RNA, proteins, posttranslational modifications and epigenetics2. The understanding of these 

processes, both by themselves and as parts of an integrated network, is instrumental in 

understanding how organisms function and elucidating the mechanisms of disease.  

To develop a comprehensive understanding of dynamic biological processes and how they 

are regulated, it is necessary to identify the components involved, characterize their functions and 

connections to each other, as well as observe how they evolve over time. Two main approaches 

are often used to tackle these tasks. The reductionist approach involves studying separate 

components of a process and their connections, which have been successful in elucidating the 

mechanisms of multiple processes, such as cellular respiration and electrochemical signaling 

within the nervous system3,4. However, since a biological components can participate in multiple 

processes, it is necessary to study these components in the network context to fully understand 

their roles in different processes as well as the interactions between these processes3,5. For 

example, signaling pathways can have one or more components in common that leads to their co-

activation, a phenomenon known as pathway crosstalk6. A complete understanding of how the 

common components can affect changes necessitates a systems-level investigation that considers 

both signaling pathways as well as the spatiotemporal context of the components’ activity7. 

Beyond elucidating the mechanisms of how processes work, the network approach is also useful 

in studying how processes are regulated, which often involves multiple genes or gene products 

engaging in feedback and feed-forward mechanisms. The elucidation of gene regulatory networks 

(GRNs) involved in the regulation of multiple processes in different species as well as their time-

variant activities has furthered our understanding of how processes such as immune reactions are 

regulated3. The development of technology to survey the structure and quantity of genes and gene 
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products at the omics level has enabled novel findings regarding the composition and behaviors of 

complex dynamic systems3,7. 

1.1 Developmental processes 

One of the central dynamic processes in biology is development, in which a multicellular 

organism is created through the growth and differentiation of cells in an embryo. Development in 

many multicellular organisms follows basic, well-conserved principles, both at the cellular and 

molecular levels, to achieve the right quantities and types of cells in the adult body8. During 

development, a fertilized egg divides to grow in size and number, creating an embryo with 

genetically identical stem cells. These cells then undergo differentiation to give rise to distinct cell 

fates, thus contributing to different lineages in the organism. The differentiation process is 

regulated by a multitude of inputs, including various signaling pathways, epigenetics and 

environmental cues. These inputs lead to the differential expression of genes in offspring cells, 

which result in the distinct morphologies and functions that characterize different cell types. 

The development of skeletal muscles exemplifies a typical developmental process.  

Skeletal muscles in the body develop from the somites, embryonic segments formed from paraxial 

mesodermal cells9,10. Cells in the dorsal part of the newly formed somites become muscle 

progenitors by activating myogenic regulatory factors, including Myf5, Mrf4 and MyoD9. These 

progenitors, known as myoblasts, proliferate extensively, then exit the cell cycle before 

differentiating into mononucleated myotubes9,11. These mononucleated cells then fuse to form 

multinucleated myofibers, which assemble into a continuous layer of muscle known as the 

myotome9,11. This process happens in two phases during development: an embryonic phase 

(embryonic day 10.5 (E10.5) to E12.5 in mouse) to form primary muscle fibers and a fetal phase 

(E14.5 to E17.5 in mouse) to form secondary fibers9. While primary muscles are mainly slow-

twitch fibers (Type I), secondary muscles mostly become fast-twitch Type II fibers10. The 

patterning of the somites is tightly regulated by multiple gradients of different signaling pathways, 

including Notch, FGF and Wnt signaling, while the muscle regulatory factors as well as Shh, Wnt 

and BMP signals secreted by the surrounding environment regulate myogenesis from 

myoblasts10,11. Many questions about skeletal muscle development remain, particularly regarding 

the specification of myogenic progenitors in the somites, the integration of signaling pathways that 

control myogenesis, as well as the similarities in regulatory mechanisms of adult muscle 
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regeneration and embryonic skeletal muscle development, which are common themes in 

developmental biology that necessitate further studies9,10.  

The question of how development can generate cell type diversity in multicellular 

organisms from homogeneous pools of stem cells has been of great interest, as some of these 

mechanisms are possible drivers of cancer and other development-related diseases. Efforts to 

answer this question have led to findings of important components in the specification mechanism 

and how their activities are coordinated during development, such as the spatiotemporal patterning 

of neural stem cells by cascades of transcription factors (TFs) that leads to different neuronal types 

in Drosophila12,13 or the network of Sox TFs in murine development14. The development of high-

throughput methods, such as CRISPR screens and automated image analysis of fluorescently-

labeled progenitor nuclei has furthered investigations of various development regulatory circuits 

and their mechanisms in the network context15-17.  

Despite the advances we have made in understanding the mechanisms of cell fate 

specification, many questions remain unanswered, particularly in regard to the temporal trajectory 

and regulation of the process18. Time plays a central role in cell fate specification as it balances 

proliferation and differentiation to ensure the right number and type of cells are produced, patterns 

a developmental process into smaller windows in which multiple cell types can be specified, and 

orchestrates multiple developmental processes in an organism, yet little is known about how stem 

cells keep track of time and progress accordingly18. This question is challenging to explore, as 

cellular heterogeneity often hinders the study of temporal development at the single cell level. The 

development of novel techniques in fluorescence labeling, live imaging and next-generation 

sequencing, however, are starting to enable the measurement of temporal changes at greater 

resolution and allow us to start answering some of these long-standing questions19-22. 

 Next-generation sequencing 

2.1 Overview 

Information about the components and regulation of all biological processes is encoded in genes 

and non-coding DNA regions of an organism, collectively known as the genome. Genome 

sequencing allows for the determination of the DNA sequences and structures that make up a 

genome, thus shedding light into the mechanisms of life and diseases. The complete human 
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genome, sequenced between 1990 and 2003 with Sanger sequencing, has become a tremendous 

resource to better understand the genome structure and variations23. Sanger sequencing, however, 

is expensive and not scalable to a large number of genes24. The development of next generation 

sequencing (NGS) platforms, starting with Roche 454 in 2005 and followed by Solexa’s Genome 

Analyzer, Applied Biosystems’ SOLiD and others, addressed the problem of high cost and low 

efficiency in traditional Sanger sequencing, thus spearheading the study of genomics in the next 

decade24,25. NGS has found tremendous applications in biomedical research and medicine, ranging 

from the reconstruction of phylogenetic trees between species26 to genome-wide association 

studies to identify variants associated with certain traits27 and whole genome sequencing for cancer 

diagnosis and treatment28,29, among others.  

2.2 Transcriptome sequencing 

The development of NGS techniques has furthered studies of not only the genome but also 

the transcriptome, which is the collection of mRNAs, non-coding RNAs and small RNAs in a 

cell30. Beyond the transcriptional structures of individual genes, the transcriptome also carries 

information about a cell’s activities in certain conditions, since the set of transcribed genes in a 

cell in part determines its states and active processes30. Transcriptomic studies are therefore 

suitable to investigate gene expression changes during dynamic processes. Prior to the 

development of NGS techniques, these studies were done by hybridization-based microarrays, 

which require the prior knowledge of genomic sequences and can be contaminated by cross-

hybridization30,31.  The use of NGS sequencing to sequence the transcriptome, known as RNA 

sequencing (RNAseq), has addressed these problems and enabled high-throughput quantification 

of gene expressions. RNAseq starts with the synthesis of complementary DNA strands (cDNA) of 

all available transcripts in the cells, followed by the fragmentation of cDNA and ligation of 

adaptors to cDNA fragments, a process known as library preparation31. The prepared library can 

then be sequenced on an NGS platform. 

 After sequencing, raw reads are analyzed for their GC contents as well as the presence of 

adaptors and duplicated reads to filter out any outliers32. Reads are then aligned to a reference 

genome or annotated transcriptome, and the expression levels of all transcripts are quantified as 

proportional to the number of cDNA fragments that align to each gene after correcting for 

transcript length and total number of reads33. Differential gene expression analysis, which involves 
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using statistical tests to quantify the changes in gene expression levels between different groups, 

can be done to identify genes that are up- or downregulated in certain conditions34. The large suite 

of computational and statistical tools designed to analyze RNAseq data has enabled researchers to 

extract important biological insights from their data that further our understanding of human 

diseases and normal development33. The breakthroughs in RNAseq technique development has 

also led to the creation of large databases containing transcriptomic profiles of different tissue 

types (Encyclopedia of DNA Elements35) and cancer tissues (The Cancer Genome Project36, 

International Cancer Genome Consortium37), as well as repositories of high-throughput gene 

expression and functional genomics datasets (Gene Expression Omnibus38, European Nucleotide 

Archive39), all of which provide the community with massive resources to pursue biological 

questions of interest. 

 Single-cell RNA sequencing 

3.1 Overview 

Even though traditional RNAseq has provided researchers unparalleled insights into gene 

expression changes in different conditions and during development, it can only generate an average 

population transcriptome and thus discard cell-to-cell transcriptional variability. This 

measurement is sufficient to understand biological systems under the assumption that all cells in a 

tissue are homogenous in their gene expression profiles. However, typical tissues are composed of 

many cell types; for example, mammalian skeletal muscles consist of different contractile fiber 

types, multiple connective tissues such as tendon and ligaments, as well as the extracellular 

matrix40,41. Cellular heterogeneity within a tissue has been characterized over the past years, 

especially in the context of tumors and their microenvironments, which comprise multiple cell 

types, as well as within developing tissues, where cell progress through development at different 

rates. The heterogeneity within a tissue is biologically meaningful, as it can influence cell fate 

decisions as well as responses to environmental stimuli42. Measuring the transcriptomes of single 

cells, therefore, is desirable to better understand such cellular heterogeneity and its role in dynamic 

processes. Furthermore, single-cell transcriptomics is valuable in identifying and studying rare yet 

important populations of cells, such as adult stem cells43,44 and circulating tumor cells45. 

Gene expression studies at the single-cell level were first accomplished by a PCR-based 

protocol to synthesize and amplify cDNA transcripts from samples as small as a single cell that is 
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unbiased in respect to transcript length and abundance46. Later, microfluidic devices allowed for 

the automated isolation of single cells and enabled the quantification of gene expression with 

quantitative polymerase chain reaction (qPCR) or hybridization-based microarrays47,48. However, 

single-cell transcriptome sequencing still faced the challenges in efficiently isolating single cells 

and amplifying a small amount of RNA in each cell48. In 2006, Tang et al. improved the cDNA 

amplification process commonly used in microarrays to capture full-length cDNAs from single 

cells and successfully sequenced the transcriptomes of individual cells in a mouse embryo, 

effectively developing the first single cell RNA sequencing (scRNAseq) protocol47. Over the next 

few years, a plethora of scRNAseq methods have been developed, differing in techniques used to 

handle single cells as well as their transcripts48. These differences give each method unique 

strengths and weaknesses that make them suitable for specific applications.   

3.2 Methods 

Despite the diversity in approaches and chemistries, the framework for all high-throughput 

scRNAseq methods is similar. Single cells are first isolated, either by fluorescent-activated cell 

sorting (FACS), microfluidic chips or droplets, then cells are lysed with lysis buffer to release all 

transcripts. MARS-Seq49 and SMART-seq250 use FACS to sort cells directly into wells on a 96- 

or 384-well plates. Fluidigm C1 uses an integrated microfluidic chip, which consists of a system 

of connected micrometer-sized channels and capture chambers, to isolate up to 800 single cells in 

one experiment51. These methods, however, are limited by the number of cells they can capture 

and their bias for certain cell sizes, thus restricting their applications in the study of larger and 

more heterogeneous cell populations52-54. Droplet microfluidics methods, such Drop-seq52, 

inDrop53 and 10X Genomics Chromium54, overcome these limitations by encapsulating single 

cells in aqueous droplets, along with beads that contain barcoding oligonucleotide primers to label 

which cell each transcript comes from (Figure 1). Each barcoding primers also consists of a short 

unique molecular identifier (UMI) to identify PCR duplicates and a poly-T 3’ end to select for 

transcript fragments at the 3’ end, which are necessary for the 3’-tag sequencing process (Figure 

1 and discussed below)52-54. After isolation, cells are lysed within the droplets and RNA molecules 

in each cell are barcoded with the oligonucleotide primers during reverse transcription. The 

droplets are then broken to generate a pooled library of all cDNA molecules to be reverse 

transcribed, amplified and sequenced (Figure 1)55. These droplet-based methods can vary in their 

cell capture efficiency: while Drop-seq can only capture 12.8% of the cells in a sample, 10X 
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Genomics Chromium can capture approximately 50% and inDrop up to 75% of cells52-54. 

However, the main drawback of these methods lies in their low mRNA capture efficiency: inDrop 

can only capture about ~7% transcripts in a cell, which means it cannot reliably detect genes with 

fewer than 20-50 transcripts56. These methods can therefore miss important genes that are 

expressed at lower levels56,57. 

After isolation and reverse transcription, single-cell libraries are sequenced with NGS 

platforms48. There are two main protocols to sequence RNA from single cells: full-length and 3’-

tag RNA sequencing. Full-length RNAseq, used by SMART-seq2 and Fluidigm C1, is similar to 

the bulk RNAseq technique, in which all transcripts in a cell are fragmented and sequenced, then 

gene expression levels are quantified by the number of reads that align to certain genes in a in 

reference genome50. The majority of scRNAseq methods use 3’-tag RNAseq, which only amplifies 

and sequences one fragment in the 3’ region of each transcript, selected by hybridization of the 3’-

poly-A tail of the transcript with a poly-dT primer on the barcode DNA48,58. Before fragmentation, 

each transcript is tagged with a unique molecular identifier (UMI), a short (~5-10 bp) random 

sequence that is part of the barcode DNAs used to label individual beads in droplet-based 

platforms52-54. After PCR amplification, molecules with the same UMI are assumed to come from 

the same input transcript59. While originally designed to detect PCR amplification bias, UMIs have 

also been used to directly quantify gene expression in scRNAseq through counting the number of 

distinct UMIs that map to a gene59. Both full-length and 3’-tag RNAseq have distinct advantages 

and disadvantages. While full-length RNAseq gives more information about transcript structures, 

including splicing sites and isoforms, it requires higher sequencing depth and thus increases cost. 

3’-tag RNAseq reduces the number of reads required per sample and thus serves as a low-cost 

alternative to full-length scRNAseq, while still provides sufficient information to quantify relative 

gene expression58,60.  
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Figure 1. Overview of barcoded bead design (bottom left) and scRNAseq protocol using 10X 

Genomics Chromium, a popular platform using droplets to isolate cells. Figure adapted from61. 

Current scRNAseq techniques still face multiple limitations in detecting low-abundance 

transcripts (sensitivity) and quantifying gene expression (accuracy)48,62. While droplet-based 

techniques can capture more cells, they suffer from low sensitivity as the number of genes they 

detect tends to be lower compared to lower throughput methods, which leads to high number of 

drop-outs and zero inflation, which is an excess of zero counts in the data53,60. 10X Genomics 

Chromium can detect on average 4,500 genes and ~20,000 transcripts in their V2 chemistry, which 

is approximately 14-15% of all transcripts in a cell, while SMART-seq2 can detect 7,500 genes on 

average per cell60. The development of new chemistry for droplet-based techniques, such as 10X 

Genomics Chromium’s V3 chemistry which claims to detect up to 32% of all transcripts per cell, 

is expected to improve the sensitivity of these methods60,63. On the other hand, non-UMI methods 

such as SMART-seq2 suffer from noisier gene expression quantification, since varying amounts 

of cDNA are lost during reverse transcription and amplification58. As small differences in 

transcript abundance can lead to tremendous biological consequences, especially for TFs or long 

non-coding RNAs in the context of development, improvements on sensitivity and accuracy are 

necessary so that scRNAseq can more faithfully capture the transcriptional profiles underlying cell 

states and processes.  
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3.3 Bioinformatics analysis of scRNAseq data 

3.3.1 Overview 

Bioinformatics analysis of scRNAseq data shares much in common with that of bulk 

RNAseq data, starting with quality control, read alignment to the reference genome and transcript 

quantification, followed by normalization and other downstream analyses to answer specific 

biological questions (see 2.2)55. However, due to the much larger number of data points and higher 

level of variance, comprising both biological differences and technical noise, separate 

bioinformatics pipelines, such as Seurat64, Scater65 and SCANPY66, are being developed to analyze 

scRNAseq data, aiming to reveal novel biological insights while accounting for technical 

drawbacks. The basic pipeline includes preprocessing of count data, such as filtering out low 

quality cells and batch effect correction, followed by normalization, dimension reduction, 

clustering and differential gene expression analysis55,67. Similar to the diversity in experimental 

platforms, many computational methods for scRNAseq are developed to handle one or multiple of 

the aforementioned tasks, each with their own strengths and weaknesses67.  

3.3.2 Quality control and batch effect correction 

Multiple filtering steps are first applied to the count data in order to ensure that low quality 

reads and damaged cells are eliminated from further analysis. In the first step of quality control, 

cells with abnormally high mitochondrial RNA content, which ranges from higher than 5% of total 

mRNA in normal cells or higher than 30%-50% in cells with high energy requirements such as 

cardiomyocytes and hepatocytes68,69, are filtered out, since a high concentration of mitochondrial 

RNA reads indicates compromised cell membranes and thus damaged cells70. Doublets, which are 

samples resulting from two or more cells being captured and sequenced in the same droplet, are 

next filtered out by looking for cells with abnormally large library sizes70. These outlier cells, if 

not removed, can influence downstream analyses by clustering together due to their library sizes. 

Low abundance genes are also removed as they are likely to be contaminant and can drive 

downstream clustering70. 

ScRNAseq datasets generated in different experiments and sequencing runs can be affected 

by batch effect, in which technical and experimental variations, such as sequencing depth, 

experiment time, reagents and instruments, lead to biases in gene expression values71,72. 
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Uncorrected batch effect can reduce power of downstream statistical analyses, leading to a higher 

number of false negatives in differential expression analyses72. Furthermore, explicit modeling of 

batch effects is required in order to directly compare datasets obtained in different conditions. 

Multiple algorithms have been developed to account for these variations, including mutual nearest 

neighbors (MNN)73, canonical correlation analysis (CCA)64 and Harmony74. These methods 

project cells into a common reduced dimensionality space (see 3.3.3) to identify shared cell types 

and correct for batch effects64,71,73,74. The output of these methods is a batch-corrected gene 

expression matrix, which results from multiplying the input expression matrix with cell-specific 

correction factors inferred by the respective algorithms. 

3.3.3 Dimensionality reduction 

ScRNAseq data are high dimensional, as each gene captured represents a dimension along 

which cells can vary. It is difficult to meaningfully visualize all data points in such a high-

dimensional space; thus, a dimensionality reduction (DR) method is often required to project 

scRNAseq data to a lower dimensional space for visualization and downstream analyses48,75. 

Principal component analysis (PCA), one of the most popular DR methods, finds linear 

combinations of variables, i.e. genes in scRNAseq, that explain the largest amount of variance in 

the original data76. Each linear combination represents a principal component onto which cells can 

be projected. Even though PCA performs well in identifying important dimensions that contribute 

to variance for downstream analyses such as clustering (see 3.3.5), as a linear transformation tool, 

it cannot capture the nonlinear relationships in scRNAseq data75. Other DR methods have been 

developed to overcome this issue, most notably t-Stochastic Neighbor Embedding (t-SNE)77,78 and 

Uniform Manifold Approximation and Mapping (UMAP)79. t-SNE maps data points, i.e. cells in 

scRNAseq data, from a high dimensional space to a 2-dimensional space to so that the closeness 

of data points in both spaces is preserved, which allows for the visualization of these cells on a 2D 

space77,78. The preservation of local structure makes tSNE useful in visualizing cell clusters, even 

though the algorithm itself is not designed for clustering. tSNE is still restricted by its ability to 

map large number of cells (> 30,000 cells) and its tradeoff of global structure preservation77. 

UMAP has emerged as a novel DR method that is able to preserve both global and local data 

structure in the low-dimensional visualization, allowing users to infer similarity between clusters 

by their distance on the plot79. These methods have made significant improvement in visualization 

of large scale datasets, such as scRNAseq data (Figure 2). 
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Figure 2. Visualization of 60,000 images of handwritten digits in the MNIST database80 using 

the first two components of PCA (left), t-SNE (middle) and UMAP (right). Each dot represents a 

datapoint (handwritten image), and each cluster of points represents the collection of handwritten 

images of a digit. PCA is not able to discern the clear clusters of datapoints in the dataset, which 

tSNE and UMAP can. The clusters in the t-SNE plot are placed close together and the pairwise 

distances between them do not necessarily signify how different they are. UMAP better 

preserves global structure in the dataset to identify groups of clusters, whose pairwise distances 

correlate to their degree of difference. Figure adapted from79. 

3.3.4 Normalization 

ScRNAseq data is characterized by features distinct from bulk RNAseq data, including 

high sparsity and variability62. A large proportion of scRNAseq read counts is zero, which occurs 

both due to low sensitivity of the sequencing techniques (discussed in 3.2) and lack of gene 

expression in certain cell population48. Furthermore, gene expression measurements are affected 

by systematic biases, such as endogenous mRNA contents, transcript capture and reverse 

transcription efficiency, number of reads, etc. that vary between cells81. The raw transcript counts 

between cells, therefore, are not on the same scale and cannot be directly compared.  The aim of 

normalization methods is to bring all gene expression measurements to a common scale by 

removing cell-specific biases81. The first common normalization approach, adapted from bulk 

RNAseq, is library-size normalization, including reads or fragments per kilobase million (RPKM 

or FPKM) and transcript per kilobase million (TPM). These methods standardize the number of 

reads across all cells, but mask the differential expressions of genes and thus skew downstream 

analyses75,81. Other bulk RNAseq normalization methods that have been adapted for scRNAseq 

use with various degree of success is DESeq82 and Trimmed Mean of M-value (TMM)83, both of 

which determine cell-specific normalization factors as the median (DESeq) or weighted mean 

(TMM) of gene-wise cell-to-reference ratios in each cell. These methods better account for 
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differentially expressed genes, but perform poorly with the sparse scRNAseq data55. Normalization 

methods specific for scRNAseq have been developed, such as the deconvolution method 

implemented in the scran R package, which pools cells with similar gene expression profiles and 

library sizes together to normalize84. As they are more robust to characteristics of scRNAseq data 

in their algorithm, these methods outperform others in estimating the true cell-specific scaling 

factors in simulated datasets81.  

3.3.5 Clustering 

One of the primary applications for scRNAseq is to characterize the heterogeneity in a 

biological sample, which involves detecting the distinct cell subpopulations present. These 

subpopulations can represent cell types that have been previously studied and catalogued in the 

Cell Ontology85, e.g. progenitors, immune cells, cardiomyocytes, or stable cell states, which are 

physiological conditions that cells can be in, e.g. cycling, proliferating or metabolizing86. The 

computational problem of grouping similar cells into subpopulations is known as clustering, and 

has been addressed with a diverse group of algorithms, most notably k-means, hierarchical and 

graph-based clustering87. To reduce computational resources required, these clustering methods 

are usually run downstream of PCA, so all distances calculated are in reduced dimension space. 

K-means clustering, implemented in SC388 and RaceID89, initiates k cluster centers and iteratively 

assigns cells to the closest cluster center until the distances between the cluster centers and their 

respective cluster members are minimized. Hierarchical clustering, implemented in Mpath90 and 

BackSPIN91, sequentially splits cells up into smaller clusters or adds cells to form larger clusters 

based on distances between cells. Both of these algorithms have high computational complexity 

and are thus not scalable for large scRNAseq datasets, while graph-based clustering algorithms 

often perform better in terms of speed. SNN-Cliq, implemented in Seurat, first calculates the 

Euclidean distance between cells, then list k nearest neighbors for each cell and determine 

similarity scores based on the number of common nearest neighbors that each pair has92. A graph 

with cells as nodes and weighted edges as similarity scores is constructed, and clusters are defined 

based on subgraphs92.  

Despite new advances in algorithm development, challenges regarding clustering in 

scRNAseq remain. In particular, the process often relies on user-input parameters to determine the 

number of final clusters, and no gold standard exists to guide the selection of these parameters87. 
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Researchers need to select the clustering resolution based on prior knowledge of marker genes, 

which can be unavailable for certain systems. Tools such as scClustViz93 and TooManyCells94 

have been developed to help users visualize clusters at different resolutions, analyze clusters’ 

relationships across resolutions as well as investigate marker gene expression, which could 

ameliorate some difficulties with clustering. However, without a consensus guideline on how these 

issues should be handled, clustering results from different studies can still remain difficult to 

compare and replicate. 

3.3.6 Differential gene expression (DEG) analysis 

A typical analysis of scRNAseq data is to identify genes that are differentially expressed 

in each subpopulation, which can drive biological processes in certain cell states or determine the 

fate of certain cell types. Beyond the adaptation of DEG methods from bulk RNAseq data, 

including edgeR95 and DESeq82, many scRNAseq-specific tools have been develop to account for 

scRNAseq features such as high dropouts, including SCDE96, MAST97 and others98. These 

methods share the common framework of modeling read counts or expression values with a 

probability distribution, then using a statistical test with false discovery rate adjustment to identify 

DEGs and their significance98,99. EdgeR and DESeq model gene expression using the negative 

binomial distribution and use an exact test to determine DEGs82,95. SCDE96 account for dropouts 

in scRNAseq data by modeling gene expression using a mixture probabilistic model, while 

MAST97 fits a two-part generalized linear model to model the rate and levels of expression of 

individual gene, then uses a likelihood test for DEGs. Other than these methods, general non-

parametric statistical tests, such as the Wilcoxon rank-sum test, have also been used to test for 

DEGs, with comparable accuracy to aforementioned methods but with lower computational 

complexity and easier parallelization, resulting in greater computing speed99.  

3.3.7 Pathway enrichment analysis 

Along with the long list of genes generated through DEG analysis comes the challenge of 

interpreting their functions. Pathway enrichment analysis (PEA) provides a solution to this issue 

by identifying enriched pathways, which are sets of genes that work together to carry out certain 

biological functions in the cells, from a given list of DEGs100. PEA requires a pathway database 

consisting of annotated gene sets that have been curated from the literature, e.g. Gene Ontology101, 

Reactome102 and KEGG103. The enrichment of pathways can be evaluated using overrepresentation 
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analysis, which identifies gene sets containing more genes in a list of DEGs than expected by 

random and tests for their significance using statistical tests such as chi-square or Fisher’s exact 

test, or functional class scoring, which calculates an enrichment score for every gene set based on 

the position of its gene in a ranked list of DEGs and tests for significance of the enrichment 

score104. The second approach has been shown to be more robust in detecting subtler changes in 

pathway enrichment and is implemented in two popular PEA methods, Gene Set Enrichment 

Analysis (GSEA)105 and Gene Set Variation Analysis (GSVA), the single-sample variation of 

GSEA106. The output of these methods is a list of enriched pathways and their associated statistics. 

Enrichment results can then be visualized as networks with software such as Cytoscape100 and 

EnrichmentMap107, which is useful in identifying closely related pathways that are enriched in a 

population and determining common themes in enriched pathways100,108.  

3.4 Applications 

ScRNAseq has found many applications in studying cellular heterogeneity in different 

biological contexts, including cataloguing the different cell types that make up normal organ 

systems, dissecting the tumor microenvironment and other diseased tissues, discovering novel 

GRNs and splicing patterns, among others109. One of the most prominent and ambitious 

applications of scRNAseq is the Human Cell Atlas, a collaborative effort to create a reference map 

of all human cell types, defined by their unique transcriptional profiles, in the hope of better 

understanding human physiology and diseases110.  

Beyond static cellular heterogeneity, scRNAseq can be used to investigate transcriptional 

changes over time in dynamic systems. However, since cells are destroyed during sequencing, 

scRNAseq cannot track the same population over time and correlate the measurements to give 

direct insights on temporal dynamics of a process.  It can only generate a snapshot of cells at 

various states along the process, which allows researchers to understand the continuum of 

transcriptional changes that a single cell goes through from beginning to end. Computational tools 

are then required to model this continuum of change and recapitulate cell trajectories based on 

such continuum (further discussed in section 4 below). Even though this line of thinking lends 

itself naturally to studies of development (reviewed in 3.5), it is applicable to any dynamic process. 

In particular, it has been used study the progression of diseases such as osteoarthritis111 and 
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dengue112, cellular responses to influenza infection113 and lung inflammation114, chemoresistance 

in breast cancer115 and squamous cell carcinoma116, among others. 

3.5 ScRNAseq in studies of developmental processes 

ScRNAseq has been commonly used to investigate development, both in vivo processes as 

well as in vitro differentiation and regeneration117. The continuum of cell states captured in a 

snapshot scRNAseq experiment of a developing system is useful to identify intermediate stages 

and study the transcriptional changes that occur during the process. Snapshot scRNAseq studies 

have been used to investigate multiple aspects of development of the early embryo118,119, blood120-

123, kidney124, various areas of the brain including the cortex and the hippocampus125-127, among 

other systems. These studies have shed light into some common themes in development: the 

heterogeneity of progenitor populations, the multilineage priming and plasticity in fate choices of 

these progenitors, as well as the complex GRNs that regulate cell fate decisions. Furthermore, 

scRNAseq has been used to compare the developmental trajectories of cells during in vitro 

differentiation and in organoid models with known developmental trajectories, such as the human 

cerebral cortex128, kidney129, liver130 and intestine131. The comparisons between in vitro and in vivo 

development help researchers evaluate their differentiation protocols’ ability to recapitulate the 

right phenotype and maturity levels of the desired cell types and improve them so they can be used 

for future regenerative therapies and models of diseases132.  

Even though snapshot scRNAseq can provide novel insights into development, as a static 

measurement it cannot fully explain the dynamics of the process133. Furthermore, cells undergoing 

developmental processes are constantly changing as a result of changes in their transcriptomes; 

therefore, populations that appear earlier or later than the sampling time cannot be studied by 

snapshot scRNAseq. To capture populations distinct to certain phases of development and study 

transitions more closely, the system can be sampled and sequenced at different time points. With 

the expansion of scRNAseq techniques that help decrease sequencing cost, time-series studies of 

development processes are becoming increasingly common. The scale of these studies range from 

small experiments of a few hundred cells captured over a small number of time points to study a 

specific system, to a few hundred thousand cells captured over the course of embryonic 

development of a whole animal. In particular, time-series scRNAseq has been applied to study the 

development of many organs, including the lung epithelium134, areas of the brain including the 
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cerebral cortex135, prefrontal cortex136 and cerebellum137, pancreatic islets138, liver139, fetal germ 

cells140, heart141,142 and skin143. On a larger scale, two studies sequenced more than 100,000 cells 

over 18 time points during the development of the zebrafish embryo and computationally 

reconstructed the lineage relationships between them144,145. These studies resulted in detailed 

embryonic development maps that highlight the non-linear nature of developmental trajectories as 

well as novel connections between lineages. Furthermore, time-series scRNAseq is also a powerful 

tool to compare in vitro differentiated cells to in vivo cells, as it enables researchers to determine 

the maturity level of their in vitro cells. For example, by comparing cardiomyocytes derived from 

mouse embryonic stem cells at day 20 with mouse cardiomyocytes sequenced at 8 time points 

during embryonic development and after birth, DeLaughter et al. showed that cells at day 20 in 

culture are most similar to cardiomyocytes at E14.5146. The available time information in time-

series scRNAseq, thus, gives these studies more discovery power and allows them to answer 

questions regarding the dynamics of development that would not otherwise be possible with 

snapshot scRNAseq experiments.  

 The lineage inference problem in scRNAseq 

4.1 Problem overview 

When using scRNAseq to study dynamic processes, whether through snapshot or time-

series experiments, it is of interest to order cells at different stages along an axis that represents 

how far along they are on the process under study based on their transcriptional signatures. The 

ordering problem, commonly termed pseudotime ordering if it is inferred from data without a 

known temporal ordering, consists of two main parts: the identification of a trajectory representing 

the paths that cells go through, and the determination of pseudotime value for individual cells 

along this trajectory. This inferred trajectory allows us to study the sequential changes of gene 

expression during a process, as well as identify branches and instrumental genes at the branching 

points.   

4.2 Previous work 

More than 70 computational methods to order cells along pseudotemporal axes, known as 

trajectory inference (TI) methods, have been published to date, which employ different strategies 

to infer lineage and order cells147. Most TI methods are developed based on the basic premise that 
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cells closer in developmental time have more similar gene expression signatures, thus a likely 

trajectory is a path that maximizes cell-to-cell similarity. To deal with high-dimensional and noisy 

scRNAseq data, these methods often implement one or more DR techniques before constructing 

the trajectory in a reduced dimension space that captures most of the meaningful variance in the 

data. Common strategies for trajectory construction include fitting a minimum spanning tree 

(MST), which connects all data points in a path that minimizes distance between points, nonlinear 

dimensionality reduction (DR) that describes the low-dimensional manifold that cells lie on, or 

graph-based methods. In this section, I provide a brief review of the notable TI methods that have 

performed well in multiple studies. For a more comprehensive evaluation and review, Dynverse 

serves as an excellent resource to explore available methods as well as their strengths and 

weaknesses147. 

The first TI method that spearheaded pseudotime analysis is Monocle, which determines 

the trajectory by calculating all pairwise Euclidean distances between cells in a reduced dimension 

space, then connecting all cells in a tree that would minimize the distance between them (minimum 

spanning tree, or MST). The longest path through this tree is determined as the backbone of the 

trajectory and cells are then ordered along this path148. As the first method of its kind, Monocle 

has been applied to many studies, including cell fate decisions in hematopoiesis149, differentiation 

trajectory of mesencephalic dopamine neurons150 and asexual maturation of malaria parasites151. 

Despite its proven performance, the accuracy of Monocle’s inferred trajectory can be compromised 

because of its reliance on cell-to-cell distance, which allows outlier populations that do not belong 

on the same lineage to easily skew the MST152. Other TI methods have been developed using other 

approaches to construct a more robust trajectory. To decrease the complexity of the trajectory 

space and thus limit the impact of outlier population, methods such as Waterfall, TSCAN and 

Slingshot first cluster cells, then build an MST on cluster centroids and determine their pseudotime 

values based on their positions on the MST127,152,153. These methods differ in their DR methods 

(TSCAN and Waterfall use PCA while Slingshot is designed to work with multiple different DR 

methods), as well as how they determine pseudotime after MST construction (Waterfall and 

TSCAN orthogonally project cells onto the MST, while Slingshot constructs simultaneous 

principal curves to project cells onto a nonlinear manifold). Besides MST, another major approach 

to constructing trajectory is to use nonlinear DR methods, such as principal curves and trees, to 

identify the manifold along which cells lie. Nonlinear DR methods are more robust to noise than 
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MST and less likely to overfit small datasets. Diffusion map, which uses a diffusion distance metric 

to construct the paths that cells take towards differentiation, serves as the base for other TI 

methods, such as Palantir and Wishbone154-156. Monocle 2, released in 2017, uses reverse graph 

embedding to learn a principal tree, which is a version of principal curve that allows branches 

through the data in a fully unsupervised manner, which constructs a more accurate lineage without 

any required input or parameters from the users157. Other methods rely on graph theory methods 

to construct trajectories89,158. For example, PAGA158 makes use of graph partition to robustly detect 

an arbitrary number of lineages in a dataset with minimal assumptions about the underlying 

dynamics of the process, while SCUBA159 measures similarity between two sub-clusters of every 

large cluster to determine whether cells in the parent clusters have differentiated into two distinct 

lineages (low similarity of sub-clusters) or continued on the same trajectory (high similarity sub-

clusters), thus efficiently identifying bifurcating lineages. 

The plethora of available TI methods, with diverse underlying algorithms, results in 

specific strengths and weaknesses, which renders these methods not one-size-fit-all. For example, 

some methods can only detect certain topologies of lineages, some make specific assumption about 

the underlying process, and some do not scale well with large number of cells and genes147. 

Selecting TI methods that work well with a specific dataset remains a difficult task. Furthermore, 

unlike other established downstream analyses such as differential gene expression or clustering, 

TI analyses produce diverse outputs with limited means to statistically evaluate each output to 

select the optimal solution. Methods such as TSCAN and p-Creode have proposed various methods 

to score inferred trajectories, such as a stability metric that measures how stable the TI method is 

when applied on subsamples of a dataset, a pseudo-temporal ordering score that correlates the 

cells’ original collection time with the inferred pseudotime values, or a graph distance and 

topology metric to measure the similarity between two inferred trajectories formalized as 

graphs152,160. However, these scoring methods are usually difficult to apply on outputs of different 

algorithms as they are highly non-standardized. Integrated platforms such as Dynverse have begun 

to emerge to assist researchers with selecting the appropriate methods for their data as well as 

comparing outputs from multiple methods. These cross-method platforms provide standard 

benchmarks and enable method comparisons, thus identify the common weaknesses of TI 

methods, which pave the way for the development of novel future methods to address these issues 

and produce more reliable trajectories. 
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 Conclusion 

ScRNAseq has emerged as a powerful tool to study cellular heterogeneity and to some 

extent dynamic processes, especially when applied at multiple time points.  The use of scRNAseq 

to investigate dynamic processes, particularly developmental processes, is made possible by 

computational methods that order cells at different stages along a pseudotemporal axis. Even 

though time-series scRNAseq data provides more information on time-dependent changes in cell 

population composition and their transcriptional signatures, few available tools can analyze them. 

The majority of TI methods do not work with time-series data, as they do not consider time 

information in building trajectories even when such information is available. The only TI method 

for time-series scRNAseq infers a trajectory by connecting cells from earlier time points that 

express certain transcription factors to later cells that express the known targets of such factors21. 

While this method can provide information about a transcriptional network that controls branching 

events in a trajectory, it requires a curated database of transcription factors and their targets, which 

is not available for all species. Furthermore, the additional information regarding transcriptional 

network provided, though interesting, can be superfluous to researchers who are primarily 

interested in discovering the ordering of cells in their data. Thus, there is a clear need for a general 

TI method designed to work with time-series scRNAseq data, which would use time information 

to supervise the trajectory inference process. Finally, since scRNAseq gene expression 

measurement is easily affected by read depth and noises, sporadically high or low expression of 

certain genes can influence the constructed trajectory. Meanwhile, the concerted up- or 

downregulation of genes in pathways can provide a more biologically meaningful way to measure 

cell-to-cell similarity and infer trajectories accordingly. Therefore, I hypothesize that time-series 

scRNAseq studies will benefit from novel TI methods that take advantage of available time 

information in ordering cells, as well as of pathway information to both reduce noise in gene 

expression and reveal more biological insights into the cellular activities driving the progression 

of the dynamic process under study. 
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Chapter 2  
Pathway-based trajectory inference in time-series scRNAseq data 

of developing systems 

This chapter describes Tempora, a new algorithm for trajectory inference (TI) in time-series 

scRNAseq, and demonstrates its improved performance on two time-series datasets compared to 

other popular TI methods. I conducted the algorithm design and validation under the guidance of 

Dr. Gary Bader. 

 Algorithm overview 

To address the lack of TI methods designed for time-series scRNAseq data, I developed 

Tempora, a method to infer developmental lineages in time-series scRNAseq data using pathway 

enrichment profiles. Since we can make reasonable assumptions about the progress of cells along 

a differentiation trajectory based on the time they are collected, the trajectory inference problem is 

simplified to identifying how cells at different time points are connected in a trajectory. To build 

a more robust trajectory less influenced by small outlier populations, Tempora first clusters cells 

with similar transcriptional signatures together and infers a lineage that connects cell clusters rather 

than individual cells. Second, to increase the biological interpretability of the trajectory and reduce 

the effect of sporadic expression of individual genes on the trajectory, Tempora constructs 

trajectories based on pathway enrichment profiles of cell clusters.  

Tempora takes as input a preprocessed gene expression matrix from time-point scRNAseq 

experiments, and provides users with tools to assess and correct batch effects as needed. Once the 

data is clustered, Tempora calculates the average gene expression profiles, or centroids, of all 

clusters in the data before transforming the data from gene expression space to pathway enrichment 

space using single-sample pathway analysis (Figure 3). To remove pathways that do not contribute 

to variance as well as redundancy in representation of some well-studied biological processes, such 

as the cell cycle, in pathway databases, Tempora applies PCA on the pathway analysis result and 

selects important PCs that explain at least 85% of the variance in the dataset. Pathways with high 

loadings on those PCs are used to construct the trajectory in the next step.  

 To infer the trajectory between cell clusters from different time points, each cluster is 

characterized by a pathway enrichment profile. I abstract the backbone of the trajectory as a 
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network of cell clusters, with vertices representing the states/clusters and edges representing 

transitions between states. To infer this network, Tempora uses ARACNe161, an established 

algorithm for predicting cellular network based on mutual information (MI). ARACNE filters the 

network using the data processing inequality to remove edges with the smallest MI in all triples, 

which helps remove indirect connections (Figure 3). After constructing the backbone, Tempora 

makes use of available temporal information from the input data to determine edge directions. 

First, each cluster is assigned a temporal score corresponding to its cell composition from different 

time points, so that a cluster containing more cells from an early time point will have a low score 

and vice versa. The edges are then directed so that their sources will have a lower score than their 

targets, indicating a transition from an early cell state to a later cell state. The trajectory is 

visualized with a hierarchical layout. 

 Tempora features a downstream pathway exploration tool to determine and visualize time-

dependent pathways. These pathways are identified by fitting a generalized additive model (GAM) 

to the enrichment information of each pathway across all clusters and selecting pathways whose 

expression patterns deviate significantly from the null model of uniform pathway enrichment 

scores across all time points. 

 

Figure 3. Schematic of the Tempora algorithm. 
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 Algorithm components 

2.1 Data preprocessing, batch effect correction and clustering 

Tempora takes processed scRNAseq data as input, either as a gene expression matrix with 

separate time and cluster labels for all cells, or a Seurat object containing gene expression data and 

a clustering result. It is important to note that Tempora does not implement clustering as part of its 

pipeline and assumes that the researchers have inputed a well-annotated cluster solution into the 

method. If users indicate that they have not corrected for batch effect, Tempora will run the 

kBET162 method to determine if any batch effect is visible and ask users to rerun clustering after 

correcting for these effects with the Harmony data integration method74. 

2.1.1 Preprocessing of validation datasets  

Two time-course scRNAseq datasets were used to validate Tempora, one on the in vitro 

differentiation of human skeletal muscle myoblasts (HSMM) and the other on an in vivo sample 

of early murine cerebral cortex development. HSMM read count data was accessed from the 

HSMMSingleCell R package163. Murine cerebral cortex data were downloaded from GEO at 

accession number GSE107122135.  

Both datasets were filtered to remove lowly expressed genes (defined as those found in less 

than 3 cells) and damaged cells with high mitochondrial contents (4 median absolute deviations 

above the median). After this initial filtering step, the murine cerebral cortex data were further 

filtered to remove non-cortical cells, as done in the original publication to focus the analysis on 

the cortical lineage135. These included cells expressing Aif1 (microglia), hemoglobin genes (blood 

cells), collagen genes (mesenchymal cells), as well as Dlx transcription factors and/or interneuron 

genes (ganglionic eminence-derived cells)135. The datasets were then normalized using the 

deconvolution method implemented in the scran R package, which pools cells with similar gene 

expression profiles and library sizes together to normalize84.  Afterwards, cells were iteratively 

clustered with the SNN-Cliq algorithm92 implemented in Seurat at increasing resolutions until the 

number of differentially expressed genes between two neighboring clusters reached 0. I determined 

the clustering resolution and annotated all clusters by examining expressions of known marker 

genes using scClustViz93. The optimal clustering resolution was chosen to maximize the number 

of clusters while keeping the number of DE genes between neighboring clusters larger than 0. To 
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maintain consistency with how the validation datasets were originally analyzed, clusters were 

annotated using marker gene expressions as indicated in the original publications. The resulting 

clusters represent cell types or states (see 3.3.5) that are stable over the developmental process, 

such as apical progenitor cells in murine cerebral cortex development and myoblasts in muscle 

development.  

2.2 Pathway enrichment analysis 

Tempora calculates the average gene expression over all cells in a cluster for all clusters as 

input by the users and determines the pathway enrichment profile of each cluster using Gene Set 

Variation Analysis (GSVA)106. By analyzing scRNAseq data on the cluster level instead of the 

single-cell level, Tempora amplifies gene expression signals from similar cells in a cluster to 

alleviate the typical problem of low sensitivity in single cells of popular scRNA-seq experimental 

methods, as well as reduce the number of nodes in the inferred trajectory, allowing users to 

interpret it more easily. GSVA calculates the Kolmogorov-Smirnov rank statistics of all gene sets 

present in a given gene set database and normalizes the enrichment score by calculating the 

difference between the maximum and minimum deviation from zero of each gene set score. The 

default gene set database Tempora uses is the Enrichment Map gene set without electronic 

annotation, filtered to include gene sets between 10 and 500 genes in size according to the 

recommendation from GSEA105,107. The enrichment scores of all G pathways in each cluster make 

up the cluster’s pathway enrichment profile, which is an ID vector of length G.  

Since gene set databases have been shown to contain redundant pathways, which share 

similar names and/or genes164, strong signals from dependent pathways in the pathway enrichment 

profiles can mask subtler signals and skew downstream calculation of correlation between clusters. 

To ameliorate this problem, Tempora uses PCA to reduce redundancy in the clusters’ pathway 

enrichment profiles and identifies the top n principal components that explain at least 85% of the 

variance in the data to input to downstream trajectory construction steps. 

2.3 Network construction using filtered mutual information  

 Tempora employs the mutual information (MI) rank approach implemented in ARACNe161 

to calculate MI between all cluster pairs present in the data. Afterwards, the data-processing 

inequality is applied to remove the edge with the lowest MI in each triple to eliminate indirect 
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interactions between clusters. The result is an undirected network where nodes are clusters and 

edges represent MI strength relationships between clusters.  

2.4 Direction identification 

 Tempora makes use of time information to determine the edge directions in the constructed 

network. Tempora assigns each time point an ordinal value corresponding to its position in the 

user-defined sequence of time points and calculate the temporal scores of each cluster by weighing 

the composition of cells from each timepoint. Specifically, the time score Tk of cluster k consisting 

of pi percent cells at timepoint i (0 <i<N) for N timepoints is calculated as the sum of the 

proportions of cells in the cluster at each time point: 

𝑇𝑘 = ∑ 𝑝𝑖

𝑁

𝑖=1

∙ 𝑖 

 Tempora assigns directions to all edges in the network so that edges originate from clusters 

with low time scores (early) to clusters with high time scores (late). For edges that connect clusters 

with similar temporal scores (difference less than 1% of the lowest score), Tempora does not assign 

directions as these edges may represent small, elastic transitions in cell states over a short time.  

2.5 Identification of time-dependent pathways 

 Tempora identifies pathways that vary over time by fitting a generalized additive model 

(GAM) on the pathway enrichment scores of each pathway across all clusters/time and using 

ANOVA to compare the fitted model with the null model of uniform pathway enrichment over 

time. Pathways with adjusted p-values below a user-defined threshold, with a default value of 0.01, 

are reported as varying over time. The model fitting and statistical testing are done using the mcgv 

package in R. 

 Validation 

3.1 Validation on the human skeletal myoblast dataset 

I evaluated Tempora’s performance on the human skeletal muscle myoblast (HSMM) data, 

which includes 271 cells collected at 0, 24, 48 and 72 hours after the switch of human myoblast 

culture from growth to differentiation media163. The muscle myoblast culture is known to contain 
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contaminating fibroblast cells, which originate from the same muscle biopsy used to establish the 

primary culture163,165. At the optimal clustering resolutions, five clusters were identified and 

annotated with markers of proliferation (CDK1), muscle differentiation (MYOG) and 

contaminating fibroblast cells (SPHK1) (Figure 4a-d).  I used Tempora to construct a trajectory 

connecting these clusters and visualized the known marker genes on the trajectory (Figure 5). 

Tempora identifies a branching trajectory connecting these clusters, rooted at the myoblast cluster 

that contains mostly cells at 0 hours after the media switch. This cluster leads to three separate 

branches, including a branch connected to the fibroblast cluster, one connected to the myotube 

cluster, and the last one connected to the partially differentiated myotube cluster via an 

intermediate cluster (Figure 5a). This branching trajectory agrees with the known biology of 

muscle differentiation in vitro, in which myoblasts proliferate and exit the cell cycle before 

differentiating into myotubes9,166. The fibroblast cluster contains equal proportions of cells from 

all time points and uniquely expresses fibroblast markers (SPHK1). The equal numbers of cells 

from all time points in this cluster suggest that the contaminating cells were present in the earliest 

time point and persist in the culture over time, while its separation from the other two branches 

suggest that these cells not go through the differentiation process. Thus, Tempora has identified 

fibroblasts as a source of contamination in the myoblast culture, consistent with results from other 

trajectory inference methods148,152 and from the literature165,167.  Another branch in this trajectory 

connects the myoblast cluster to the cluster of myotubes, which contains MYOG-positive cells 

mostly at 48 and 72 hours. (Figure 5a). MYOG is a required transcription factor for the terminal 

differentiation of myoblasts into myotubes and is rapidly upregulated when myoblasts start to 

differentiate around day 2 in vitro168,169. Therefore, the appearance of MYOG-positive myotubes 

at 48 hours and their connection to the myoblasts cluster, as predicted by Tempora, are aligned 

with previous findings in the literature. Finally, the myoblast cluster is also connected to an 

intermediate cluster, which contains 75% cells from two early time points, expresses lower level 

of CDK1 and has yet to express MYOG (Figure 5a). The low CDK1 expression suggests that cells 

in this cluster has begun to exit the cell cycle to start differentiation, thus representing an 

intermediate state between proliferating myoblasts and differentiated muscles as consistent with 

our understanding of muscle differentiation9,166. This intermediate cluster leads to a partially 

differentiated cells, which contains mostly cells from later time points and expresses low level of 

the muscle-specific transcription factor MYOG. Since HSMM cultures have been noted to 

differentiate asynchronously and with less than 100% efficiency, cells in this partially 
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differentiated cluster represent the population slower to differentiate and/or failed to go through 

differentiation as observed in previous studies168,170. Tempora, thus, predicts a branching trajectory 

that matches the structure and gene/pathway expression patterns of the known lineage9.  

 I used the pathway exploration feature of Tempora to further identify pathways whose 

enrichment changed over time as well as pathways with cluster-specific enrichment. Pathways 

enriched early in the differentiation process include the cell cycle, biosynthesis and chromatin 

remodeling (Figure 5b-d). Pathways upregulated later are associated with the formation of 

myotubes, which include morphogenesis, extracellular matrix assembly171 and FGFR signaling, 

which regulate myogenic activity172,173 (Figure 5b-d). The pathway exploration component of 

Tempora, thus, can be used downstream of trajectory construction to identify the cellular activities 

of specific cell states based on the active pathways in that state, as well as infer important signaling 

pathways at various stages of a developmental process. 

 

Figure 4. a. tSNE plot showing 271 cells in the HSMM dataset, colored by cluster number. b-d. 

Visualization of known marker genes for b. myoblasts, c. myotubes and d. fibroblasts on the 

HSMM dataset. 
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Figure 5. a. Tempora trajectory built on clusters in the HSMM dataset. b-d. Time-dependent 

pathways in the HSMM dataset as discovered by the Tempora pathway exploration feature.  

3.2 Validation on the embryonic murine cerebral cortex 

I next applied Tempora on the embryonic murine cerebral cortex development scRNAseq 

data, which contains approximately 6,000 neural cells collected at embryonic day 11.5 (E11.5), 

E13.5, E15.5 and E17.5135 (Figure 6a). These cells cover a wide spectrum of neuronal 

development, from the early precursors (apical precursors (APs) and radial precursors (RPs)) to 

intermediate progenitors (IPs) and differentiated cortical neurons. After data integration and 

clustering, I annotated the seven resulting clusters using marker genes for APs (Sox2, Pax6, Hes1, 

Mki67), RPs (Edrnb, Vim, Slc1a3), IPs (Eomes, Gadd45g, Mfap4, Sstr2), newborn neurons (Tbr1, 

Tubb3, Foxp2, Reln) and neurons (Tubb3, Bhlhe22, Satb2, Fezf2, Mef2c, Gria2) (Fig 4b-f). This 

resulted in the annotation of two AP/RP clusters mostly comprising of cells at E11.5, which is 

consistent with the known emergence of RPs from APs at E11135,174, as well as two IP clusters, 

one IP/young neuron cluster and two neuron clusters, all of which contain cells from multiple 

timepoints as expected from their gradual specification over time135 (Figure 6b-g). 
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Tempora predicts three lineages, two rooted at the two AP/RP clusters and one rooted at 

an early IP cluster (Figure 7a). Each of the two AP/RP lineages has two branches: one terminating 

at an IP/young neuron cluster and another converging at a late neuron cluster. The lineage predicted 

by Tempora aligns with our understanding of AP/RP asymmetric division to generate IPs and 

neurons in early corticogenesis135,174,175. To better understand why there are two lineages arising 

from two AP/RP clusters instead of one AP/RP cluster transforming to another AP/RP cluster in a 

single lineage, I carried out a DEG analysis between the two clusters and identified cell cycle 

markers, such as Mki67 and Cdk1, to be differentially expressed in one cluster over the other. This 

result suggests that the two AP/RP clusters differ based on their cell cycle state: one is actively 

proliferating and expressing cell cycle markers while the other is not (Figure 6d), consistent with 

the known decreased proliferation of APs as they transition to RPs135,176. The observation that both 

AP/RP clusters contain equal proportion of cells from all time points suggest that these two 

proliferative and non-proliferative AP/RP populations arise independently, instead of one 

transforming into the other. Similarly, the IP cluster that serves at the root of the third lineage 

contains many cells from the earliest time point and is thus unlikely to come from either of the 

AP/RP clusters, but may instead arise from earlier APs that are not captured in this time series data 

set. The transition between early IPs to young neurons to neurons predicted by Tempora is also 

consistent with our understanding of neurogenesis135,174. Tempora, thus, accurately identifies 

distinct lineages originating from different populations in the time-course murine cerebral cortex 

data.  

I used the pathway exploration feature of Tempora to further analyze time-dependent 

pathways in the data. As known in the literature, growth and proliferation pathways are enriched 

early176 (Figure 7b-d), while neuron-related pathways, such as synapse activity, dendritic 

morphogenesis and neurotransmitter synthesis, are enriched later177 (Figure 7d-e). Tempora also 

identifies more subtle changes in signaling pathways over time, such as the early enrichment of 

Notch signaling and the later upregulation of Semaphorin-Plexin signaling, both of which are 

consistent with their known roles in early neurogenesis and neural circuit assembly respectively178-

180 (Figure 7b-e). 
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Figure 6. a. tSNE plot showing the ~6,000 neural cells captured in the murine cerebral cortex 

dataset, colored by cluster number. b-f. Visualization of marker genes for b. apical precursors 

(APs), c. radial precursors (RPs), d. cycling apical/radial precursors (AP/RPs), e. intermediate 

progenitors (IPs), f. early neurons and g. neurons in the murine cerebral cortex dataset. 



30 

 

 

Figure 7.  a. Tempora trajectory built on clusters in the murine cerebral cortex dataset. b-e. Time-

dependent pathways in the murine cerebral cortex dataset as Tempora pathway exploration feature. 

3.3 Performance evaluation 

As the main motivation behind our method is to accurately predict the developmental 

trajectory underlying scRNAseq data, I used accuracy in recapitulating a gold standard of known 

lineages as the main criteria to evaluate Tempora’s performance and compare it to other TI 

methods. For ease of comparison, I formalized all trajectories, both predicted and known, as 

graphs, with nodes representing cell types, and directed edges representing parent-child 
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relationships between connected nodes. The graph formalization of all trajectories allows me to 

use standard graph comparison methods to evaluate method performance.  

The graph formalization of all trajectories allows me to use graph edit distance (GED), a 

measurement of mismatch between two graphs, as the first evaluation criteria. GED is calculated 

as the number of changes necessary (i.e. the number of necessary additions and removals of edges 

or nodes) to transform our inferred lineage to the known biological lineage. As Tempora inferred 

lineages include edge directions, the second evaluation criterion is the accuracy of the inferred 

directions using the F1 score.  

3.3.1 Model trajectory construction 

 I curated the model trajectories for the in vitro differentiation of human myoblasts and 

murine cortical development through literature search9,174,175,181 and described the lineage 

relationships between different cell types in the system using graphs. Each node in a model 

trajectory represents a distinct cell type as noted in the literature and described in the Cell 

Ontology85, while the edges represent lineage connections (develops_from relationship in the Cell 

Ontology) between these cell types.  

3.3.2 Mismatch score   

 I used the unweighted GED metric to measure the number of mismatches between the 

predicted and known trajectory, both formalized as undirected graphs to allow for comparisons 

with methods that do not predict edge directions182. GED is formally defined as the smallest total 

number of graph edit operations needed to transform one graph into another. In this context, the 

permitted operations included insertion and deletion of edges or vertices.  

 To calculate the mismatch score between a pair of graphs, I first labeled each cluster in the 

inferred trajectory with the cell type(s) it contains, based on expression of a set of well-known 

marker genes. The cell types used for labeling are terms from the Cell Ontology database. If 

multiple clusters contain one cell type, they are assigned the same label. In case one cluster 

contains multiple cell types as defined by the positive expression of multiple gene sets, I label the 

cluster based on the major cell type (more than 60% of cells in the cluster are positive for marker 

gene sets of this cell type) or label the cluster with both cell types if the proportion of cells 

expressing each set of marker genes is equal. I then calculated the number of differences in the cell 
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types of the predicted and known trajectories, as well as in the adjacency matrices of both 

trajectories. The sum of these two differences is the mismatch score for each pair of graph. 

3.3.3 F1 score 

 To compare the accuracy of Tempora’s time-based direction inference with the model 

trajectory, I calculated the F1 score on each predicted trajectory as follows: 

 𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

 in which true positives (TP) are edges present in both the model and the predicted 

trajectory, false positive (FP) are edges in the predicted trajectory but not in the model, and false 

negatives (FN) are edges in the model but not in the predicted trajectory. An edge in the predicted 

graph is considered true positive only when its two vertices and direction match those of an edge 

in the model graph.  

3.3.4 Performance evaluation on the HSMM dataset 

Human myoblasts, after exiting the cell cycle, transition through intermediate states before 

differentiating into myotubes9,166. Since myoblasts have varied differentiating potentials and rates, 

a portion of them will become myotubes while the rest remain undifferentiated, i.e. they do not, or 

have yet to, express myogenic transcription factors such as MYOG, which leads to two possible 

branches from the intermediate state(s)168-170. The starting culture, however, is often contaminated 

with fibroblasts cells, which exert paracrine influence on the differentiation process but cannot 

differentiate into myotubes167,172. These contaminating cells, thus, form a branch separate from the 

main differentiation trajectory (Figure 8d).  

Tempora’s predicted trajectory (Figure 8a) is closely aligned with the model trajectory, 

except for the edge connecting the myotubes cluster to the myoblasts instead of to the intermediate 

state. This results in a mismatch score of 2, which means that only two edges need to be changed 

in Tempora’s output to match the gold standard (Figure 8e). Since the myoblast and intermediate 

clusters are quite similar in their composition, it is possible that their pathway enrichment profiles 

share many features in common and thus the myoblast-myotube connection can be favored over 

the accurate intermediate-myotube connection only by a marginal difference in MI. Furthermore, 

Tempora achieves a high F1 score of 0.78 as it is able to infer the correct directions of most edges 
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in the trajectory, saved for the missing intermediate state to myotubes connection (Figure 8f). This 

result demonstrates that Tempora is able to infer a trajectory in the HSMM dataset that is mostly 

consistent with the gold standard, with minor mistakes that can be justified biologically.  

3.3.5 Performance evaluation on the murine cerebral cortex dataset 

Murine corticogenesis consists of transitions between well-characterized cell types. The 

apical precursors (APs), which delaminate from the neuroepithelium, dive asymmetrically to give 

rise to neurons and self-renew174. At around E11, APs transition to radial precursors (RPs), which 

continue the asymmetric division to generate neurons either directly or indirectly through IPs174,175 

(Figure 9d). Tempora’s inferred trajectory of the murine cerebral cortex dataset achieved a low 

mismatch score and high F1 score. It predicts almost all possible transitions between different cell 

types in the systems, only missing the IPs to neuron connection, which results in a mismatch score 

of 1 (Figure 9e). Despite this mistake, Tempora achieves a perfect F1 score of 1 on the murine 

cerebral cortex dataset, demonstrating that it can accurately and robustly identify directed 

connections between cell types in a large data set with multiple branching trajectories (Figure 9f). 

3.4 Comparison with other trajectory inference methods 

3.4.1 Comparison methods 

I compared Tempora’s performance with Monocle 2157 and TSCAN152, two popular TI 

methods that have performed well in multiple studies147,153. Similar to previous performance 

evaluations, I formalized all predicted trajectories from Monocle 2 and TSCAN as graphs and 

compared them to the same reference trajectories discussed in 3.3.1 in order to calculate each 

method’s mismatch score and F1 score. Since both Monocle 2 and TSCAN do not predict 

directions of the edges, I also considered the reference trajectory undirected for mismatch score 

calculation. To calculate the F1 score on undirected trajectories inferred by Monocle 2 and 

TSCAN, I first determined the origin of the trajectories based on high expression of a set of known 

marker genes (CDK1, CCND5 for myoblasts in the HSMM dataset9,166 and Sox2, Pax5 for APs in 

the murine cerebral cortex dataset135,176). I then added directions to the inferred trajectories by 

directing all edges to go outward from the origin. 
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3.4.2 Monocle 2 

 I applied Monocle 2 on the HSMM and murine cerebral cortex datasets using the 

recommended pipeline157. Genes used for the pseudotime inference process were determined using 

the dpFeature procedure, in which cells were first clustered and highly differentially expressed 

genes across the clusters were selected for downstream analyses. The trajectory in the data was 

then inferred using reversed graph embedding, a machine learning algorithm that learns the tree-

structured low-dimensional space on which the data points lie. To formalize a Monocle trajectory 

as a graph, I considered each state, or segment of the tree, as a vertex, and connected the vertices 

with appropriate edges to recapitulate Monocle’s output. 

3.4.3 TSCAN 

 I applied TSCAN on two datasets in this study using the Shiny GUI, which allowed me to 

make use of additional marker gene visualization features not available with command line152. As 

TSCAN clusters each dataset and constructs an MST on the clusters, its output lends itself nicely 

to the graph formalization. I optimized the number of clusters used in trajectory construction using 

TSCAN’s built in optimization feature. I then retained the cluster-level MST that TSCAN 

outputted for each dataset and considered each cluster a vertex, while the segments of the MST are 

edges in the formalized graphs. I then determined the roots and directions of the graph as described 

above.   

3.4.4 Comparison of performance on the HSMM dataset 

When applied to the HSMM data, Tempora outperformed both Monocle 2 and TSCAN as 

evaluated by the mismatch and F1 scores described above (Figure 8). Monocle 2 predicted a 

trajectory with four states, annotated as myoblasts, partially differentiated, mesenchymal and 

differentiated myotubes respectively. The trajectory branches at the end of the myoblast state into 

the other three states without a clear intermediate state (Figure 8b). This lack of intermediate state 

leads to Monocle’s worse mismatch score of 6. TSCAN’s trajectory has a linear structure, with the 

myoblasts at the root (state 1, annotated on the TSCAN plot) progressing through an intermediate 

state (state 3) and terminating at a cluster with mixed differentiated and undifferentiated cells (state 

2). TSCAN’s trajectory is penalized because it neither separates the mesenchymal cells from the 

undifferentiated cells nor undifferentiated cells from differentiated myotubes at the terminal states, 

increasing its mismatch score to 8 (Figure 8c). Overall, even though all methods predict similar 
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branching trajectories, Tempora performs best in terms of mismatch score as it correctly identifies 

the expected cell states and their directions in the HSMM data (Figure 8e). Similarly, with a F1 

score of 1, Tempora outperformed Monocle 2 (F1 of 0.3) and TSCAN (F1 of 0) (Figure 8f). These 

results suggest that Tempora is able to accurately infer a trajectory in the HSMM data that aligns 

well with the gold standard trajectory and outperforms two leading TI methods on the same dataset.  

 

Figure 8. Performance evaluation on the HSMM dataset. a-c. Trajectories of the HSMM dataset 

inferred by a. Tempora, b. Monocle 2 and c. TSCAN. d. The model trajectory used to evaluate the 

accuracy of all inferred trajectories. e. Mismatch scores and f. F1 scores of trajectories from the 

three evaluated methods. 

3.4.5 Comparison of performance on the murine cerebral cortex dataset 

Tempora outperforms Monocle 2 and TSCAN on the murine cerebral cortex data set, which 

is larger and contains more transitions than the HSMM dataset. Monocle 2 infers a branched 

trajectory at two main branches: one from an APs/RPs branch to two IP branches (branchpoint 2) 

and one from the larger IP branch to two neuron branches (branchpoint 1) (Figure 9b). The early 

neurons are merged in both of the neuron branches instead of identified as a distinct state. Monocle 

2’s trajectory is thus penalized for this lack of young neuron state as well as its inability to predict 

the direct differentiation from APs/RPs to neurons, thus achieving a mismatch score of 5. TSCAN 
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predicts a linear trajectory that connects APs/RPs to IPs, then to two neuron clusters (Figure 9c). 

TSCAN is penalized because it forces an erroneous connection between two neuron clusters, and 

similar to Monocle 2, it does not recognize a separate young neuron state and the direct 

differentiation link between APs/RPs to neurons. This results in a higher mismatch score of 7.  

With a mismatch score of 1, Tempora’s performance exceeds that of Monocle 2 and TSCAN by 

at least five times (Figure 9e). To calculate F1 scores on trajectories from these methods, I used 

Sox2 expression to infer that both Monocle 2 and TSCAN trajectories were rooted where all E11.5 

cells are collected, and determined that all edges are going outward from this root. The inferred 

directions of both trajectories are consistent with the gold standard trajectory. With a F1 score of 

1, Tempora significantly outperforms Monocle 2 (F1 of 0.5) and TSCAN (F1 of 0.25) on the 

murine cerebral cortex dataset (Figure 9f).  

 

Figure 9. Performance evaluation on the murine cerebral cortex dataset. a-c. Trajectories of the 

murine cerebral cortex dataset inferred by a. Tempora, b. Monocle 2 and c. TSCAN. d. The model 

trajectory used to evaluate the accuracy of all inferred trajectories. e. Mismatch scores and f. F1 

scores of trajectories from the three evaluated methods. 
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3.4.6 Comparison of Tempora performance with and without pathway 
enrichment analysis 

 To understand the impact of pathway enrichment information on lineage construction 

compared to gene expression inputs typically used by other methods, I compared trajectories in 

the HSMM and murine cerebral cortex datasets using Tempora with and without the pathway 

enrichment analysis (PEA) step. Removing the PEA step resulted in poorer performance, as 

evident in up to 4-fold increase in mismatch score and 3-fold decrease in F1 scores (Figure 10). 

Upon closer examination of the trajectories, I observed that gene-input trajectories contain 

more edges between clusters with similar temporal scores compared to pathway-input trajectories, 

whose edges often connect clusters from different time points. I propose that this trend can be 

explained by the high similarity in gene expression profiles of clusters that are closer in 

developmental time, a fundamental assumption made by TI methods that rely on distance metrics 

to order cells. To test this hypothesis and better understand the discrepancies in inter-cluster gene 

vs. pathway enrichment profile similarity, I calculated the Pearson’s correlation between the gene 

and pathway enrichment profiles of all pairs of clusters in each dataset. I found striking differences 

in the dynamic range of correlation observed: while correlations between gene expression profiles 

are uniformly strong and positive across all pairs of clusters, correlations between pathway 

enrichment profiles are negative for clusters of different cell types (neurons vs. APs, myoblasts vs. 

fibroblasts) and positive for clusters of the same cell types (neurons vs. neurons) (Figure 11a-b). 

These differences suggest that the highly similar gene expression profiles across clusters make 

them less informative than pathway enrichment profiles in capturing changes along a lineage, 

which results in the poorer performance of Tempora without the PEA step.  
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Figure 10. Performance of Tempora on a. HSMM and b. murine cerebral cortex dataset with and 

without pathway enrichment analysis (PEA). 



39 

 

 

Figure 11. Correlation plots showing cluster-average gene expression and pathway enrichment 

profiles in a. HSMM and b. murine cerebral cortex data. 

3.4.7 Comparison of Tempora performance with and without scRNA-seq 
data alignment 

An important part of Tempora’s pipeline, designed specifically to analyze time-series 

scRNAseq data, is batch effect assessment and correction, as time-series data are often collected 

and sequenced in batches, thus easily subjected to technical variations between experimental runs. 

I implemented two existing tools for this purpose: kBET to assess batch effect and Harmony to 

correct for any detected effect. Without such correction, Tempora’s performance decreased 
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slightly on both gold standards (

 

Figure 12, Figure 13). This is likely due to the suboptimal clustering driven by batch, which 

results in less accurate inference of trajectories based on these clusters. Therefore, when kBET 

indicates that there is batch effect, it is recommended that Harmony be run to ensure that clusters 

represent true cell types that are present across time points instead of groups with distinct technical 

variances. However, since kBET’s runtime can be significant for large data sets, batch effect can 

also be qualitatively assessed by initially clustering all cells in a time-course experiment and 

evaluate whether clusters are clearly separated by batches.  
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Figure 12. a-b. tSNE plots of HSMM data a. with and b. without Harmony alignment, with cells 

colored by timepoints. c. tSNE plot of clusters in HSMM data without alignment. d. Tempora 

trajectory and e. performance evaluation of Tempora on HSMM data without alignment. 

 

Figure 13. a-b. tSNE plots of murine cerebral cortex data a. with and b. without Harmony 

alignment, with cells colored by timepoints. c. tSNE plot of clusters in murine cerebral cortex data 

without alignment. d. Tempora trajectory and e. performance evaluation of Tempora on murine 

cerebral cortex data without alignment. 
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Chapter 3  
Conclusion 

I have described and validated Tempora, a novel pathway-based lineage analysis method 

for time-series scRNAseq data. Tempora uses an information theoretic approach to build a 

trajectory at the cluster level based on the clusters’ pathway enrichment profiles, effectively 

connecting cell types and states across multiple time points. Taking advantage of the available 

time information, Tempora can infer the directions of all connections in a trajectory that go from 

early to late clusters. Validation on two time series scRNAseq datasets with known developmental 

trajectories (one on the in vitro differentiation of human skeletal muscle myoblasts and the other 

on an in vivo sample of early development of murine cerebral cortex) demonstrate that Tempora 

can accurately predict the lineages in time series data containing cell populations spanning all 

developmental stages. I showed that Tempora outperformed other state of the art TI methods on 

the same datasets when evaluated against a gold standard benchmark of known trajectories, using 

metrics for graph prediction accuracy including mismatch score and F1 score. Furthermore, 

downstream analyses using the pathway exploration feature of Tempora have identified signaling 

pathways known to play regulatory roles during the process under study, demonstrating the 

method’s ability to recapitulate and discover important signals during development processes. 

Even though Tempora is only validated on two datasets, these datasets were selected based on the 

extrinsic availability of gold standard trajectories for easy comparison and not on any intrinsic 

features of the data or the systems under study. Tempora, thus, should be generalizable to 

scRNAseq datasets on other developmental systems beyond on the skeletal muscle and the brain. 

 Despite Tempora’s proven performance, some components of the algorithm can become 

potential drawbacks. Cell clustering plays an integral role in Tempora’s algorithm, which makes 

the resulting trajectory more stable and interpretable compared to using cells directly, but this 

comes with its confounding issues. Tempora assumes that the user has input an optimized 

clustering solution for their biological question into the method for trajectory construction. If the 

clustering is not optimal, the output trajectory may not be useful in answering the users’ biological 

question of interest as it may present a view of a lineage that is either too general or too detailed. 

Over-clustering, when the resulting clusters are arbitrarily split without unique marker genes, can 

lead to parallel edges originating from oversplit clusters and terminating at another cluster, 

ostensibly suggesting a multiple-parent lineage (Figure 14). Meanwhile, under-clustering can 
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result in simplified lineages (Figure 14). Under-clustering of certain clusters can also lead to 

certain cell types appearing at earlier and later time points but absent from the intermediate 

timepoints, potentially because they have been clustered with other cell types at the intermediate 

states. As previously discussed in Chapter 1, these challenges are inevitable when clustering high-

dimensional data, but researchers can ameliorate these difficulties by iterating through multiple 

clustering resolutions and determining an optimal one based on biological knowledge and a 

consistent set of user-defined rules and interests93,94.  

 

Figure 14. The effects of sub-optimal clustering resolution choice on trajectory inference. 

Overclustering (middle) can lead to complex lineages with converging connections, while 

underclustering (right) can lead to oversimplified lineages. 

 I reformulated the problem of building a trajectory between clusters as that of learning a 

graphical model that describes the statistical dependencies among these clusters. This formulation 

enabled us to take advantage of a family of structure learning algorithms to learn a model 

underlying the data under study. Tempora uses a filtered mutual information network (built using 

ARACNe161) to build the trajectory between cell clusters in a dataset because of the algorithm’s 

proven robustness and low computational complexity, which scales well with large scRNAseq 

datasets161. However, many other algorithms in the same family, including constraint-based and 

search-based algorithms, can theoretically solve the same problem laid out here183. Future 

extensions to this work can include the evaluation and optimization of other structure learning 

algorithms in the Tempora framework, especially those developed to work with temporal data. 

 The increasing popularity and complexity of time-series scRNAseq to investigate dynamic 

biological processes, including development and differentiation, present both opportunities and 

challenges. The larger cell numbers and types captured in time-course experiments allow 

researchers to discover rare cell types and study cell transitions with higher resolution, yet the non-

synchronous and uncorrelated nature of the populations across time points present a computational 
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challenge to characterize their trajectories184. Using time information to supervise the trajectory 

inference process, as Tempora does, enables accurate identification of cell types consisting of cells 

from different time points as well as the lineage connections between them. When combined with 

other methods to infer population and transcriptional dynamics to analyze time-series scRNAseq 

data185,186, Tempora can generate powerful insights into different dynamic processes and their 

biological regulation.  
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Time-series single-cell RNA sequencing (scRNAseq) can capture heterogeneity in cell 

states and transitions during dynamic biological processes, such as development and 

differentiation. Many trajectory inference methods have been developed to order cells by their 

progression through a dynamic process and infer the cells’ movement trajectory. These methods, 

however, do not consider time information when ordering cells and are designed to work on 

snapshot scRNAseq data. In this thesis, I present a novel method, called Tempora, that uses 

pathway expression profiles and experiment time point information to infer the lineage 

relationships among different cell populations captured in time-series scRNAseq experiments. 

Tempora accurately inferred developmental lineages and important time-dependent signaling 

pathways in human skeletal myoblast differentiation and murine cerebral cortex development 

time-series scRNAseq data. These results demonstrate the power of using time information, when 

available, to supervise trajectory inference, as well as suggests that pathway expression profiles 

are an informative and less noisy alternative to gene expression profiles in representing individual 

cells for scRNA-seq based analysis. 
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