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Abstract 

Sonic hedgehog medulloblastoma (Shh-MB) encompasses a clinically and molecularly 

diverse group of cancers of the developing central nervous system. It initiates within the 

cerebellum and, in 20% of cases, disseminates throughout the brain and spinal cord. Current 

therapy consists of maximal safe resection, radiotherapy in patients over 36 months, and cytotoxic 

chemotherapy. Unbiased sequencing of the transcriptome across a large cohort of 250 primary 

tumors reveals differences between molecular subtypes of the disease, with a previously 

unappreciated importance of non-coding RNA transcripts. Analysis of a large cohort of a single 

molecular type of cancer allows for identification of novel genes with single nucleotide variants 

(MYCN, GNAS, IKBKAP, and KDM6A) as well as gene fusions, some of which are secondary to 

rearrangement of the genome (ZBTB20, NCOR1), while others appear to arise through trans-

splicing (RALGAPA2, and GNAS). Integration of genetic and transcriptomic data allows further 

differentiation of driver from passenger genes. Molecular convergence on a core of specific genes 

by nucleotide variants, copy number aberrations, and gene fusion further emphasize the key role 

of specific pathways in the pathogenesis of primary Shh-MB. Little is known about genes driving 
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metastatic progression since matching human primary and metastatic samples are rare. The Shh-

MB Sleeping Beauty (SB) mouse model uses random integration of transposons to initiate 

tumorigenesis and drive the  metastatic cascade providing valuable insight onto the human disease. 

Common insertion site analysis using 549 metastatic tumors from 131 mice reveal networks of 

recurrent metastatic drivers (n = 336) and demonstrate extensive heterogeneity between metastasis. 

A subset of drivers, such as loss-of-function events in Crebbp and Ctnna3, arise independently 

between metastasis and are under the pressure of convergent evolution. Recurrent gain-of-function 

insertions in Lgalg3 suggest an oncogenic role in metastatic progression which was validated using 

Lglas3 knockout experiments in multiple models. Mice missing copies of Lgals3 had no change 

in metastatic burden in the brain but showed significantly less metastasis along the spinal cord 

suggesting a site-specific role as a metastasis driver gene. These findings enhance our 

understanding of the genomic complexity and heterogeneity underlying Shh-MB pathogenesis and 

highlight several targets for therapeutic development. 
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Medulloblastoma molecular biology and mouse models 

1.1 MEDULLOBLASTOMA  MOLECULAR GENETICS1 
Patryk Skowron*, Vijay Ramaswamy, Michael D. Taylor 

Medulloblastoma is the most common malignant paediatric brain cancer, having an 

incidence of approximately 0.74/100,000 person-year2,3. This tumor is located in the cerebellum 

and 30% of cases present with metastatic dissemination over the cranial and spinal leptomeninges 

(Figure 1.1)4. Initial treatment for medulloblastoma is maximal safe surgical resection followed by 

adjuvant craniospinal irradiation and/or high dose cytotoxic platinum based chemotherapy. 

Radiation as per current protocols in North America and Western Europe is risk adapted, in that, 

metastatic patients receive 36 Gy and non-metastatic patients receive 23.4 Gy of craniospinal 

irradiation with a boost to the tumour bed5. With the current standard of care, overall patient 

survival has reached 70%, however, metastatic patients and infants are both high risk groups with 

poor survival4,6–9. Despite successful completion of treatment, patients frequently present with 

neurocognitive sequelae — long term neurological deficits in cognition10,11. As such, there is an 

urgent need for more specific targeted therapies which minimize impact on the developing brain. 

Recent integrated genomic studies have now shown that medulloblastoma is not one single 

morphological entity, and is in fact at the molecular level, comprised of several different diseases. 

Large scale efforts focused on studying the transcriptional landscape have revealed 4 distinct 

subgroups (WNT, SHH, Group 3, Group 4), each with their own unique survival, age 

demographics, and genetic aberrations12,13. These subgroups are stable at recurrence and across 

tumour compartments6,14, and are likely reminiscent of the cell of origin15. The next generation of 

clinical trials is already taking subgroup into account to rationally stratify patients and tailor 
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therapy. Accurate, robust, and inexpensive subgroup prediction methods are essential; molecular 

subgroups can be reliably assigned by either expression profiling or through the use of genome 

wide methylation arrays16–18. Further investigation into the molecular genetics of medulloblastoma 

will hopefully pave the way for new targeted therapeutic strategies to cure this devastating 

childhood disease.  

1.1.1 Familial Predisposition Syndromes 

Initial insights into the pathways driving medulloblastoma were inferred from familial 

predispositions associated with medulloblastoma. The most common being Li-Framumeni 

syndrome with germline mutations in TP5319. These mutations can drive a variety of other cancers, 

but in medulloblastoma both somatic and germline TP53 mutations are frequently present in 

childhood SHH patients and are known to facilitate catastrophic large scale rearrangements via 

chromothripsis20–22. Somatic TP53 mutations can also occur in the WNT subgroup. Less frequent 

is Gorlin syndrome which is an autosomal dominate disease characterised by mutations of the 

transmembrane receptor Patched1 (PTCH1). The majority of these patients will acquire basal cell 

carcinoma, while about 5-20% will get medulloblastoma23,24. Deletion of the PTCH1 locus results 

in higher Smoothened (SMO) activity and upregulation of the Sonic Hedgehog (Shh) signalling 

pathway, a marker of the SHH subgroup. Less common predispositions are: i) Turcot Syndrome 

adenomatous polyposis coli (APC) germline mutations which are associated with a multitude of 

other central nervous system tumours and colorectal cancer25,26 , and ii) autosomal dominant 

mutations in CREB binding protein (CREBBP) causing Rubinstein-Taybi syndrome27. Familial 

predispositions are not all encompassing and only account for about 6% of medulloblastoma 

cases28. There are many other genetic factors which can lead to the development of 

medulloblastoma which will be covered in the sections that follow.  
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Figure 1.1 Medulloblastoma primary and metastatic tumors 
(a) MRI of pediatric medulloblastoma primary tumor (lower arrow) and the secondary brain metastatic site (upper arrow). (b) 

Spinal metastatic spread along spinal cord in the same patient as (a). 

 

1.1.2 Wnt subgroup 

1.1.2.1 Clinical Attributes  

Of all subgroups, the WNT subgroup has the most favourable prognosis with over 95% of 

patients surviving their disease (Table 1). WNT tumors exhibit classic histology, are rarely 

metastatic and have an even gender predisposition. WNT is the least common subtype, with a rate 

of 10% among medulloblastoma patients. The hallmark alteration in WNT tumors is somatic 

activating mutations in exon 3 of -catenin (CTNNB1). Monosomy 6 is the main recurrent 

structural alteration and is usually found in an otherwise balanced genome29–31.  

1.1.2.2 Molecular Biology 

The Wnt signalling pathway plays an essential role in embryonic development, controlling 

cell fate specification, cell proliferation, cell migration and body axis patterning. In the developing 
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brain, the Wnt pathway has broad regulatory effects on neuronal maturation and synapse 

formation. This pathway is activated through binding of WNT ligands to Frizzled receptors, which 

relay signals into the nucleus through induced stabilization of β-catenin (Figure 1.2a). Important 

negative regulators of this pathway are APC and SUFU which normally limit β-catenin 

accumulation and translocation into the nucleus32,33. Nearly all (90%) of WNT tumors have 

somatic missense mutations in CTNNB1, the gene coding for β-catenin, which promote protein 

stabilization. The next most common mutation is in DDX3X, with mutations clustering in its two 

helicase domains hypothesized to alter its RNA binding capacity rather than abolish it. In vivo and 

in vitro functional studies on DDX3X suggest that it enhances and/or maintains proliferation of the 

WNT progenitor cells. It is also possible that DDX3X mutations corporates with -catenin 

activation34–36. Also commonly found in WNT are missense mutations in TP53. Despite being a 

marker of high risk in the SHH subgroup and other cancers, TP53 mutations confer no difference 

in survival for patients diagnosed with WNT subgroup medulloblastomas22.  

1.1.2.3 Models 

Progenitors of the lower rhombic lip are the likely cell of origin for WNT tumours. β-

catenin stabilization and nuclear localization is the most characteristic feature of WNT subgroup 

tumors and in mouse models its action is not sufficient to transform external granule cells, which 

are the cells of origin for SHH subtype tumors. Furthermore, WNT tumours in humans are found 

adjacent to the brainstem, unlike SHH tumors which arise from within the cerebellum. During 

development, postmitotic mossy-fibre neuron precursors in the dorsal brainstem migrate into the 

central brainstem. Targeted expression of activated beta-catenin in mouse postmitotic mossy-fibre 

neuron precursors using a brain lipid-binding protein (Blbp) promoter, coupled with a knockout of 
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TP53 leads to formation of a WNT tumour with long latency and low penetrance37. Subsequent 

work established that through addition of a phosphoinositide 3-kinase (PI3K) catalytic-α 

polypeptide mutant allele (Pik3caE545K) identified in WNT medulloblastomas, the penetrance in 

the mouse model was increased to 100% with highly representative WNT tumours forming within 

3 months35,38. 

1.1.3 SHH subgroup 

1.1.3.1 Clinical attributes 

The SHH subgroup accounts for a third of all medulloblastoma tumors and has an 

intermediate prognosis with a five year survival ranging between 60-80%. The age distribution for 

this tumor is bimodal, with the majority of infant and adult medulloblastomas being SHH. The 

histological classification can be any of the 5 described variants from the WHO classification 

system; however the desmoplastic variant is more common in children and adults compared to 

infants. Large cell and/or anaplastic histology is common in children harbouring germline or 

somatic mutations in TP53. SHH patients commonly have focal amplifications of GLI2, and 

MYCN, as well as loss of 17p (Table 1)5,13,30,39.   

1.1.3.2 Molecular Biology 

During early cerebellar development, Purkinje cells release Shh ligand and stimulate the 

proliferation and subsequent migration of granule cells into the internal granule cell layer. 

Excessive activation of the Shh pathway overdrives the expression of GLI2 transcription factor 

targets which induce uncontrolled proliferation of granule cells and the formation of tumour33,40.  

Alterations in this subgroup most often fall within the Shh signalling pathway and, less frequently, 

in cooperating pathways such as PI3K and mTOR (Figure 1.2b). The most common events are 
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somatic or germline inactivating alterations of PTCH1 or SUFU, or somatic missense mutations 

activating SMO31,34–36. A subset of high-risk patients present with co-amplification of MYCN and 

GLI2 accompanied by inactivation of TP53. Within the SHH subgroup there is also a difference 

in molecular biology and risk factors for different age groups. SUFU mutations are found 

predominantly in infants, while the high risk GLI2 amplifications are found in older children and 

teenagers21,41.  In adults, the most common are somatic mutations in SMO and in the TERT 

promoter (C228T or C250T)42, which creates an E-twenty-six binding motif 43,44.  

1.1.3.3 Models 

There are a large variety of mouse models that recapitulate SHH subgroup tumors, and 

these function mainly through dysregulation of the hedgehog signalling pathway. For example, the 

first medulloblastoma mouse model involved a single allele knockout of the PTCH1 gene, a 

negative inhibitor of SMO, which drives tumorigenesis in granule cells45. Since then there have 

been other models whereby Ptch1+/-  was crossed with other aberrations that confer a more 

aggressive phenotype, such as deletions of cyclin-dependant kinases Ink4c and Kip146,47, or the 

master regulator TP5348. NeuroD2 dependant overexpression of mutant SMO in granule cells is 

also able to drive highly penetrant tumours with leptomeningeal metastasis49,50. In addition, even 

though SHH medulloblastoma are traditionally thought to arise from granule cells, there have been 

mouse models that demonstrate aberrant Shh signalling induced tumors in cochlear nuclei and 

neural stem cells51,52.   

A model that has shown great utility in screening for novel driver genes and cooperating 

events has been the medulloblastoma Sleeping Beauty (SB) mouse model53 which utilizes random 

transposon integration to drive tumorigenesis. SB transposons contain elements which are capable 
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of overexpressing or truncating genes depending on the insertion location and orientation. Insertion 

events are mediated by a transposase, which is limited to granule cell precursors through use of 

the MATH1 promoter. Nearly all the mice in this model develop tumours with a high rate of 

leptomeningeal metastasis by 3 months. The SB system has identified a large number of primary 

tumour drivers such as MyoD54 and Nfia55, and has also revealed the large degree of divergence 

between primary and metastatic tumours (discussed below).  

 

Figure 1.2 Dysregulated pathways in WNT and SHH medulloblastoma 
(a) WNT tumors normally have activating alteration in β-cat which promote its stabilization and allow it to upregulate target genes.  

(b) Alterations in the SHH subgroup usually fall within the Shh signalling as well as cooperating PI3K/mTOR pathways and converge 

on upregulation of GLI. The most common are inactivating alterations in PTCH or SUFU or activating mutations in SMO. High risk 

patients typically have co-amplifications of MYCN, GLI2 and mutations in P53 which results in genomic instability and/or 

chromothripsis31,34–36,56. Activating mutations (green star); inactivating mutations (red star); amplifications (red arrow); DNA damage 

(yellow star); amplification (up arrow).   
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1.1.4 Group 3 

1.1.4.1 Clinical Attributes 

Group 3 medulloblastoma comprise about 20% of all cases (Table 1). These patients have 

the worst survival and the highest rate of metastatic dissemination.  Group 3 tumors recur almost 

exclusively with metastatic dissemination with a clean tumour bed6. Patients diagnosed with this 

subgroup are commonly infants and younger children with a male to female discordance of 2:1. 

The histology of this tumour is commonly classic or large cell anaplastic (LCA) and the genome 

of these tumours is very unbalanced with a large number of broad alterations such as gain of 

chromosome 7 and isochromosome 17q. Many of these alterations are also shared with Group 4.  

1.1.4.2 Molecular Biology 

There are several recurrent somatic copy-number alterations in Group 3 medulloblastoma, 

but unusually few recurrent single nucleotide variants and indels. The Group 3 transcriptome is 

dominated by photoreceptor and GABAergic expression signatures12. The most common event is 

amplification of MYC in 10-20% of patients, which in many cases occurs with a fusion between 

the promoter of PVT1 and the second exon of MYC31. In many cancers the MYC locus is co-

amplified with the non-coding RNA PVT1, which is able to stabilize MYC protein57. In 

medulloblastoma, these fusions likely create a positive feedback loop since the PVT1 promoter 

contains canonical E-boxes which are activated by MYC58. Amplification of the gene coding for 

the transcription factor OTX2 is another common copy number alteration occurring in 10% of 

patients, and mutually exclusive of MYC amplification. OTX2 is known to play an important role 

in controlling cell fate and differentiation of various progenitors in the developing brain and is able 

to repress the myogenic differentiation of medulloblastoma cells. It also plays a role in the TGF-
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B signalling pathway which contains numerous other genes showing less recurrent copy-number 

alterations indicating that deregulation of this pathway may be a driver event59–61.  

1.1.4.3 Models 

Two orthotopic transplantation models of Group 3 have been created which couple 

overexpression of MYC with inactivation of TP5362,63. MYC expression leads to a higher rate of 

proliferation as well as a higher rate of TP53 mediated apoptosis which necessitates the need to 

inactivate the TP53 locus. In the first model, Pei et al isolated mouse CD133-positive and glial 

lineage marker-negative neural stem cells from the postnatal cerebellum64. These cells were 

unresponsive to Shh stimulation and capable of differentiating into neurons, astrocytes and 

oligodendrocytes. Infection of these cells with a stabilized MYC (MycT58A) followed by 

transplantation into a mouse led to formation of transient hyperplastic lesions with a high rate of 

apoptosis. By introducing a dominate negative TP53 virus (DNp53), the apoptotic effects were 

abolished and tumours were formed with LCA histology, prominent necrosis, and nuclear molding. 

The second model was produced by isolating GFP florescent granule progenitor cells from 

postnatal TP53 deficient Atoh1-GFP mice. Atoh1-GFP isolated cells transduced with MYC were 

able to form aggressive tumours with LCA histology, even after multiple passages in mice. In 

Group 3, focal events in TP53 are exceedingly rare but there is frequent loss of 17p (where TP53 

resides). The resistance to Shh pathway inhibition and the similarity in Group 3 signature genes 

suggest that these two models are highly representative of the human disease.  
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1.1.5 Group 4 

1.1.5.1 Clinical Attributes 

Group 4 is the most common of the medulloblastoma subgroups and has an intermediate 5 

year overall survival of 75% (Table 1). Group 4 tumor histology is most commonly classic. It has 

a high rate of metastasis and a 2:1 male to female discordance. The Group 4 genome is commonly 

tetraploid, and the most common structural alteration is isochromosome 17q, which is found in 

80% of tumors.  

1.1.5.2 Molecular Biology 

Group 4 has a neuronal and glutaminergic expression signature and, like Group 3, few 

recurrent single nucleotide variants and indels. The most frequently mutated somatic gene in 

Group 4 medulloblastoma is KDM6A, a histone H3 Lys27 (H3K27) demethylase, with nonsense 

mutations in 13% of patients65–67. KDM6A belongs to the Jumonji C family of histone 

demethylases along with KDM6B, which is also mutated in medulloblastoma. The proto-

oncogenes MYCN and cyclin-dependant kinase CDK6 are recurrently amplified in Group 4.  More 

common are focal amplifications/tandem duplications of the alpha-synuclein interacting protein 

(SNCAIP) gene at chromosome 5q2331, which encodes a protein previously implicated in 

Parkinson’s disease68. It is still unknown if SNCAIP is the driver for these patients and more 

research needs to be done to uncover its specific role in Group 4 medulloblastoma.  

1.1.5.3 Models 

Due to the low number of focal events and many broad rearrangements, the search for a 

Group 4 model has proven elusive. MYCN is commonly upregulated in medulloblastoma and is 

the site of one of the most recurrent focal amplifications in Group 4. Swartling et al. created a 
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mouse model for MYCN driven medulloblastoma by targeting its expression with Glt1, a brain 

specific promoter highly expressed in the cerebellum throughout development until adulthood. 

Tumors formed with a long latency, had a low metastatic rate, and had either classic or LCA 

histology. MYCN was required for both initiation and maintenance of these tumours and was likely 

cooperating with other events since the genome was unbalanced and had a number of recurrent 

copy number alterations. These mice are showing great promise as a Group 4 model, but additional 

studies need to be performed in order to characterize expression signatures and identify the cell of 

origin38. 

1.1.6  Epigenetics 

Across all subtypes there have been a number of recurrent somatic single nucleotide and 

copy number variants identified within genes coding for chromatin modifiers. Most common are 

truncating mutations in myeloid/lymphoid or mixed-lineage leukemia protein 2 (MLL2) and MLL3 

suggesting a role as an oncogenic driver. In Group 3 and Group 4 there are a large variety of 

recurrent somatic mutations in SMARCA4 (exclusive to Group 3), and KDM6A (exclusive to Group 

4), and less commonly in CHD7, ARID1B, KDM4C, and ZMYM331,34–36. There is also over-

expression of EZH2, a H3K27 methyltransferase that is part of the polycomb repressive complex 

essential for regulating development and differentiation. These events are largely mutually 

exclusive of each other and with amplifications of MYC or MYCN. The mechanism of their 

pathogenesis is still a subject of intense investigation, but it’s possible that these events preserve 

Group 3 and Group 4 tumours in a stem cell-like state by maintaining high levels of the H3K27me3 

repressive mark (EZH2 upregulation or KDM6A inactivation) and/or disruption of H3K4me3 

associated transcription (ZMYM3 and CHD7 inactivation)60,69,70. 
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Table 1 Clinical and Genomic Characteristics of Medulloblastoma Subgroups 
Percentages indicate the recurrence within the respective subgroup. In the gender distribution, pink is female and blue is male. Data acquired 

from various sources6,21,30,31,34–36. 

 

 WNT SHH Group 3 Group 4 

Age Distribution 

Infant   Child   Adult Infant   Child  Adult Infant   Child  Adult Infant   Child  Adult 

Gender (f|m) 

  
 

 

Histology Classic, Rarely LCA 
Desmoplastic, Classic, 

LCA 
Classic, LCA Classic, LCA 

Metastatic Rate Low Low High High 

Prognosis Excellent Intermediate Poor Intermediate 

SCNA - 
MYCN (12%) 

GLI2 (8%) 

MYC (17%) 

PVT1 (12%) 

OTX2 (8%) 

SNCAIP (10%) 

MYCN (6%) 

CDK6 (5%) 

SNVs 

CTNNB1 (91%) 

DDX3X (50%) 

SMARCA4 (26%) 

MLL2 (13%) 

TP53 (13%) 

TERT (60%) 

PTCH1 (46%) 

SUFU (24%) 

MLL2 (16%) 

SMO (14%) 

TP53 (13%) 

SMARCA4 (11%) 

MLL2 (4%) 

KDM6A (13%) 

MLL3 (5%) 

Broad Events 6 Loss 
3q Gain 

9q, 10q, 14q Loss 

1q, 7, 17q, 18q Gain 

8, 10q, 11, 16p, 17p Loss 

7, 17q, 18q Gain 

8, 11p, X Loss 

Expression WNT Signaling SHH Signaling MYC/Retinal Signature Neuronal Signature 

Recurrence - Local Metastatic Metastatic 
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 Enhancer-promoter interactions play an essential role in tissue specific regulation of genes 

and development71. The three-dimensional localization of active enhancers ultimately determines 

which genes can be activated by the enhancer and any disruption can lead to aberrant regulation  

of genes. In Group 3 and Group 4 medulloblastoma it has recently been demonstrated that 

structural rearrangements can alter the intended targets of enhancers to drive tumorigenesis72. In 

particular, a series of seemingly unrelated deletion, duplication and translocation events were able 

to activate expression of transcription factors GFI1 or GFI1B through repositioning of distal 

enhancers. These somatic events were highly recurrent, constituting a third of Group 3 and 10% 

of Group 4 tumours. When these genes were co-expressed with MYC in murine neural stem cells, 

they induced the formation of an aggressive tumour in recipient mice with a high rate of metastasis. 

1.1.7 Metastasis 

In medulloblastoma patients, metastasis is a sign of dismal prognosis. It is most commonly 

seen in patients with Group 3 and Group 4 tumors, both of which almost exclusively recur with 

metastatic dissemination6. Little is known about the genes driving dissemination and the context 

in which they operate since matching patient primary and metastatic samples are exceedingly rare. 

Studies with the SB mouse model have shown a large genetic divergence between the primary and 

metastatic compartments with almost no overlap in common insertion sites53 suggesting that the 

primary tumour is a poor indicator of the therapeutic targets present in the metastatic lesions. These 

Ptch1-driven SB models have revealed a number of metastasis drivers such as Eras, Lhx1, Ccrk, 

and Gdi2 which likely drive dissemination in SHH patients73,74. Tumour-stromal interactions also 

appear to play an essential role in medulloblastoma tumorigenesis and metastatic dissemination. 

For example, tumour cell-induced expression of the placental growth factor (PIGF) in the stroma 
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was shown to activate pro-survival pathways through the Nrp1 receptor75 and promote tumour 

growth and metastasis.  

1.1.8 Therapies 

WNT subgroup tumors have the best prognosis out of all the subgroups with nearly all 

patients surviving after surgery, radiation and chemotherapy. For this subgroup there have been 

international efforts to de-escalate therapy to help reduce the long term cognitive deficits common 

in children after receiving radiotherapy76.  

There are a number of proposed therapies for SHH patients all of which aim to lower 

aberrant activation of Shh signalling. One of the most promising class of drugs are SMO inhibitors, 

which are already in phase II clinical trials for a number of cancers including medulloblastoma77–

79. Unfortunately, acquired resistance inevitably occurs in both animals and humans. A recurrent 

mutation in a conserved aspartic acid residue within the G protein–coupled receptor domain of 

SMO has been shown to disrupt functionality of inhibitors while leaving Shh signalling intact77,78. 

Furthermore, the drug is only effective for patients with alterations within or upstream of SMO, 

and therefore high-risk children with amplifications of MYCN and GLI2 would not benefit from 

such treatment21. Another class of drugs called bromodomain inhibitors may circumvent this 

problem by inhibiting the Shh signalling at the level of GLI2. BRD4 is a bromodomain protein 

which binds to ε-N-lysine acetylation motifs on open chromatin and is known to facilitate 

transcription at promoter regions of gene including GLI2 and MYC. Treatment of SHH with BRD4 

inhibitors has shown great promise in pre-clinical models even in the presence of SMO drug 

resistance mutations80,81.  
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The search for Group 3 and 4 tumor specific therapies has proven elusive. In Group 3, 

TGF-beta signaling is commonly dysregulated and pathway antagonists are already being explored 

for a multitude of cancers, including glioblastoma with varying success82. MYC inhibition is 

another potential but challenging therapeutic strategy. While there are no known direct inhibitors 

of MYC — studies have focused on inhibiting expression of MYC RNA83 or inhibiting its 

heterodimer MAX84,85. So far the most promising approach is based on BRD4 inhibition using 

bromodomain inhibitor JQ1 to reduce the MYC transcription86. There is also some evidence that 

JQ1 may be effective for treatment of MYCN driven neuroblastoma in pre-clinical models; 

suggesting that it could also be effective for Group 4 patients87. In both Group 3 and Group 4, 

epigenetic alterations are a characteristic feature and there are a number of approved drugs in 

clinical trials for several adult and pediatric brain tumours. In particular, there are several inhibitors 

of the polycomb repressive complex 2 as well as EZH2 which act to decrease the level of 

H3K27me388.  

1.2 SLEEPING BEAUTY TRANSPOSITION SYSTEM  

1.2.1 Transposon Design 

A transposon is a mobile genetic element which has the ability to “jump” around the 

genome. These translocation events are mediated through either reverse transcription of transposon 

mRNA into DNA or through a transposase enzyme mediated “cut and paste” mechanism ( 

Figure 1.3). Transposon classes differ by the DNA motifs in which insertion events can 

occur. Members of the Tc1/mariner “cut-and-paste” transposon superfamily were isolated from 

fish and were initially transpositionally inactive due to gradual acquisition of mutations. By 

comparing related inactive transposons across fish species, Ivics et al. generated a consensus 
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sequence for the active ancestor transposon. Then a new artificial element was made in a step-wise 

fashion to match the consensus creating the first generation of Sleeping Beauty (SB) transposons89. 

This system was later modified to increase transposition rates and carry elements which can either 

overexpress or truncate mRNA if inserted into a gene. The T2onc2 (aka SB100) sleeping beauty 

system contains a Murine Stem Cell Virus (MSCV) long terminal repeat (LTR) to drive expression 

of downstream transcripts in one orientation, as well as an SV40 polyadenylation sequence to 

truncate mRNA from either orientation. The transposase enzyme mediates “cut-and-paste” 

integration into TA dinucleotides through interaction with right and left inverted repeat regions 

(IRR and IRL) of the transposon (Figure 1.4a).  

 

 

Figure 1.3 Sleeping Beauty Insertion Event 
The transposase DNA-binding domain recognizes the SB transposon sequence and “cuts” it out, leaving behind a TATA 

dinucleotide scar sequence. This excised transposon binds to the transposase and is then randomly reinserted at a TA dinucleotide 

site in the host genome. 

1.2.2 Cancer gene discovery using SB mediated insertional mutagenesis  

If inserted into a gene, the transposon can either upregulate or truncate gene expression depending 

on the orientation and location of the insertion relative to the gene promoter (Figure 1.4b). If any 

insertions increase proliferative potential, it can help trigger cell transformation. There are many 

different mouse models for cancer based on SB-mediated mutagenesis. By spatially and temporally 
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controlling expression of the transposase, a variety of cancers can be faithfully modeled. In the 

original SB model, transposase was knocked into the ubiquitously expressed Rosa26 locus 

generating a variety of cancers including T-cell and B-cell lymphoma, intestinal neoplasia, and 

medulloblastoma.  Most commonly observed in the T-cell tumors were alterations in the Notch 

signalling pathway with Notch1 and Rasgrp1 insertions in more than half of the tumors90. More 

recently, in an osteosarcoma SB model, expression of transposase was restricted to the osteoblast 

progenitors through the use of a an Osterix promoter. Control mice were already predisposed to 

osteosarcoma through conditional expression of Trp53R270H, but with the help of SB, mice 

developed tumors with a much shorter latency. Interestingly, these mice also had a lower number 

of structural events since SB mutagenesis acted as substitute for alterations otherwise caused by 

the Tp53 dysfunction. The most commonly inserted genes in this screen were Nf2 (26%), Pten 

(24%) and Nf1 (19%). Pten was subsequently shown to corporate with Tp53 to promote 

tumorigeneses in both in-vitro and in-vivo mouse models91. 

Figure 1.4 Sleeping Beauty transposon model and mechanism 
(a) Schematic of the T2onc2 transposon with MSCV promoter transcriptional start site indicated. (b) Transposon effects on gene 

transcription in each possible orientation. mRNA are indicated as lines under the gene body.  IRR - Inverted repeat right, SA - 

splice acceptor, pA - polyadenylation signal, SD - splice doner, IRL - inverted repeat left.  
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1.2.3 Statistical methods for analyzing insertions 

As random insertions accumulate in cells expressing transposase, insertions that increase 

proliferation and survival of cell are selected for and become part of the dominant clone in the 

expanding cancerous mass. These insertions can be amplified using a modified splinkerette PCR 

method (for shear-SPINK method see 3.3.3) and sequenced. To increase efficiency and number of 

transpositions, T2onc2 exists as a concatemer (usually >40 copies) all of which are capable of 

integrating into genes. On the scale of individual tumors, this translates into thousands of detected 

insertion sites. It is therefore necessary to employ statistical models to find genes under positive 

selection. There are three main methods commonly used to call significant common insertion sites 

(CIS) and infer drivers in a cohort of tumors: (1) Gaussin Kernal Convolution92, (2) Monte Carlo 

Simulation93, and (3) Gene centric common insertion sites94. 

1.2.3.1 Gaussian Kernel Convolution (GKC) 

A gaussian kernel (i.e smooth normal distribution peak) is placed on each insertion detected 

along the genome. To get an estimate of the insertion density, overlapping peaks are summed up 

with each other. The kernel width parameter smooths the area around insertions to infer 

information from their neighborhood. By altering the kernel width, CISs of different sizes can be 

detected. A background or null distribution is generated by permuting insertions randomly 

throughout the genome in TA locations and calculating the summed gaussian kernel density for 

each iteration. By comparing observed peaks to the expected density distribution at each position, 

significant peaks can be called. This method is gene naïve, only calling significant regions at 

different kernel scale factors. It is then up to the investigator to inspect peaks and decide the 

functional consequence of an insertion cluster.   
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1.2.3.2 Monte Carlo (MC) Bootstrapping 

Unlike gaussian kernel methodology, the MC method breaks up the genome into equal size 

windows. Over thousands of iterations, it randomly permutes insertions across all TA locations 

and takes a count for each window. Statistical tests are done on a per-window basis, comparing 

the observed insertion count to the permuted count distribution in order to find significant regions. 

This process is repeated for multiple window lengths and offsets to ensure that all important cancer 

driver regions are found. Like the GKC method, it is relatively unbiased with respect to 

identification of CISs since it does not consider functional elements in the genome. Thus MC 

bootstrapping is suited for detection of poorly characterized genes or regulatory regions. 

Unfortunately, both GKC and MC can output significant regions that are either too big or too small 

making many CISs difficult to characterize.  

1.2.3.3 Gene centric common insertion (gCIS) 

The gCIS method sets windows for each annotated gene rather than across the entire 

genome. For each mouse it calculates the expected number of insertions taking into account the 

number of TA dinucleotides in each gene and the number of insertions detected in each tumor.  It 

uses the Chi Squared test to compare observed and expected counts across the entire tumor cohort 

(refer to methods 3.3.6 for detailed model). As this method only looks at gene windows, it greatly 

decreases the number of tests (therefore increasing power) after multiple test correction compared 

to GKC and MC. It also focuses on genes, making the results easier to interpret and functionally 

validate. Lastly, unlike the prior methods it controls for the number of insertions detected in each 

tumor ensuring that each sample is equally represented. The gCIS method has great utility, as it 

can detect the same genes as GKC and MC, and many more due to its higher power.  
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1.2.3.4 Sources of Bias 

There are multiple sources of bias that must be considered when running CIS analysis and 

interpreting the results. Firstly, SB transposons leaving the donor location are more likely to re-

insert in a nearby location on the same chromosome. This is contrary to the statistical assumption 

used in CIS methodology that all TA dinucleotide locations have equal probably of insertion. 

Therefore, all insertions from the donor chromosomes are filtered before running the CIS analysis. 

It is important to have multiple mouse lines with different donor chromosomes to ensure that 

important drivers are not missed. Secondly, the number of reads detected for each insertion are not 

always correlated with the relative number of insertions in the tumor samples (i.e. clonality) due 

to sequence-dependence efficiency of amplification94. A better estimate of clonality uses the 

number of unique fragments generated by sonication in the shear-SPLINK protocol (for shear-

SPINK method see 3.3.3) since the searing process is not sequence dependant95.  Lastly, there are 

a number of false positive genes usually present after running any of the statistical models which 

need to be manually curated96. Most common are the genes En2 and Foxf2 which are themselves 

used in the construction of the SB transposon and therefore are overrepresented in the genome. 

Likewise, the false positive Sfi1 has many more copies in the genome than is known in mm9 mouse 

assembly annotation.  

 

 

 



 

21 

 

1.3 THESIS OVERVIEW 

Medulloblastoma is the most common malignant pediatric brain cancer and a significant 

cause of cancer related mortality in children2. It initiates within the cerebellum and in 30% of cases 

presents with dissemination throughout the brain and spinal cord4. Based on various expression 

studies and a multi-institutional consensus, medulloblastoma has been shown to have at least 4 

distinct subgroups (SHH, WNT, Group 3, Group 4)39. These subgroups are spatially and 

temporally stable and have significant prognostic utility in stratifying patients97,6. Each of these 

subgroups has been shown to have unique copy number alterations, methylation and expression 

profiles which suggest a different cell of origin12. Despite numerous genomic studies there is still 

a lapse of knowledge in the specific primary and metastatic genetic drivers in SHH 

medulloblastoma (Shh-MB) and its subtypes. New sequencing modalities and mouse models will 

help decipher the full driver landscape in Shh-MB. 

1.3.1 Hypothesis  

Novel human and mouse datasets will uncover primary and metastatic driver genes acting upon 

various stages of sonic hedgehog medulloblastoma progression. 

 

1.3.2 Study aims 

1. Profile and analyze a large set of primary Shh-MB RNAseq libraries, while leveraging 

complimentary datasets, to identify copy number aberrant, mutated, and fusion driver 

genes (CHAPTER 2) 

2. Use the SB Shh-MB mouse model to identify metastatic drivers under the influence of 

convergent evolution (CHAPTER 3) 

3. Identify genes responsible for Shh-MB primary tumor maintenance using a hybrid SB 

and PiggyBac transposition system (APPENDIX) 
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2.1.1 Abstract 

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group 

of cancers of the developing central nervous system. Unbiased sequencing of the transcriptome 

across a large cohort of 250 tumors reveals differences among molecular subtypes of the disease, 

demonstrating the previously unappreciated importance of non-coding RNA transcripts. We 

identify a number of novel genes with mutations (MYCN, GNAS, IKBKAP, and KDM6A), somatic 

copy number aberrations, and gene fusions. Furthermore, we show that many fusions arise 

secondary to rearrangement of the genome (PTCH1, NCOR1), while others through trans-splicing 

(RALGAPA2, and GNAS). Molecular convergence on a core of specific genes by nucleotide 

variants, copy number aberrations, and gene fusions highlights key roles of specific pathways in 

the pathogenesis of Sonic hedgehog medulloblastoma. 
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2.1.2 Introduction 

Medulloblastoma (MB) is the most common malignant pediatric brain tumor, and a major 

cause of morbidity and mortality in the pediatric population98. Current therapy consists of maximal 

safe resection, radiotherapy in patients over 36 months, and cytotoxic chemotherapy. MB is 

thought to comprise a group of four molecularly distinct diseases: Wnt, Sonic Hedgehog (Shh), 

Group 3, and Group 412. Shh-MB is clinically heterogeneous with infants, teenagers and adults 

affected. Shh-MB likely comprises four molecular subtypes, Shh-α (adolescents), Shh-β (babies 

with a poor prognosis), Shh-γ (babies with a good prognosis), and Shh-δ (adults)99. The vast 

difference in the host (babies versus adolescents versus adults) dictates different treatment 

approaches for different molecular subtypes. Prior delineation of Shh-MB subtypes used 

expression microarrays100, and/or DNA methylation arrays99, and the biology underlying the 

differences among the subtypes is poorly understood.  

To further understand the biology of Shh-MB and its molecular subtypes, we studied 250 

human Shh-MB using strand-specific RNA sequencing. This non-biased approach to the Shh-MB 

transcriptome allows us to understand the transcriptional basis and underlying biology of Shh-MB, 

and reveals a previously unsuspected role for many non-coding RNAs. It also identifies a number 

of novel fusion transcripts in Shh-MB, some of which are due to structural events in the genome, 

while others appear to arise secondary to trans-splicing events. This analysis of a large cohort of 

similar tumors highlights previously unsuspected examples of molecular convergence where the 

same gene or pathway is activated through diverse molecular mechanisms, emphasizing the 

importance of those drivers in Shh-MB. Genetic events in Shh-MB do not assort randomly across 

the cohort, but rather show very restricted patterns of mutual exclusivity, suggesting a specific 

biology, with implications for Shh-MB modeling, and perhaps for the design of synthetic lethal 
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approaches to therapy. This very large cohort allows unprecedented insights into the transcriptome 

of this disease. 

2.2 RESULTS 

2.2.1 Importance of the non-coding transcriptome in Shh-MB. 

Our Shh-MB strand-specific RNA-seq samples (n = 250) were additionally characterized 

with   whole genome sequencing (WGS) (n = 26), 450K methylation arrays (n = 196), Affymetrix 

HuGene 1.1 expression arrays (n = 173), and Affymetrix SNP 6.0 arrays (n = 130) (Figure 2.1a). 

Integrative analysis and unsupervised clustering of both RNA-seq and 450K methylation data 

allowed us to assign Shh-MB samples to their appropriate molecular subtype99. Subtype 

assignment based on RNA-seq and 450K methylation data overlaps highly with subtyping using 

Affymetrix expression and 450K methylation arrays (Figure 2.1b, c).  While protein coding genes 

make up only 35% of the transcriptome in GENCODE (v19), 95% of subtype-specific genes 

identified using expression arrays are protein coding genes (Figure 2.1d). However, Shh-MB 

subtype-specific transcripts identified with RNA-seq encompass many non-coding RNA species, 

including long non-coding RNAs, expressed pseudogenes, and microRNAs (Figure 2.1d). Indeed, 

the majority of the genes differentially expressed between subtypes using RNA-seq data are non-

coding transcripts, which are not evaluated by expression arrays (Figure 2.1e). While many of 

these non-protein coding genes are poorly annotated, pathways analysis reveals divergent 

biological mechanisms among Shh-MB subtypes (Figure 2.1f). We conclude that non-protein 

coding genes likely play a hitherto unexpected and important role in the biology of Shh-MB. 
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Figure 2.1 Importance of the non-coding transcriptome in Shh-MB 
(a) Overview of Shh-MB RNA-seq samples and overlapping data sources. (b) Heatmap of sample-to-sample fused network by 

cluster (k = 4, n = 250). Sample similarity is represented by red (less similar) to yellow (more similar) coloring inside the heatmap. 

(c) Subtype clusters obtained by SNF (k = 4) using Affymetrix + 450K methylation and RNA-seq + 450K methylation (n = 196). 

Relationships between clustering methods are indicated by gray bars between columns. (d) Biotype distribution amongst all genes 

(top) as compared to genes that differentiate subtypes (significant NMI from SNF RNA-seq + 450K methylation), in both RNA-seq 

and microarray datasets (middle) or restricted to only the RNA-seq dataset (bottom). (e) Differentially expressed genes per subtype 

(RNA-seq). Genes found only with RNA-seq data are indicated. (f) Enrichment map of biological processes and pathways in Shh-

MB subtypes. Each node represents a pathway or process and connecting lines represent common genes between them. Nodes with 

many shared genes are grouped together and labeled with a biological theme. The color of the nodes refers to the subtype(s) in 

which the process is enriched. The size of the node is proportional to the number of genes in the process. 
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2.2.2 Identification of known and novel indels and single nucleotide variants 

We identified the incidence and patterns of mutations in known Shh-MB driver genes (i.e., 

PTCH1, SUFU, DDX3X, TP53) in a subtype-specific manner. Several Shh-MB drivers previously 

identified as amplified, (i.e., GLI2, MYCN, and PPM1D) also harbor novel damaging mutations in 

a subset of patients (Figure 2.2; Figure 2.3a−h). As we did not have germline gDNA for all patients, 

a subset of these mutations could be germline mutations. Many GLI2 single nucleotide variants 

(SNVs) are found within the activation domain (p.P1028L, p.H1073Y, p.Q1323H, p.A1514V)101 

(Figure 2.3a) and can disrupt PKA phosphorylation sites (p.A896D)102. Other SNVs can disrupt 

binding to SUFU (p.G274R)103. GLI2 SNVs are largely exclusive of GLI2 amplification or fusions 

(Figure 2.3b). 

We also detect a cluster of SNVs in MYCN within the phospho-degron containing MBI 

domain (p.T43I, p.P44L, p.T58K, p.T58M, p.P59L) (Figure 2.3c, d). MYCN Amplifications and 

SNVs are mutually exclusive (Figure 2.3e). Phosphorylation of MYCN at S62 primes for a second 

phosphorylation at T58 by glycogen synthase kinase-3 (GSK3). Subsequent dephosphorylation at 

S62 leads to recruitment of the FBXW7 E3 ubiquitin ligase complex to a phosphodegron motif 

that includes amino acids both N-terminal and C-terminal to pT5898, and the subsequent 

ubiquitination of MYCN104,105. Mutations in this region of MYCN disrupt FBXW7 binding and/or 

ubiquitination, and are predicted to stabilize MYCN106 (Figure 2.3d). Remarkably, we also identify 

missense mutations of FBXW7 within tryptophan-aspartic acid motif (WD40)107–110 that binds 

MYCN, in >10% of Shh-MB, which are mutually exclusive of MYCN amplification or SNVs. 

Therefore, 17% of Shh-MB patients have a genetic event that directly target the abundance and/or 

stability of MYCN (Figure 2.3e, f). 
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PPM1D, a negative regulator of the p53 DNA damage response pathway111 undergoes 

nonsense and frameshift mutations at its C-terminus (Figure 2.3g, h), all of which are predicted to 

leave its phosphatase activity intact while significantly increasing protein stability112–114. We also 

identified several novel recurrent mutations in GNAS, IKBKAP, and KDM6A (Figure 2.2). GNAS, 

encoding a heterotrimeric Gs protein α subunit (Gαs), is mutated (4% Shh-MB) between the 

GTPase and helical domains which is predicted to reduce GTP binding (Figure 2.3i). GNAS 

activates adenylyl cyclase which increases intracellular cAMP, there-by activating protein kinase 

(PKA), a negative regulator of Shh signalling115. Correspondingly, we also observe mutations 

mutually exclusive of GNAS in PRKAR1A, a critical component of the PKA complex (Figure 2.3j). 

This is in line with the phenotype of Gnas knockout mice which develop Shh-MBs115. 

 

 

Figure 2.2 Mutation Landscape 
Oncoprint summary of mutations detected across Shh-MB subtypes (n = 196). Subtypes are denoted above. NA, not available. 
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Figure 2.3 Identification of known and novel indels and single nucleotide variants 
(a, b) Gene-level summary of (b) GLI2 events and (c) their overlaps. Mutations in (a) are shown as lollipop diagrams above the gene schematic and 

fusion events are shown below. The 5’/3’ orientation of the fusion transcript is indicated by the color orientation. In cases where GLI2 is the 3’ 

partner the fusion lollipop is red on the right. (c) Gene-level summary of MYCN events. (d) Structural model of MYCN highlighting positions 

affected by hotspot mutations (blue) near the FBWX7 protein binding region (purple), and phospho-degron positions (red).(e) Overlap of MYCN 

amplification and SNV events. (f) Mutual exclusivity of MYCN gain-of-function (GOF) and FBXW7 loss-of-function (LOF) events. P-value 

calculated using the DISCOVER package. GOF/LOF events include both high-level CNA and mutation events. (g, h) Gene-level summary of (h) 

PPM1D events and (i) their overlaps. (i) Gene-level summary of GNAS events. (j) Mutual exclusivity of GNAS and PRKAR1A LOF events. LOF 

events include mutations and high-level deletions.  
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2.2.3 Somatic copy number aberrations in Shh-MB 

Regions of recurrent genomic gain and loss identify both known Shh-MB driver genes (i.e., 

MYCN, GLI2, PPM1D, PTEN)31, as well as some novel putative drivers (i.e., PRMT2, HECTD1, 

SOX11, and LHX1) (Figure 2.4a). Several recurrent somatic copy number aberrations (CNAs) that 

do not contain any genes when studied by expression arrays, do contain transcripts when studied 

by RNA-sequencing (Figure 2.4b). Regions of focal amplification are much more likely to show 

concomitant changes in gene transcription as compared to larger, broad copy number changes 

(Figure 2.4c). A number of putative Shh-MB driver genes encompassed by focal gains or deletions 

demonstrate copy number driven expression, further supporting their role as drivers (Figure 2.4d). 

Notably, only 15% (378/2,536) of genes identified within GISTIC regions show copy number 

driven expression (Figure 2.4e, Figure A1a−c). In many cases, the copy number responsive genes 

are poorly annotated non-coding RNAs that might first be overlooked (Figure 2.4e−h, Figure 

A1d−f). We also observe significant deletions at 9q34.11 encompassing the copy number 

responsive gene GPR107 (Figure 2.4f). This region is usually lost in the context of chromosome 

9q loss along with PTCH1 and IKBKAP (Figure A1g, h). A substantial minority (24%) of Shh-

MB are aneuploid; their transcriptome differs from diploid tumors by over-expression of genes 

involved in RNA processing and translation (Figure A2a−d). We conclude that regions of focal 

CNAs in the Shh-MB genome contain both copy number responsive and non-responsive genes, 

that many events focus on poorly characterized non-coding transcripts, and that non-copy number 

responsive genes within CNAs are likely a poor choice for the development of targeted therapy. 
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Figure 2.4 Somatic copy number aberrations in Shh-MB 
(a) GISTIC significant amplifications (red) and deletions (blue) observed in Shh-MB (n = 126). (b) Log2 fold increase of known annotated gene 

in GISTIC regions using RNA-seq compared to expression arrays. GISTIC regions with genes only found in the RNAseq dataset have points on 

the outermost circle. (c) Normalized expression density across broad and focal CNAs. (d) Expression difference between copy number neutral 

and aberrant states in GISTIC region copy number responsive genes. Numbers in square brackets denote the number of patients detected with the 

CNA. (e) GISTIC copy number responsive gene types. (f−h) Expression difference between copy number neutral and aberrant states in (f) 

9q34.11, (g) 8q22.1, and (h) 10q23.31. Asterisks annotates copy number responsive genes (Kruskal-Wallis adjusted p-value < 0.05). The SNP 

6.0 copy number segments are shown to the left of each graph. Expression of each gene was normalized by the expression median of the neutral 

copy number state. 
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2.2.4 Identification of Shh-MB fusion genes 

We identified known and novel fusion transcripts in the Shh-MB transcriptome using three 

distinct assembly and alignment-based callers (STAR-fusion, InFusion, Trans-Abyss)116–118. We 

filtered any readthrough transcripts, or fusion contigs that were also observed in libraries of non-

cancerous brain tissue (Figure A3; Figure A4). A subset of Shh-MB patients (12/126, 10%) harbor 

a high number (top 25th percentile) of both fusions and copy number events, and are significantly 

associated with both aneuploidy (10/12; p = 7.4 × 10-7, two-sided Fisher’s exact test) and TP53 

mutations (6/12; p = 1.2 × 10-4, two-sided Fisher’s exact test) (Figure A5a). Only a subset of fusion 

transcripts demonstrate substantial evidence of an underlying structural variant (SV) in the genome 

due to the presence of breakpoints in matching WGS or SNP 6.0 data and/or the identification of 

multiple splice variants of the same fusion transcript. The amount of SV supported fusions per 

patient was significantly different among subtypes (p= 4.7x10-8; Kruskal-Wallis rank sum test), 

with Shh-α showing the highest number of fusions per tumor. 

A large number of SV supported fusions coincide with focal amplifications of GLI2 

(2q14.2), MYCN (2p24.3), CCND2 (12p13.32), and PPM1D (17q23.2) (Figure 2.5a,b). Most 

recurrently, we observe GLI2 fusion transcripts (11/250 Shh-MB) fused in the 5’ end of the mRNA 

which houses the repressor domain of the encoded protein, suggesting that the fusions could lead 

to an overactive protein (Figure 2.3a). We additionally observe recurrent fusion transcripts at 

nearby genomic loci, such as EPB41L5, NBAS, BCAS3, and GLIS3 which are likely a result of 

chromothripsis, and/or the formation of extrachromosomal double minutes (Figure 2.5c-f)20,119. It 

is unclear the extent to which amplification versus the formation of a fusion transcript contributes 

to clonal selection (Figure A5b−g), nor is it obvious whether the fusion transcripts in other nearby 
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genes are drivers or passengers. Conversely, we now identify novel fusions of ZBTB20 (14/250 

patients), which are not usually found in context of amplification (Figure 2.6a, b).  

We also identify novel ‘fusion transcripts’ of known Shh-MB tumor suppressor genes such 

as PTCH1 and SUFU, (Figure 2.6c−h), which are accompanied by decreased expression of the 

gene immediately following the ‘breakpoint’. These are likely markers of chromosomal events 

that result in loss of gene function and are largely mutually exclusive of tumors with mutations or 

large chromosomal deletions, supporting their functional role (Figure 2.6g, h). NCOR1, a 

transcriptional regulator of neural stem cell differentiation120,121 harbors similar loss-of-function 

(LOF) fusion transcripts and damaging mutations (13/250) (Figure 2.6i, j). We conclude that >20% 

of Shh-MB patients exhibit fusion transcripts with structural support for an event in the genome.  

2.2.5 Promiscuous recurrent chimeric transcripts in Shh-MB 

While some chimeric fusion transcripts exhibit strong evidence for a genomic 

rearrangement (i.e., GLI2, PTCH1), others (i.e., RALGAPA2, GNAS, NOC4L, CHMP1A) showed 

no evidence of a genomic DNA rearrangement (Figure A4). However, these latter fusions 

transcripts are likely bona fide, as they can be validated by RT-PCR and Sanger sequencing (Figure 

2.7a, b; Figure A6a, b). Both RALGAPA2 and GNAS were almost always the 3’ partner of the 

fusion, and have a single exonic breakpoint position (Figure 2.7a, Figure A6a). After closer 

examination of the fusion junction, it became evident that most patients harbored chimeric reads 

at the fusion junction in RALGAPA2 (200/250 Shh-MB) and GNAS (245/250 Shh-MB), most of 

which were missed by the fusion callers. Curiously, both genes are transcriptionally fused with a 

large number of different partner genes (Figure 2.7a−d, Figure A6a−d). Within a given Shh-MB 

tumor, several different 5’ fusion partner genes can be identified (range = [0−34], median = 4).  
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Figure 2.5 Identification of Shh-MB fusion genes 
(a) Network of gene fusions in focally amplified regions. Node color signifies the most common orientation of the fusion gene, 5’ (blue), 3’ 

(red), or both (gray). The arrow and base color show the proportion of chimeric reads compared to wildtype supporting the fusion. The arrow 

line color shows the difference in expression of the 3’ fusion partner compared to patients without the detected fusion. (b) Oncoprint of 

fusions depicted in focally amplified regions illustrated in (a). (c−f) Gene-level summary of (c) EPB41L5, (d) NBAS, (e) BCAS3, and (f) 

GLIS3 events. Refer to Fig. 2b for schema description. 
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Figure 2.6 Novel recurrent fusions in Shh-MB 
(a) Oncoprint of fusions detected in focally amplified regions and known Shh-MB tumor suppressors. (b) Gene-level summary of 

ZBTB20 events. Mutations are shown as lollipop diagrams above the gene schematic and fusion events are shown below. The 5’/3’ 

orientation of the fusion transcript is indicated by the color orientation. In cases where ZBTB20 is the 3’ partner the fusion lollipop is 

red on the right. (c) Gene-level summary of PTCH1 events.  (d) Read depth diagrams of representative PTCH1 fusion events.  (e) Gene-

level summary SUFU events. (f) Read depth diagrams of representative SUFU fusion events.  (g) Overlap of PTCH1 fusion, 

amplification and mutation events. (h) Overlap of SUFU fusion, amplification and mutation events. (i) Gene-level summary of NCOR1 

events. (j) Read depth diagrams of representative NCOR1 fusion events.  
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The vast majority of chimeric transcripts in RALGAPA2 have their breakpoint in exon 37, 

and indeed most Shh-MB tumors exhibit some chimeric reads at this locus, fused to a large number 

of different 5’ partner genes (Figure 2.7c). A subset of the fusion partner genes is recurrent (i.e., 

CRINKL1, ZDHHC8, DYNC1L12, UBXN4), while others are limited to a single sample (Figure 

2.7c, d). While the majority of the chimeric reads map to exons, nearly all chimeric junctions 

exhibit a strong U12 splicing signal immediately preceding the 5’ partner breakpoint (Figure 2.7e).  

As chimeric transcripts can be artifacts of template switching by reverse transcriptase 

during cDNA preparation122, recurrent chimeric fusions were validated using the same (Figure 

2.7f), or a different (Figure 2.7i) reverse transcriptase, followed by PCR amplification and Sanger 

sequencing across a panel of Shh-MB tumors and controls. Chimeric RALGAPA2 fusions were 

found in a subset of Shh-MBs, but not in control Group 3-MB, Group 4-MB, or normal cerebella 

(Figure 2.7f). PacBio Iso-Seq long reads further validate full-length chimeric RALGAPA2 

transcripts with high confidence (Figure A7). These fusions are not purely a result of high 

expression since both RALGAPA2 and GNAS were not the most highly expressed genes in Shh-

MB  (Figure 2.7j). Similar chimeric transcripts were seen in GNAS (Figure A6a−d), with a strong 

U2 splicing signal (Figure A6e), and long read sequencing validations (Figure A7). GNAS fusions 

were not completely restricted to Shh-MB since they were also detected in Group 3 MB (PAX6-

GNAS) and normal cerebellar controls (FGFR1-GNAS). (Figure A6f). Shh-MBs have additional 

genes exhibiting chimeric transcripts, but without good evidence of a structural event in the 

genome, often with a variety of fusion partners (Figure A4). A recent PAN-CAN report suggests 

that up to 18% of fusion transcripts in cancer are generated through trans-splicing123. As chimeric 

fusion transcripts of RALGAPA2 and GNAS are seen in multiple patients, lack support for a 



 

36 

 

structural event in the genome, are fused to numerous partner genes (even within a single tumor), 

and have a splicing signal, we hypothesize that these chimeric transcripts have arisen through 

trans-splicing. We conclude that these chimeric Shh-MB transcripts are bona fide, although their 

biological importance, let alone their role as Shh-MB drivers will require additional functional 

validation, likely in vivo.   

 

Figure 2.7  Promiscuous recurrent RALGAPA2 chimeric transcript breakpoints  
(a, b) Gene-level summary of (a) RALGAPA2 fusions detected by fusion-callers, and (b) their distribution across the genome. Refer to Fig. 2b 

for schema description. (c, d) Distribution of RALGAPA2 exon 37 chimeric junction spanning reads across the genome with (d) genes found 

in >10 samples indicated. Chimeric reads were extracted from STAR alignments. (e) Splice site consensus sequence of RALGAPA2 5’ chimeric 

fusion partner transcripts (n = 546). (f) PCR validation of RALGAPA2 fusion RNA transcripts in human Shh-MB samples with and without 

detected fusions (by RNA-seq) compared to Group 3-MB, Group 4-MB and normal cerebellar controls. Patients with any detected chimeric 

transcripts at exon 37 in RALGAPA2 (by RNA-seq) are indicated as RALGAPA2 fusion positive (+). (i) Validation of DYNC1L12-RALGAPA2 

using SuperScript III transcriptase (SSIII), and avian myeloblastosis virus reverse transcriptase (AMV). (j) FPKM Expression ranking of genes 

with recurrent chimeric transcripts in Shh-MB. 
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2.2.6 Landscape of oncogenic alterations across Shh-MB 

Transcriptional profiling of this large cohort of a single molecular tumor type permits 

identification of both known and novel Shh-MB driver genes, and their patterns of mutual 

exclusivity. Most Shh-MBs (86%) have an identifiable event activating the Sonic Hedgehog 

signaling pathway, including mutations of PTCH1 (42%), SMO (12%), SUFU (10%), or GLI2 (9%) 

(Figure 2.8). About 11% patients have previously unappreciated inactivating (i.e., SUFU or 

PTCH1), or activating (i.e., GLI2) fusion transcripts affecting Shh pathway genes. Pathways 

discovered using copy number aberrations, mutations, or fusion transcripts were numerous in Shh-

α and Shh-δ, but limited for Shh-β or Shh-γ due to their low number of mutational events (Figure 

A8). There is strong mutational convergence on genes important for Shh signaling, neuronal 

development, cell cycle progression, and modification of the epigenome (Figure 2.9).  

 

Figure 2.8 Landscape of oncogenic alterations across Shh-MB 
Oncoprint summaries of all fusion, mutation and copy number data converging on known and novel pathways (n = 196). Subtypes are denoted 

above. NA, not available. 
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 Of Shh-MBs without detected events that canonically lead to excess Shh signaling 

(PTCH1, SMO, SUFU, TP53, GLI2, 9q, 10q, and 17p loss) (45/250), the most recurrent mutational 

events involved DDX3X (n = 12), KMT2D (n = 6), PRKAR1A, GNAS, GSE1 and CREBBP (each 

n = 5) (Figure 2.8); all of which have been previously shown to interact with or potentiate Shh 

signaling115,124,125. 

 We used MethylMix126 to identify potential Shh-MB driver genes affected by promoter CpG 

hypo- or hypermethylation, for which there is a correlative change in gene expression (Figure A9). 

This approach identifies a number of known cancer genes (i.e., FOXL2, RUNX1T1), transcription 

factors (i.e., MEIS2), as well as LHX1 and PAX6 (which are also recurrently affected by mutations). 

 
Figure 2.9 Shh-MB oncogenic pathways 
Percentage of altered genes and pathways integrating mutation, high-level copy number and fusion data. Alteration frequencies 

are expressed as percentages of all cases per subtype (n = 196) in the boxes and total percentage across Shh-MB (n = 250) in 

parenthesis beside each gene name. Red indicates activating alterations while blue indicates inactivating alterations. TERT and 

U1-snRNA alternation percentages obtained from earlier published studies99,100. 
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Transcriptional silencing of PAX6 through promoter CpG methylation, versus somatic mutations 

of PAX6 appear to be largely mutually exclusive (p = 7.3 × 10-4, multinomial exact test), suggesting 

convergence on PAX6 loss of function (Figure A9c−h). We observe significant mutual exclusivity 

of genetic events affecting genes in the Shh signaling, PI3-Kinase, cell cycle and chromatin 

modifier pathways (i.e., MYCN;FBXW7, PTCH1;SUFU, SUFU;SMO). Chromosomal deletions of 

9q, 10q, and 17p are mutually exclusive with each other, as well as focal events affecting genes in 

the Shh signaling pathway. We conclude that Shh-MB mutational events exhibit marked patterns 

of mutual exclusivity which offer insights for modeling of Shh-MB, and suggest avenues for 

synthetic lethal approaches to therapy. 

2.3 DISCUSSION 

 Initial efforts to subdivide cancers through unsupervised clustering primarily used 

expression microarrays that focused on the protein coding elements of the genome. Through an 

unbiased approach using whole transcriptome sequencing, we now identify a large number of non-

coding genes as differentially expressed between the molecular subtypes of Shh-MB. This is 

complementary to our prior discoveries of the most common mutations in Shh-MB, mutations of 

the TERT promoter42 and mutations of the U1-snRNA100, both of which are non-coding. Assigning 

biological functions to either individual or groups of non-coding RNA transcripts is obviously 

more difficult than it is for protein coding genes, and thus the importance and specific biological 

role of most of these differentially expressed non-coding transcripts will need to be addressed in 

the future through additional functional experiments. 

Shh-MBs harbor few mutations, but frequently have more structural and copy number 

aberrations in their genomes31. For many of these CNAs, the specific resident genes driving clonal 



 

40 

 

selection were not previously apparent. Indeed, many of the minimally amplified/deleted intervals 

appeared to be devoid of transcripts when studied with microarrays. Our unbiased transcriptional 

approach identifies novel transcripts within almost all intervals, and further demonstrates that only 

a subset of genes within a given region of recurrent CNAs have copy number driven expression, 

and thus are possible drivers. Discerning the driver genes within regions of recurrent CNAs might 

allow for the design of rationally targeted therapies. 

Transcriptional profiling of such a large cohort of a single molecular type of cancer allows 

unprecedented understanding of the tumor’s genomic landscape, including the identification of 

novel genes affected by mutations (GNAS, MYCN, SETD1B, IKBKAP, and KDM6A), and fusion 

transcripts (ZBTB20 and NCOR1). We also report fusion transcripts in known Shh-MB driver 

genes, that are likely actually ‘tombstones’ of large genomic events leading to gene inactivation 

(i.e., PTCH1, and SUFU). Other drivers previously known to be amplified in Shh-MB are now 

identified in additional patients as activated through the creation of fusion transcripts (i.e., GLI2), 

and/or point mutations (i.e., MYCN and GLI2). These latter events in GLI2 and MYCN further 

support the driver role for these genes in Shh-MB, and are clinically important as their presence in 

a tumor will likely render them unresponsive to Sonic Hedgehog pathway inhibition using small 

molecules. The intriguing finding of highly recurrent fusion transcripts for which there is no 

support for a structural event in the genome (i.e., RALGAPA2, GNAS, NOC4L, CHMP1A) might 

arise through trans-splicing and requires further functional understanding of their role in Shh-MB 

biology. Diverse molecular events do appear to converge on a limited set of pathways in Shh-MB, 

with the different genes showing clear patterns of mutual exclusivity, perhaps telling us about the 

molecular events that initiate and sustain Shh-MB growth.  
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2.4 METHODS 

2.4.1 Patient consent 

Samples were obtained from the Medulloblastoma Advanced Genomics International 

Consortium (MAGIC), and from the International Cancer Genome Consortium (ICGC). All patient 

material was collected after receiving informed consent, under approval and oversight by their 

respective internal review boards. Control brain RNA was acquired from commercial suppliers 

(Brainchain, USA) and control RNA-seq libraries were obtained from the Genotype-Tissue 

Expression (GTEx) project (phs000424.v7.p2)127. 

2.4.2 Material processing 

Samples were obtained fresh from patients at time of diagnosis and stored at -80°C. Tissues 

were either manually homogenized using a mortar and pestle after freezing in liquid nitrogen or 

processed in an automated manner using a Precellys 24 tissue homogenizer (Bertin Technologies, 

France), following manufacturer’s instructions. DNA was extracted by SDS/Proteinase K 

digestion followed by 2−3 phenol extractions and ethanol precipitation. Total RNA was isolated 

using the Trizol method (Invitrogen, USA) using standard protocols. DNA and RNA were 

quantified using a NanoDrop 1000 instrument (Thermo Scientific, USA) and integrity assessed 

either by agarose gel electrophoresis (DNA) or Agilent 2100 Bioanalyzer (RNA; Agilent, USA) 

at The Centre for Applied Genomics (TCAG, Toronto, Canada).  

2.4.3 Messenger RNA library construction and sequencing 

Strand-specific transcriptome library construction and sequencing was performed as 

previously described128. Briefly, total RNA samples (2 µg) were arrayed into 96-well plates, and 

polyadenylated mRNA was purified with a MultiMACS mRNA isolation kit as per the 
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manufacturer’s instructions. First-strand cDNA was synthesized using a SuperScript cDNA 

Synthesis kit with random hexamer primers. Second strand cDNA was synthesized following the 

SuperScript cDNA Synthesis protocol by replacing the dTTP with dUTP in dNTP mix, allowing 

the second strand to be digested using UNG (Uracil-N-Glycosylase, Life Technologies, USA) in 

the post-adaptor ligation reaction, and thus achieving strand specificity. The cDNA was quantified 

and checked for quality before fragmentation. Plate-based libraries were prepared following the 

BC Cancer Agency’s Michael Smith Genome Sciences Centre (BCGSC) paired-end (PE) 

protocol128. The libraries, 2×100 PE lanes, were sequenced on the Illumina HiSeq 2000/2500 

platform using v3 chemistry and HiSeq Control Software version 2.0.10. 

2.4.4 RNA-seq alignment 

The hs37d5 reference genome FASTA (1000 Genomes Project Phase II) was appended to 

the C1_2 ERCC spike-in sequences used for C1 Fluidigm, as well as Caltech profile 3 spike-ins 

sequences by ENCODE. A STAR assembly was then built with this reference and GENCODE 

(v19) gene annotations using parameter `--sjdbOverhang 124`. RNA-seq library reads were then 

mapped with the built assembly using STAR (2.5.1b) and parameters ‘--outFilterMultimapNmax 

20 --alignSJoverhangMin 8 --alignMatesGapMax 200000 --alignIntronMax 200000 --

alignSJDBoverhangMin 10 --alignSJstitchMismatchNmax 5 -1 5 5 --outSAMmultNmax 20 --

twopassMode Basic’. 

2.4.5 Shh-MB subtype identification  

The Similarity Network Fusion (SNF) method129 was run on 196 primary tumor samples 

using both RNA-seq gene expression and DNA methylation data as previously described99 to 

determine Shh-MB subtypes. The full gene expression and methylation matrix was used since the 
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SNF method does not require any prior feature selection. The SNFtool R package (v2.2.0) was 

used with parameters ‘K = 40, alpha = 0.6, T = 50’ and then spectral clustering, implemented in 

the SNFtool package, was run on the SNF fused similarity matrix to obtain the groups 

corresponding to k = 2−12. The four clusters obtained at k = 4 corresponded to the four Shh-MB 

medulloblastoma subtypes, α (n = 50), β (n = 42), γ (n = 32) and δ (n = 72). 

2.4.6 Shh-MB subtype relevant genes (NMI) 

The Normalized Mutual Information (NMI) score (as part of the SNFtool package) was 

identified for each feature (i.e., each gene and methylation probe). For each feature, a patient 

network based on the feature alone was constructed and subsequently used in spectral clustering. 

This was then compared to the whole fused similarity matrix through computation of NMI scores 

as previously described129. All features were then ranked according to their NMI scores, 

representing their importance for the fused network (a score of 1 indicates that the network of 

patients based on the given feature leads to the same groups as the fused network, whereas 0 means 

no agreement). The top 10% of features (called subtype-relevant genes) were considered for 

subsequent analysis. 

2.4.7 Shh-MB subtype differentially expressed genes 

Differential expression analysis was performed using DESeq2 R Bioconductor package130 

comparing samples from one Shh-MB subtype to the samples from the remaining 3 Shh-MB 

subtypes, considering significant genes with an FDR adjusted p-value <0.05. 

2.4.8 RNA-seq mutation analysis  

RNA-seq mutation calls were performed using GATK (v3.8.0) as previously described100. 

Detected variants were filtered using a panel of normal controls (9 Brainchain and 42 GTEx RNA-
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seq libraries), multiallelic mutations, and if candidates had <5 variant reads. Annotation was 

performed using ANNOVAR software131.  

Mutations with a frequency greater than 0.01 in 1000 Genomes, dnSNP138, Exome 

Aggregation Consortium database, NHLBI-ESP project, Kaviar Genomic Variant Database, 

Haplotype Reference Consortium database, Greater Middle East Variome, Brazilian Genomic 

Variants database, and from an inhouse SNP database (356 sequenced whole genomes) were 

discarded. Suspected RNA editing events registered in the RADAR database132 were also 

discarded. Any deletions which were completely matched with an intron registered in the 

GENCODE (v19) database were also removed since splice junctions caused by canonical splicing 

were often miscalled as deletions. 

Reads were split into intron-exon segments, however since there remained unsplit-reads 

overlapping splice junctions, the splice site variant read numbers were re-calculated using a 

modified ‘realignment’ function of the GenomonMutationFilter package. The default algorithm 

remapped reads around detected mutations into reference genomic sequences with and without 

detected variants. Isoform sequences constructed from the GENCODE (v19) database were added 

as well as non-annotated isoforms detected using LeafCutter133 since Shh-MB often contain U1-

snRNA mutations which cause cryptic splicing. Variants on splice sites were calculated using a 

modified GenomonMutationFilter and any splice sites with < 5 variants were removed.  

Candidates on homopolymer sites were filtered out using the following criteria. (1) 

homopolymer sequence is ≥ 5 bps, (2) Insertions or deletions, (3) deleted or inserted bases were 

the same or consecutive base(s) with the homopolymer base. Any mutations only supported by 

soft-clipped reads were discarded. Additionally, SNPs were filtered if: (1) they were present in 
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germline SNP clusters which were defined as any regions ≥ 10 bps where SNPs were registered 

on all the positions in dbSNP150. (2) Any missense or synonymous mutations and non-frameshift 

indels registered in any of the SNP databases listed above and registered with less than 10 samples 

or, (3) they were not registered in COSMIC v87. Mutations were also classified as non-pathogenic 

and removed if: (1) they registered with less than 10 samples in COSMIC v87, (2) the SIFT score 

was ≥ 0.05, PolyPhen-2 HDIV ≤ 0.908, PolyPhen-2 HVAR ≤ 0.956, “polymorphism” or, (3) 

“polymorphism_automatic” by MutationTaster, and “predicted non-functional” by 

MutationAssessor.  

Lastly, EBCall134 was run using the same normal panel. Candidates with <10-3 p-value 

calculated by EBCall were discarded. EBCall uses the samtools mpileup function, so a subset of 

mutations detected by local-realignment can not be evaluated correctly. Therefore, any mutations 

which samtools mpileup could call with <5 variant reads, or less than a half of variants reads 

detected by GATK were not filtered out. Significantly mutated genes (q < 0.05) were identified 

using MutSigCV135 with its default setting. 

2.4.9 SNP 6.0 Processing 

Affymetrix Power Tools (v1.18.2) was used to process and normalize the probe intensities 

to generate LRR and BAF using the PennCNV-Affy pipeline136. The affygw6.hg19.pfb file was 

used to map the probes onto the hg19 genome. All other parameters were left on default. 

2.4.10  Copy number determination and ploidy estimation 

The resulting probe level LRR and BAF data were input into ASCAT (v2.4.3)137. GC wave 

correction was then performed, followed by germline genotype prediction. Lastly, the ASCAT 

algorithm was run to determine copy number values for each genomic region as well as the overall 
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ploidy and purity of the sample. Samples whose model fit was less than 80% failed their ASCAT 

processing stage. 

2.4.11  Copy number post processing 

Log ratios for each segment were calculated using the copy number of each segment as 

well as the average ploidy of the sample, according to the equation: log2((Copy Number)/Ploidy). 

Adjacent segments whose log ratios differed by <0.25 were then merged using their size weighted 

mean. 

2.4.12  Filtering common variants 

To derive filtered lists, the gold standard variants listed in DGV release 2016-05-15 for 

GRCh37 found in at least 1% of samples were used to remove any segments with a 50% reciprocal 

overlap with segments produced by ASCAT. Once removed, the remaining segments were merged 

using their size weighted means as before. Further filtering was also done using the list variants in 

the supporting variants list in the DGV release 2016-05-15 for GRCh37. Studies that had at least 

50 subjects as well as variants found in at least 1% of the study were used, and ASCAT segments 

which had a reciprocal overlap of 80% with these variants were removed. This was performed 

after removing variants from the Gold Standard list. The resulting segments were then merged 

using their size-weighted means. Copy number states were assigned to each segment based on 

their log ratio and their ploidy values. Segments were then grouped into either broad or focal 

segments depending on whether the segment spanned a length greater than 12Mb, or equal to and 

less than 12Mb. These broad and focal segments were then used to determine gene level states. 
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2.4.13  GISTIC analysis and increased genes in RNA-seq 

The filtered and size-weighted merged segments were then input into the GISTIC 2.0 

module on GenePattern138 and run with slight changes to the default parameters: `focal length 

cutoff=0.5, confidence level=0.9, q-value=0.25, remove X=false, run broad analysis=yes`. The 

amplified and deleted segments were then extracted from the filtered file and used to determine 

which genes fell within the region using bedtools (v2.27.1). Microarray annotations and RNA-seq 

annotations were used to determine the number of detectable genes captured by each method.  

2.4.14  Gene level determination of copy number state 

The copy number segments for each patient were then intersected with the list of 

GENCODE (v19) genes. The segment that overlapped the greatest amount of the gene was the 

copy number ratio/state assigned to that gene (e.g. if segment A overlapped with 25% of the gene, 

while segment B overlapped with 45% of the gene, the gene would be given the ratio/state of 

segment B. A majority of the gene does not have to be overlapped by a segment to assign it to that 

ratio/state – similar to “first past the post”). Further to this, for a gene to be gained or amplified, it 

must overlap at least 50% of the gene, whereas any loss or deletion that overlaps a gene would 

give that gene this status. 

2.4.15  Copy number responsive gene 

Gene expression was categorized based on either having an amplification, neutral, or with 

a loss. The Kruskal-Wallis test was performed on each gene to determine if the gene copy number 

state corresponded with a significant difference in expression. The significance values were 

adjusted for multiple testing using the Benjamini-Hochberg method, and genes whose adjusted p-

values < 0.05 were flagged as being copy number responsive. 
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2.4.16  Fusion calling 

Multiple fusion callers were used to maximize sensitivity. Star-Fusion: STAR RNA-seq 

read alignment outputs, bam and the ‘Chimeric.out.junction’ file were input into STAR-Fusion116 

(v0.8.0) using default parameters. STAR fusion results were then further filtered with 

FusionInspector (v0.8.0) using default settings. InFusion: Bowtie2 (v2.2.1)139 genome assembly 

was created using hs37d5 (appended to the C1_2 ERCC spike-in, as well as Caltech profile 3 

spike-ins sequences) and GENCODE (v19). Infusion118 (v0.7.3) was ran twice for each sample, 

firstly with parameters `--allow-intronic --allow-intergenic --allow-non-coding --allow-all-

biotypes` from which only gene-gene fusions were kept for further filtering. Infusion was run a 

second time with the addition of more stringent parameters ‘--min-split-reads 3 --min-span-pairs 

2 --min-fragments 4’ , from which only gene-intergenic or intergenic-intergenic fusions were kept. 

Afterward both Infusion lists were concatenated. Trans-Abyss: fusions were identified as 

previously described31 through de novo assembly of each library using Trans-ABySS117 and then 

further analyzed to determine fusion orientation. Predicted fusion contigs were split into two 

sequences by gene and aligned to the reference (hg19) using BLAT (v35). The predicted 

orientation was determined to be that which allowed fusion partner genes to be in a sense-sense 

orientation, similar to what is done in STAR-Fusion. Predicted orientations which were not 

compatible with both fusion partner genes being in a sense-sense orientation were flagged as low 

confidence orientations. 

2.4.17  Control sample fusion filtering  

A list of blacklisted fusion pairs and breakpoints were created from control GTEx and 

Brainchain RNA-seq libraries using a (1) fusion contig alignment, and (2) control sample fusion 

calling strategy. (1) From each detected event, fusion contigs were extracted (110bp from both the 
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5’ and 3’ partner side where possible) using the scripts supplied by the respective fusion caller. 

These contigs were then used as a reference for alignment of the normal brain RNA-seq libraries 

using bbmap (v37.33) with parameters `mappedonly semiperfectmode qin=33 boundstag=t saa=f 

g maxsites=1000000 minaveragequality=30 ambiguous=all`. A fusion was blacklisted if a high-

quality control sample read (bp quality average > 30) aligned perfectly with the fusion contig with 

at least a 20bp overhang past the fusion junction. If the same fusion gene-pair was found in >=2 

control samples, it was also subsequently blacklisted. (2) STAR, InFusion, and Trans-Abyss fusion 

callers were used on all fetal and adult control brain samples using the same parameters as the 

tumor libraries. Any fusion pairs detected in the fetal MAGIC control and at least 2 adult samples 

were blacklisted. Furthermore, all fusion breakpoints detected in any control samples callers were 

blacklisted.  

2.4.18  Fusion filtering 

Any fusions in the control sample breakpoint and gene pair blacklists were filtered out as 

well as fusions where both fusion breakpoints were called within the same gene (circular RNA 

artifacts). In an effort to minimize the number of readthrough fusions, fusion pairs within 50 kb 

and fusions with highly recurrent breakpoints (> 15 samples with the same event) were filtered out 

unless there were other fusion breakpoints detected in the same genes. Highly expressed genes 

often contained readthrough fusions so the ratio of ((fusion reads)/200bp)/(gene RPKM) was 

calculated and any fusions where either partner had a ratio of < 0.01 were removed. Fusions where 

the read proportion supporting the fusion junction was less than 0.05 for both partners were also 

removed. From this filtered list, an event was further characterized as a structural variant (SV) 

based fusion if it was validated by WGS or SNP 6.0 (see Fusion validation method), or if there 

were multiple fusion isoforms detected with both spanning reads and bridging reads > 0 and 
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spanning + bridging sum > 20 in at least one partner. For highly recurrent fusion genes, the 

unfiltered events were manually inspected and salvaged if there was a change in read depth at the 

fusion junction or WGS/SNP 6.0 support. Gviz (v1.18.2)140 was used to visualize the change in 

read depth associated with each fusion event. 

2.4.19  Fusion validation 

Sanger sequencing: Primary patient RNA was reversed transcribed into cDNA with 

SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific). Nested PCRs were performed 

with primers designed in the 5’ and 3’ partners of each fusion and Taq polymerase. PCR products 

were gel extracted using the GenepHlow Gel/PCR kit (Geneaid). Purified PCR products were 

cloned into DH5α cells by the TA cloning method (TOPO-TA Cloning, Thermo Fisher Scientific) 

and prepared for Sanger sequencing. 

WGS: There were different assigned validation states based on the location of the two 

partner genes relative to the location of WGS detected breakpoints: (1) fused exon is first or last 

exon and the breakpoint falls into the intergenic region between the gene and adjacent gene, (2) 

fused exon is the middle exon and the WGS breakpoint falls within an adjacent intron (3) 

breakpoint falls within a 100kbp window from the edge of the fused exon. Confidence levels were 

assigned as follows: High - Both partner genes meet conditions (1) or (2), Intermediate - One 

partner meets condition (1) or (2) and the other partner fulfilled (3), Low - Both partners meet 

condition (3). 

SNP 6.0: The position of RNA fusion breakpoints was compared to SNP 6.0 predicted 

breakpoints corresponding to a change in copy number. The SNP 6.0 breakpoints were padded 

with a 250 kbp window upstream and downstream, and then each RNA fusion breakpoint in a pair 
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was checked for support (i.e., support for each breakpoint of a fusion was done respectively) using 

bedtools (v2.27.1). Support of each fusion was reported as left sided (only the first breakpoint of 

the fusion was detected), right sided (only the second breakpoint of the fusion was detected), both 

(both breakpoints of the fusion were detected), or none. 

2.4.20  PacBio long read cDNA synthesis 

cDNA synthesis and library preparation were carried out as described previously141. In 

brief, cDNA was synthesized using SMART-Seq, as follows: Quality and concentration of RNA 

samples were measured using Agilent RNA ScreenTape (only RIN of >7 was used), after which 

9uL of RNA samples (ranging from 590 to 1288 ng) plus a negative control sample (9µL water) 

were cleaned by adding 18.2µL (2.2X) of room temperature RNAClean XP beads in 0.2mL PCR 

tubes. RNA samples and beads were pipette mixed and incubated at room temperature for 10 

minutes, then the RNA bound beads were pulled down on magnet for 5 minutes followed by two 

rounds of 250µL 80% ethanol washes. The beads were dried for 5 minutes and then 6µL of Pre-

RT mix [Water 2.2µL, RNAse inhibitor 0.1µL, PolyT Primer (12uM) 1.4µL, Triton-X100 (0.4% 

vol/vol) 1.18µL and dNTP Mix (10 mM each) 1.12µL] was added. RNA beads were re-suspended 

with a brief vortex and spun down followed by a pre-RT protocol on a thermocycler [72°C 3 min, 

4°C 10 min, 25°C 1 min, 4°C Hold]. For each 6µL of Pre-RT reaction, 8µL of RT mix [Water 

0.50µL, SS4 first-strand buffer (5×) 2.8µL, DTT (100 mM) 0.35µL, TSO (12 μM) 1.4µL, RNAse 

inhibitor 0.35µL, SS4 reverse transcriptase 0.70µL, Betaine (5M) 1.4µL, MgCl2 (100 mM) 

0.50µL] was added followed by RT on a thermocycler. For each 14 µL of the RT reaction, 5.6 µL 

of ExoSap-IT was added and mixed well with a brief vortex then spun down, followed by the 

ExoSap-IT protocol on the thermocycler [37°C 15 min, 85°C 15 min, 4°C Hold]. For each 19.6 

µL of the ExoSap-IT reaction, 30.4µL of PCR Mix [PCR-Grade Water 19.4µL, 10X Advantage 2 
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PCR Buffer (not SA, short amplicon) 5µL, 50X dNTP Mix (Advantage 2 PCR Kit) 2µL, PCR 

primer (12uM PCR primers) 2µL, 50X Advantage 2 Polymerase Mix (Advantage 2 PCR Kit) 2µL] 

was added and mixed well with a brief vortex then spun down, followed by 12 cycles of PCR. The 

fµll-length cDNA product was purified using 0.7x SPRI beads. 

2.4.21  PacBio long read library preparation and sequencing 

Between 373 ng and 912 ng of cDNA (average 660 ng) was used to generate PacBio 

libraries with a gDNA PacBio Library Preparation kit for cDNA and the manufacturer’s 2-kb-

template preparation-and-Sequencing protocol and sequenced using a PacBio Sequel2 instrument 

by performing diffusion sample loading and Sequel Sequencing Kit 2.1 v2 chemistry. Between 2-

3 SMRT cells were used per library. On average 1.1M raw subreads with 138K circular consensus 

reads were sequenced per sample. Long read RNA sequences generated were initially processed 

using Pacific Biosciences SMRT analysis (V3 smrtlink-release_5.1.0.26412) software. Consensus 

sequences and a secondary de novo transcriptome assembly were produced for each read using the 

dataset and pbsmrtpipe isoseq tools. SMRT analysis was also used to output all raw subreads from 

the raw data produced by the sequencer. Raw reads, consensus reads, and transcriptome assembly 

contigs were then used to validate known fusions or fusion partner genes. Fusions were found by 

mapping different partial or full-length RNA datasets to the transcriptome reference and filtering 

to include reads that map to one or more of the known fusion genes. With this strategy both fusion 

junctions and, in some cases, full length maps of each gene were acquired from long reads. This 

isoseq pipeline produced on average 6,415 low quality contigs and 399 high quality contigs per 

sample. 
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2.4.22  Exon chimeric read analysis 

Individual STAR aligned chimeric reads with breakpoints matching RALGAPA2 and 

GNAS recurrent breakpoint locations were combined. Chimeric reads were filtered to only include 

reads spanning the exon breakpoint junction and to exclude circular RNA transcripts within 

RALGAPA2 and GNAS. The remaining events were used to generate per-patient circos plots. 

Genomic sequences flanking the 5’ fusion partner  were used to calculate the splice consensus 

sequence using the R package ggseqlogo (v0.1)142.  

2.4.23  Whole-genome library construction 

Samples were sequenced on the Illumina HiSeq 2000/2500 platform at Canada’s Michael 

Smith Genome Science Centre in the BC Cancer Agency. Sequencing methods are as previously 

described128. 

2.4.24  WGS alignment 

Whole genome sequencing reads were aligned to the human reference genome “hs37d5” 

by 1000 Genomes Project Phase II using Burrows-Wheeler Aligner (BWA) - MEM,  (v0.7.8) with 

‘-T 0’ parameter. Duplicates were marked using biobambam (v0.0.148). 

2.4.25  WGS structural variant calling 

Somatic structural variant calling was performed using two softwares: Genomon-SV 

(v0.4.1)143 and DELLY2 (v0.7.5)144. Genomon-SV was run with its default setting. Detected 

candidates were filtered with ‘--min_tumor_allele_freq 0.02 --max_control_variant_read_pair 1 

--control_depth_thres 10 --inversion_size_thres 1000 --min_overhang_size 50 --

remove_simple_repeat’. DELLY2 was run using its default setting. The following filter was used 

for somatic structural calls: ‘-m 15 -a 0.1’ for deletion, ‘-m 400 -a 0.1’ for tandem duplication and 
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inversion, ‘-m 0 -a 0.1’ for translocation. DELLY2 results were filtered using 341 control whole 

genome sequence data using ‘filter’ function of DELLY2 using its default setting. Both results 

were merged and detected candidate mutations were reanalyzed using velvet de novo assembler145. 

Soft-clipped and one-anchor reads were extracted within 1,000 bp of detected breakpoints from 

tumor and matched control whole genome sequence. Then, contigs were generated using velvet 

with ‘-short’ option and hash length ‘11, 72, 10’ (from 11 to 72 with a step of 10). Reference 

sequences were prepared for remapping which contained reference sequences ±1,200 bp around 

both paired breakpoints and expected variant sequences with the somatic structural variant. 

Contigs were mapped to the references using blat version 35 with ‘-fine’ function. Only the 

candidates where contigs from tumor were mapped on the variant sequences and not found mapped 

in the control were used.  

2.4.26  MYCN protein structural model 

To predict protein structure, the weighted existing structural information of some MYCN 

and MYC regions from the RSCB PDB (5G1X, 6G6J, 1NKP, 2A93) were used in i-TASSER146,147. 

These models were subsequently visualized and modified in PyMOL (v2.3) and UCSF Chimera 

(v1.13.1). The prediction is imprecise, as the structure of the N-terminus of MYCN shows intrinsic 

disorder.  

2.4.27  Mutual and co-occurrence analysis 

The DISCOVER148 R package (v1.1.0) was used to calculate mutual exclusivity and co-

occurrence on high-level copy number, mutation, SV fusion events, as well as arm level 

gains/losses using default parameters on all patients and on a per-subtype basis. Only known 
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drivers, significantly mutated, GISTIC copy number responsive genes, and arm level events were 

included and a corrected p-value < 0.01 was used for downstream analysis.  

2.4.28  Pathway analysis 

Subtype driving genes: Enriched pathways were identified using the gProfileR R 

package149. Four gene lists corresponding to the four Shh-MB subgroups were generated by 

selecting the top 10% of genes having the highest NMI scores and a positive Z-score. Each gene 

list was ranked by Z-score in decreasing order and analyzed by the gProfileR function with the 

ordered query setting. Pathways from the Reactome pathway database and biological processes 

(BP) from Gene Ontology that have between 5 and 1000 associated genes with at least 3 associated 

genes belonging to gene lists were included in the enrichment analysis. Electronically annotated 

(IEA) BPs were excluded from the enrichment analysis. P-values of enriched pathways and BPs 

were corrected using the default multiple-hypotheses testing method (g:SCS) of gProfileR; those 

with an adjusted p-value < 0.05 were retained.  

Ploidy: Gene set enrichment analysis was performed using GSEA software. Genes were 

ranked using the sign of log2FC * -log10(p-value) and analyzed using the pre-ranked option. Gene 

sets from MSigDB, pathways from Reactome, and biological processes from Gene Ontology were 

included in the analysis. Gene sets larger than 200 were excluded. Significantly enriched pathways 

were corrected with FDR and only genes with q-value <0.01 were retained. 

Integrative: Genes were ranked by the number of patients with a mutation, focal copy 

number events or SV fusion event in a given gene. Pathway analysis was conducted using 

gProfileR with the following parameters ‘ordered_query = TRUE, exclude_iea = TRUE, 

min_set_size = 5, max_set_size = 1000, min_isect_size = 2, max_p_value = 0.05 and, 
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correction_method = "analytical”’. The GMT file was retrieved from gProfileR on March 12, 

2019 and included gene sets from Gene Ontology and Reactome.  

2.4.29  Cytoscape network visualization 

Pathway Enrichment: Visualization of enriched pathways and biological processes (BPs) 

was generated with the Enrichment Map plugin of Cytoscape150,151. Enriched pathways and BPs 

are organized into a network, in which similar pathways or BPs cluster together. Nodes represent 

an enriched pathway or BP; node size is proportional to the number of genes associated to the 

node; and node colors correspond to the Shh-MB subgroup in which they are enriched. Nodes that 

are connected by an edge have shared genes in common. Edge thickness is proportional to the 

number of shared genes among the connected nodes and edges having a Jaccard and Overlap 

coefficient combined greater than 0.66 were shown. 

Fusion Network: A curated list of Tier 1 exon-exon and salvaged SV fusions was input into 

Cytoscape. This network was further filtered to include fusions hubs with a minimum of 5 events 

as well as their first-degree partners. The network was then manually curated to focus on fusions 

with SV and/or validation support.  

2.4.30  Methylation array arm level copy number analysis 

The copy number was inferenced using methylation arrays (Illumina Infinium 

HumanMethylation450 BeadChips). Copy number segmentation was performed from genome-

wide methylation arrays using the conumee package (v0.99.4) in the R statistical environment 

(v3.2.3) as previously described152,153. Arm level gains or losses were identified using GISTIC and 

manually curated by visual inspection of whole genome profiles. 
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2.4.31  Identification of promoter methylation responsive genes 

The MethylMix R Bioconductor package126 was used to identify potential cancer driver 

genes affected by hypo- or hypermethylation changes (i.e. looking for anti-correlation between 

methylation level and gene expression levels across samples). Probes were annotated154 and 

filtered to only include regions within 1500 bp of transcription start sites. Promoter probes that 

were correlated were grouped as probe set, then each promoter probe or probe set were considered 

per gene. Methylation clusters based on mixture model were then identified for each probe or probe 

set. These were further filtered based on the following criteria: 1) remove promoter probe-gene 

pairs if one of the methylation clusters has less than 5% of the samples and for pairs with two 

methylation clusters, 2) pairs were filtered out if the difference of the mean methylation value 

between the 2 groups was < 0.25 and 3) if the difference of the mean expression value between 

the two groups was < 0.75. The pairs were further ranked according to a score defined as diff mean 

* diff exp (difference computed between the 2 extreme clusters). Z-score expression values were 

used to compute the mean expression differences mentioned above. 

2.4.32  Illustrations 

Oncoprint landscape figures were generated in R (v3.5.1) using the ComplexHeatmap 

(v2.0.0) library155. Gene mutation, fusion summary lollipop type figures were generated using 

ProteinPaint156. Circos plots were generated in CIRCOS157 (v0.69). 
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Convergent Evolution of Medulloblastoma Metastatic Tumours  
Patryk Skowron*, Livia Garzia, Raul A. Suarez, A. Sorana Morrissy, Evan Y. Wang, Betty Luu, 

Michael, D. Taylor 

 
Medulloblastoma initiates within the cerebellum and spreads throughout the spine and 

frontal lobe. Lempatminagial dissemination is present in about 30% of patients at presentation and 

is a marker of poor prognosis. Metastatic tumors are likely seeded early in the course of disease 

from rare subclones of the primary tumor. In both humans and mice, accumulation of somatic 

mutations with subsequent selection leads to divergent evolution between the primary and 

metastatic sites (Figure 3.1)53. As a result, targeted therapy directed against the primary tumor is 

unlikely to be very effective against the metastatic compartment. Little is known about genes that 

drive dissemination and the context in which they operate since matching patient primary and 

metastatic samples are virtually nonexistent. Indeed, biopsy of the leptomeninges are rare. High 

throughput forward genetic screens utilizing transposons have tremendous potential to address this 

issue in medulloblastoma.  

The sleeping beauty medulloblastoma mouse model is a highly penetrant and metastatic 

model of Shh-MB53. Presenting with aggressive dissemination of the spine and brain, it allows for 

the independent sampling and analysis of multiple metastatic tumors in every mouse. A convergent 

evolution model was applied on independent metastatic samples to discover high confidence 

drivers in Shh-MB. The metastatic landscape was highly diverse with a large number of 

independent drivers across metastasis, even in the same animal.  Functional validation emphasized 

the importance of timing in Crebbp genetic alterations and the essential role of Lgals3 in spinal 

metastasis.   
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Figure 3.1 Clonal evolution of metastatic tumors 
Overview of clonal evolution in primary metastatic tumors. Different colors depict different clones. 
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3.1 RESULTS 

3.1.1 Driver discovery across multiple metastasis 

A Ptch1 heterozygous knockout medulloblastoma model was crossed to mice with 

Sleeping Beauty (SB) transposition machinery to increase penetrance and metastatic propensity 

(Figure 3.2a, b). In this model, SB transposase was expressed from a Math1 gene promoter to 

localize transposition to cerebellar precursor cells53. Multiple brain and spinal locations were 

biopsied and sequenced using the shear-SPINK protocol (see methods 3.3.3) (Figure 3.2c, d). The 

majority of biopsied mice had detectable metastatic insertions (108/130 mice), producing a total 

of 549 metastatic samples; the largest cohort of SB metastasis to date. 

 
Figure 3.2 Sleeping Beauty medulloblastoma mouse model 

(a) Survival curve of J2Q;T2onc2;PTCH1 mice. (b) Representative H&E histology of frontal and spinal 

J2Q;T2onc2;PTCH1 mouse sections at endpoint. Metastatic locations are indicated with red arrows. (c) Location 

of metastatic and primary biopsy sites in the J2Q;T2onc2;PTCH1 mice at endpoint. (d) Shear-SPLINK library 

preparation quality control of  IRR and IRL SB transposon orientations with a water negative control.  
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During metastatic dissemination, rare primary tumor subclones enter the circulation and/or 

the cerebrospinal fluid158. Through the process of convergent evolution, genes essential to 

metastasis are selected for independently across multiple metastatic locations159. A convergent 

event is defined as a different structural and/or mutation event in the same gene in different 

metastatic tumors within the same patient. In our SB model, a convergent event instead describes 

different SB insertions targeting the same gene in independent metastasis (Figure 3.3a). Not every 

convergent event is necessarily under the influence of a strong selective pressure, since 

transposition is a stochastic process these events can happen by chance alone. Therefore, for each 

gene it is necessary to develop a model to find the expected number of convergent events in a 

cohort of mice (assuming no evolutionary selection) and compare that to the observed number of 

events. The methods which are currently used for finding significant genes in SB mice such as 

Gaussin Kernal Convolution92, Monte Carlo Simulation93, and Gene centric common insertion site 

(gCIS)94 analysis treat every tumor as an independent sample and are not ideally suited for mice 

with multiple metastatic sites without modification because they can share early clonal insertions94.   

For each mouse the probability of a random convergent event was modelled using a 

binomial distribution. Then the expected number of convergent events in a population were 

compared to the observed number with a Poisson binomial distribution to identify genes 

undergoing convergent selective pressure (Figure 3.3b). In parallel, the gCIS method was modified 

by merging all metastatic samples together before running the analysis thus ensuring that early 

clonal events are not counted more then once per mouse (Figure 3.3c).  This was  performed at the 

expense of power due to the smaller cohort size. Lastly, gCIS genes were further examined to find 

convergent insertion events. (See method 3.3.6 and 3.3.7 for model details). 
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Figure 3.3 Sleeping beauty metastasis analysis statistical models 
(a) Schematic of convergent evolution between two metastatic tumors in the same mouse. A clonal insertion in Gene A is present 

in both tumors but the location is different suggesting a different parental clone. In both case, alteration of the gene leads to an 

altered protein product and phenotypic change. (b) Overview of the convergent evolution model pipeline (c) Overview of the 

modified gCIS analysis for metastatic driver discovery. See methods section 3.3.7 for model details. 

3.1.2 Landscape of metastatic alterations in Shh-MB 

A large number of metastatic driver genes were discovered by both the convergent and 

modified gCIS methods (n = 431), some of which were also found in the primary compartment (n 

= 36) (Figure 3.4a). There was a high degree of overlap in gene lists between the two metastatic 

driver gene discovery methods (Figure 3.4b). Across samples, the most recurrent metastatic drivers 

were Dlg2, Cntnap2, and Ppp1r12a (Figure 3.4c). The landscape of metastatic alterations is highly 

complex with few mutually exclusive driver events (Figure 3.4c). Pathway analysis of significant 

drivers reveals a convergence of genes in cell adhesion and migration pathways, as well as the 

unsuspected importance of EGFR and ILK signalling (Figure A10). Each mouse presents with a 

large number of different metastatic driver genes, most of which are not shared across 

compartments (Figure 3.5). Most mice have multiple significant convergent genes. In conclusion, 

Shh-MB has a large number of metastatic drivers and presents with a heterogenous driver profile 

between samples in the same mouse. Convergent genes would make better targets for therapy since 

they are by definition found in multiple metastatic samples. 
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Figure 3.4 Metastatic and primary driver gene overlaps 
(a) Overlap of all metastatic and primary drivers discovered in the Sleeping Beauty mouse cohort (n = 108). (b) Overlap of genes 

detected by gCIS and convergence metastatic driver models. (c)  Oncoprint summary of drivers found in >= 10 metastatic samples 

combining the gCIS and convergence methods.  Clonal insertions found to be under convergent selection with other metastatic tumors 

in the same mouse are indicated in red. 
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3.1.3 Functional validation of Crebbp loss-of-function insertions 

One of the most recurrent genes that came up in convergence and gCIS screens, and also 

found to be a driver in primary tumors, was Crebbp (17% of mice). CREBBP is ubiquitously 

expressed and involved in the transcriptional coactivation of a number of different transcription 

factors through modification of lysine residues on both histone and nonhistone nuclear proteins160. 

It’s loss has also been shown to have a prominent role in lymphoma initiation as well as adult Shh-

MB tumor growth125. The insertion profile in Crebbp suggests that this gene is also a Shh-MB 

metastasis tumor suppressor (Figure 3.6a). Furthermore, IHC for Crebbp in primary and metastatic 

 
Figure 3.5 Mouse metastatic driver insertion profiles 
Driver genes found using convergence and gCIS methods in multiple representative mice. Genes under the influence of 

convergent selective pressure are indicated in red. Each column represents a different metastatic sample in the same mouse. FR 

- right frontal lobe, FL - left frontal lobe, PL - left parietal lobe, PR - right parietal lobe, S1  - cervical spine, S2 - thoracic spine. 
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tissue demonstrate more positive nuclei in primary as compared to metastatic lesions (Figure 3.6b). 

NCOA3 is a nuclear receptor which can interact with nuclear hormone receptors to enhance their 

transcriptional activator functions. It has histone acetyltransferase activity and can also recruit 

CREBBP as part of a multisubunit coactivation complex161. Ncoa3 insertions are mostly clustered 

in the first intron positioning the transposon promoter in the same direction as gene expression 

(Figure 3.6c). This is consistent with previous studies where NCOA3 was found to be amplified in 

breast as well as ovarian cancers162.  Interestingly, Crebbp and Ncoa3 insertions were often found 

in the same mouse, frequently co-occurring within the same metastatic sample (Figure 3.6d). It is 

therefore hypothesized that the Crebbp/Ncoa3 complex can regulate aspects of the metastatic 

phenotype and the knockdown of Crebbp can increase metastatic burden in Shh-MB.  

Next, a Crebbp(flox) mouse was bred with a Ptch1(flox), a Math1-GFP reporter, and Math1-

CRE mouse lines (Figure 3.6e). Crebbp and Ptch1 are knocked out early in cerebellar development 

due to expression of Math1-CRE. These mice go on to develop metastatic tumors. Homozygous 

loss of Crebbp at this stage did not change the morphology of the cerebellum (Figure 3.6f). The 

Ptch1(flox) status had the biggest effect on survival (Figure 3.6g). Ptch1 alteration seemed to 

synergize with Crebbp as suggested by previous literature163. GFP fluorescent metastases were 

clearly observable under the florescence stereoscope at end-point (Figure 3.6h). Unfortunately, 

there was no significant decrease in metastatic area or count when comparing Crebbp(flox) wildtype 

to homozygous or heterozygous knockout mice (Figure 3.6h, i). Although, there does seem to be 

a trend towards a lower metastatic propensity in Crebbp knockouts, contrary to our hypothesis. It 

is known that the timing of Crebbp loss is important for Shh-MB primary tumor formation125, and 

this can play an important role in metastatic dissemination.  
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Figure 3.6 Functional validation of Crebbp loss-of-function insertions 
(a) Crebbp SB insertion profile. Each connected horizontal line represents a different metastatic sample in the indicated mouse. Red arrows 

are truncating insertions whereas greens arrows indicate overexpression insertions. (b) IHC staining of Crebbp. (c) Ncoa3 insertion profile. 

(d) Sample overlap of Crebbp and Ncoa3 loss of function (LOF) and gain-of-function (GOF) insertions. (e) Schematic of the metastatic 

Shh-MB Crebbp mouse model breeding strategy. (f) Brain morphology of Crebbp knockout mice. (g) Survival of Ptch1 and Crebbp 

knockout mice. (h) Florescence imaging of a Crebbp knockout mouse. (i) Metastatic area and (j) metastatic count comparisons between 

Ptch1 and Crebbp genotype combinations. 
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3.1.4 Functional validation of Lgals3 gain-of-function insertions 

Another recurrent metastatic driver gene was Lgals3, which contains a carbohydrate-

recognition domain allowing it to specifically bind β-galactosides. This protein can shuttle between 

the cytoplasm and nucleus and is secreted onto the cell surface.  It plays many roles including 

inhibition of apoptosis, spliceosome assembly, and cell surface molecule associated signalling. In 

the context of cancer, overexpression of LGALS3 has been shown to promote angiogenesis and to 

enhance tumor cell adhesion to the extracellular matrix164. In Shh-MB metastasis it appears that 

Lgals3 is likely activated and overexpressed in response to SB insertional mutagenesis (Figure 

3.7a). There is little evidence of Lgals3 protein seen in the primary tumor using IHC. Positive 

signal is usually found in regions of contact between normal and metastatic tissue (Figure 3.7b). 

To test for the importance of this gene on metastatic burden, Lgals3 was knocked out in two highly 

metastatic Shh-MB mouse models (Figure 3.7c, d) with Math1-GFP as a reporter. In the SmoaA1 

model, there was a modest change in survival of Lgals3 knockout mice (Figure 3.7e, f). 

Florescence imaging of resected spinal and brain tissue revealed that loss of Lgals3 leads to 

significantly less metastasis, particularly in the spinal cord regions (Figure 3.7i). Little change in 

metastatic burden was seen in frontal brain regions suggesting a site-specific effect of Lgals3 in 

Shh-MB metastasis. Thus far, no significant difference in metastatic burden has been found in the 

Ptch1 SB model. Although the size of these cohorts is still small, there is a trend towards lower 

spinal metastasis in the spine of SB Lgals3 -/- mice.  

 



 

68 

 

 
Figure 3.7 Functional validation of Lgals3 gain-of-function insertions 
(a) Lgals3 SB insertion profile. Each connected horizontal line represents a different metastatic sample in the indicated mouse. Red 

arrows are truncating insertions whereas greens arrows indicate overexpression insertions. (b) IHC staining of Lgals3. (c−d)  Breeding 

strategies of the metastatic Shh-MB (c) Ptch1 Sleeping Beauty and (d) SmoaA1 models. (e) Florescence imaging of a SB Lgals3 knockout 

mouse. (f) Florescence imaging of a SB Lgals3 knockout mouse. (i−j) Metastatic area of (i) Ptch1 Sleeping beauty and (j) SmoaA1 

Lglals3 mouse models.   
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3.2 DISCUSSION 

Regardless of medulloblastoma subgroup, the presence of metastasis is dismal for patient 

survival. Indeed, metastasis often spreads throughout the leptomeninges and brain rendering it 

inoperable. The advancement of targeted therapies for metastasis has been lagging due to emphasis 

on primary and recurrent tumors. This is partly due to the more common surgical resection and 

biobanking of these tumors. There is a large need for programs and initiatives to biopsy and collect 

metastatic tumors despite complicated logistics. The Shh-MB SB model has been used in the past 

to demonstrate vast differences between drivers in primary and metastatic tumors suggesting that 

current developments in primary tumor targeted therapy will not be able to cure patients of 

metastasis53. Unfortunately, it is also now clear that there is a large degree of heterogeneity among 

metastasis in the same patient suggesting that multiple approaches will need to be taken to 

effectively treat this disease. Despite this, there are drivers with a convergent selective pressure 

for different events occurring within the same gene (i.e. Crebbp, Pawr, and Lgals3). Since these 

are by definition found in multiple metastasis in the same mouse, treatments focusing on such 

targets would be more likely to make a lasting impact on patient survival. 

CREBBP is commonly mutated in Shh-MB, particularly in adult patients. Studies have 

shown a large phenotypic difference between patients with somatic versus germline alterations of 

CREBBP, suggesting that the timing of mutation is important. This concept may extend to its role 

as a metastatic driver. Math1 expression starts early in brain development particularly in neural 

progenitors of the cerebellar rhombic lip, which eventually differentiate to form granule cells. 

Knockout of Crebbp at this stage does not change the morphology of the cerebellum but it may 

alter the evolutionary trajectory of the primary tumor such that it is less metastatic.  Since Crebbp 
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is a primary tumor driver it may also be possible that the mice die before developing metastasis. 

Ideally, there is a need for a conditional knockout of Crebbp after tumor formation. This would  

be possible in a tumor expressing luciferase from a Math1 promoter. Here Crebbp could be deleted 

during tumor progression through application of a tamoxifen inducible CRE system. More 

functional work needs to be done to demonstrate the role of Crebbp as a bona fide metastatic 

driver.  

On the other hand, it is clear that Lgals3 plays an important role in metastasis. Even the 

loss of a single allele significantly decreases metastasis on the spine of SmoA1 mice. It seems likely 

that this gene is important for attachment of metastasis onto the spine since it was found to be 

secreted into normal tissue at sites of contact. This is in line with research in breast cancer 

metastasis which show that overexpression of LGALS3 promotes angiogenesis and more 

importantly enhances tumor cell adhesion to the extracellular matrix164. It is less likely that Lgals3 

plays a role in the initial extravasation process since there is just as much (if not slightly more) 

brain metastasis present in these mice. In this scenario, there would be a similar burden of 

circulating tumor cells, but without Lgals3 they would be unable to seed the spine. More 

experiments need to be done to tease out the mechanism, and potentially inhibit the Lgals3 driven 

metastasis.   
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3.3 METHODS 

Unless otherwise stated all chemical reagents where obtained from Sigma. 

3.3.1 Genotyping 

Mouse eye or tail clippings were lysed in and incubated overnight at 56°C, then incubated 

for 5min at 95°C. 1µL of DNA lysate was used in PCR reaction along with 2.5µL 10X PCR buffer, 

1µL MgCl2, 0.5µL 10mM dNTPs, 0.5µL primer 1, 0.5µL primer 2, 2µL PCR loading Dye, 16.8µL 

ddH20, and Taq polymerase. Refer to Table 2 for all genotyping primers used.  

3.3.2 Tissue processing 

Tissue samples were frozen in liquid nitrogen and pulverized with a mortar and pedestal.  

Powdered samples were then incubated overnight in 500ml lysis buffer (10mM Tris-Cl and 0.1M 

EDTA with pH 8.0, 0.5% SDS) and 2.5µL proteinase-K (final concentration 100µg/ml) at 50°C. 

The solution was cooled to room temperature and 500µL phenol, equilibrated with 0.1M Tris-Cl 

(pH 8.0), was added. The two phases were gently mixed for a minimum of 1 min by inverting the 

sample tube until the two phases have formed an emulsion. samples were then centrifuged at 

10,000g for 10min at room temperature. The viscous aqueous phase was transferred to a new tube 

and organic phase was discarded. The extraction was repeated with phenol once more. Into the 

aqueous sample, 50 µL 3M sodium acetate, 1000 µL ethanol, and 1 µL glycogen was added. The 

samples were gently shaken, and then incubated at -20°C for 20min. A DNA precipitate was 

present after the incubation. The samples were centrifuged for 10min at maximum speed. The 

supernatant was removed and 500 µL of 70% ethanol was added without disturbing the pellet. The 

samples were centrifuged at max speed for 10min. The ethanol washing step was repeated once 

more and, after supernatant removal, the pellet was left to dry at room temperature in an open tube 
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until all visible traces of ethanol had disappeared. Molecular grade water was added (25 µL) and 

the pellet was dissolved (fig. 9). Concentration readings were taken using a Nanodrop 

spectrometer. 

3.3.3 SB insertion sequencing Shear-SPLINK 

3.3.3.1 DNA shearing 

A Covaris S220/E220 Focused-ultrasonicator (Covaris Inc. , USA) was used to shear 100ul 

of each DNA sample with parameters: Peak Incident Power (W) - 140, Duty Factor - 10%, Cycles 

per Burst – 200, Treatment Time – 80, Temperature 7 °C, Water Level - 12cm. Quality control 

was run on random samples (1 in 10 samples) on a 2% agarose gel in TEA buffer (pH: 7.4, 0.2M 

Triethanolamine, 1mM MgSO4, 1mM EDTA, 0.01% Azide) with a 1kb protein ladder (Invitrogen) 

for 20min. A wide band in the 300bp region was indicative of successful sonication. 

3.3.3.2 End repair 

Epicenter End repair kit (Lucigen Corporation, USA) was used with 20 µL of  Sonicated 

DNA, 0.5 µL ddH20, 3µL kit buffer, 3µL dNTP, 3µL ATP and 0.5 µL kit enzyme mix. Sample 

was incubated at RT for 45min and then 10min at 70 °C 

3.3.3.3 Adaptor ligation 

Linker+ and linker- primers (Table 3) (100 µM) were mixed at 1: 1 ratio in Sodium-Tris-

EDTA buffer (50mM NaCl, 10mM Tris-Cl - pH 8.0, 1 mM EDTA - pH 8.0). Primer solution was 

heated to 95 °C for 5min and slowly cooled to room temperature to facilitate formation of the 

double stranded adaptor. Fast-link ligase kit (Lucigen Corporation, USA) was used with 30µL end-

repaired DNA, 1.75µL ATP, 1.64ul adaptor mix, 0.5µL kit buffer, and 1.11µL Fast-Link ligase. 
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Solution was incubated at RT for 45min and then the enzyme was inactivated with an incubation 

at 70 °C for 15min. 

3.3.3.4 Concatemer digestion 

The ligation solution was digested with BamHI to break apart the transposon concatomers 

in the normal tissue and prevent their amplification. Then 35µL of the adaptor ligation solution 

from previous step, 1 µL High Fidelity (HF) BamHI, 1.5µL NEB buffer 4, 5µL 10X bovine serum 

albumin (BSA), and 4µL ddH20 were incubated overnight at 37 °C.  

3.3.3.5 Primary PCR 

Two primary PCR reactions were set up for each side of the SB transposons (IRR and IRL). 

5 µL DNA mix from previous step, 12.25µL ddH20, 5µL 5x Phusion buffer, 0.75µL 10mM MgCl2, 

0.5µL 10mM dNTPs, 0.5µL 10Mm IRR or IRL primer, 0.5µL 10Mm Linker-A1 primer, and 

0.5µL Phusion Taq (Sigma, USA) were mixed together (Refer to Table 3 for primer sequences). 

The sample was run using the following PCR cycle protocol: 1) 98°C (30s), 2) 98°C (20s), 3) 55°C 

(30s), 4) 72°C (60s), Steps 2,3,4 repeated 25 times, 5) 72°C (60s), 6) 4°C (hold). 3µL of the 

primary PCR samples were diluted 1:50, vortexed and incubated at RT for 30min.  

3.3.3.6 Secondary PCR 

PCR mix was made with 4 µL DNA mix from previous step, 32.5µL ddH20, 10µL 5x 

Phusion buffer, 1µL 10mM dNTPs, 2µL 2.5µM IR-barcoded transposon primer, 0.25µL 10 µM 

Linker-A2 primer, and 1µL Phusion Taq. A touch down PCR cycling protocol was used: 1) 98°C 

(180s), 2) 95°C (30s), 3) 49°C (30s), 4) 72°C (60s), Steps 2,3,4 repeated 10 times, 5) 95°C (30s), 

6) 53.3°C (60s), 7) 72°C  (120s), Steps 5,6,7 repeated 25 times,  8) 72°C (60s), 9) 4°C (hold). 

Refer to Table 3 for primer sequences. 
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3.3.3.7 Sequencing preparation and submission 

Secondary PCR sample (10 µL) was analyzed on a 1.5% agarose gel. A bright band in the 

300bp region was expected. The PCR products were pooled and purified using Qiagen purification 

kit and resuspended in 50µL TE buffer. A Nanodrop was used to determine the concentration of 

purified DNA. A maximum of 96 samples were pooled together from the IRL and IRR libraries 

per lane with a final concentration of 20-25ng/ µL. This pool was incubated at 40 °C for 30min 

and submitted for sequencing on the Hiseq (Illumina, USA) paired-end 2 x 126bp.  

3.3.4 Read preprocessing and alignment 

Adaptors were trimmed with cutadapt (v1.8) with parameters ‘-m 5 --no-indels --discard-

untrimmed -g R1_5prime=^NNNNNNNNTGTATGTAAACTTCCGACTTCAACTG’ from read 1 

(R1) for each sample. Since the SB insertions recognize and insert into a TA dinucleotide, only 

the reads starting with a TA were kept for downstream steps. Read 1 reads were then paired with 

their respective paired reads (R2) and aligned with novoalign (v3.05.01) using parameters ‘-r ALL 

1 -R 0 -c 8 -o SAM’ with the mm9 mouse genome assembly. Aligned sam files were then converted 

to bams for downstream analysis.  

3.3.5 Insertion read processing and filtering 

3.3.5.1 Annotation 

Each detected insertion was annotated using refFlat tables from the UCSC genome 

database. Using the chromosomal address the following information was extracted: [tumor ID], 

[gene name], [region of gene hit (e.g. intron, exon, and promoter)], [predicted affect of insertion 

on the expression of the gene], [number of reads on this insertion site within the sample], 
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[orientation of the transposon relative to the gene]. Some insertion events were not annotated 

because they did not occur within a known gene.  

3.3.5.2 Insertion clonality estimates 

Clonality was estimated using Shear-SPLINK’s unique ligation point (ULP) score which 

quantifies the number of unique positions in the ligation point between genomic DNA and the 

adaptor for every given insertion95. For different reads mapping to the same insertion a different 

sequenced fragment length is indicative of a unique ligation point (ULP). Each bam file was 

converted into a bed file using samtools (v1.9) command ‘bedtools bamtobed -bedpe -i stdin’. The 

length of each fragment was then calculated by extracting the start coordinates of R1 and the end 

of R2. In cases where only one read mapped the fragment, the mapping read length was extracted. 

Fragment Lengths greater than 700 are not possible with paired end sequencing on the Hiseq 

platform and were therefore likely alignment artifacts, these lengths were all set to 0. The number 

of unique fragments lengths (i.e ULP count) was then calculated and appended to the annotated 

insertion list. A ULP score was calculated by dividing the insertion ULP count by the highest ULP 

in each library (i.e. range is [0,1] and a score of 1 would represent the most clonal insertion in a 

given library) 

3.3.5.3 Clustering 

Insertion locations within 5bp are stitched together as a cluster in the same library and then 

merged since they more likely represent the same insertion with an alignment artifact. The 

insertion with the highest number of mapped reads is assumed to be the ‘true’ insertion location. 

The read count of the insertion cluster was summed up with the highest ULP is used for the cluster. 

The IRL and IRR libraries were then merged together. If an insertion was detected in both libraries 
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(i.e. transposon orientations) the read and ULP counts from the higher ULP score insertion was 

used after merging.  

3.3.5.4 Filtering 

An insertion was filtered out if (1) found in more than 1 control biological or technical 

library, (2) ULP count of 1, (3) ULP score less than 0.05, (4) found on the donor chromosome 

(SB76 = chr1 and SB68=chr15). (5) for every pooled set of libraries if there is more than one 

merged library with the same insertion (in different mice), only the insertions in the mouse 

containing with the highest read count is kept. This is to ensure that there is no cross contamination 

between libraries pooled together.   

3.3.6 Gene centric common insertion (gCIS) analysis 

Refer to Benjamin et al. for detailed explanation of the gCIS method94. A Sleeping Beauty 

transposon can only insert into a TA dinucleotide, so the probability of an insertion in a particular 

gene (p) is the number of TA sites in the gene (TAG) divided by the number of TA sites in the 

entire genome (TAT).  

 𝑝 =
𝑇𝐴𝐺

𝑇𝐴𝑇
 (1) 

Therefore, if there are N insertions in tumor I, then the expected number of insertions in 

the gene is: 

 𝐸 = 𝑝(𝑁𝑖) (2) 

Using the Chi-squared distribution we can compare the expected number, E, of insertions 

in tumor i to the observed number of insertions, O, in tumor i using the Chi squired distribution. 
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This is assuming that O is discrete, and can have a value of either 1, if an insertion is present, or 

0, if absent.  

 

𝑋2 =  ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖 

𝑘

𝑖=1

 (3) 

This test is repeated for every gene. P-values are adjusted using the stringent Bonferroni 

group-wise correction. Corrected p-values (Q) <0.05 are called significant.   

3.3.7 Metastatic convergent evolution model  

Within a tumor (X) the probability of x random insertions for a gene follows a binomial 

distribution where n is the number of high abundance (i.e. clonal) insertions found in the tumor 

and p (from (1) above) is the probability of a single gene insertion event:  

 𝑃𝑋(𝑥) = (
𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥 (4) 

In a mouse with a primary tumor and multiple metastatic sites each compartment is 

independent of one another therefore the probability of a convergent event (C) is all the 

combinations by which PX(x = 0) in the primary tumor and PX(x > 0) in greater or equal to 2 

metastatic sites. In the case of one primary X and two metastatic sites Y and Z this becomes: 

 𝑃(𝐶) = 𝑃𝑋(𝑥 = 0) ∗ 𝑃𝑌(𝑥 > 0) ∗ 𝑃𝑍(𝑥 > 0) (5) 

Using the binomial distribution this can be expanded to this form (assuming that nx, ny, nz 

is the total number of clonal insertions in tumor X,Y,Z respectfully): 

 𝑃(𝐶) = 𝑃𝑋(𝑥 = 0) ∗ (1 −  𝑃𝑌(𝑥 = 0)) ∗ (1 − 𝑃𝑍(𝑥 = 0)) (6) 

 𝑃(𝐶) = (
𝑛𝑥

0
) 𝑝0(1 − 𝑝)𝑛𝑥−0 ∗ (1 − (

𝑛𝑦

0
) 𝑝0(1 − 𝑝)𝑛𝑦−0) ∗ (1 − (

𝑛𝑧

0
) 𝑝0(1 − 𝑝)𝑛𝑧−0) (7) 
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 𝑃(𝐶) = (1 − 𝑝)𝑛𝑥 ∗ (1 −  (1 − 𝑝)𝑛𝑦) ∗ (1 − (1 − 𝑝)𝑛𝑧) (8) 

For each mouse i and in for a particular gene, the convergent probability (𝑃(𝐶) =pi ) can 

have a different value due to differences in the number of metastatic sites and number of insertions.  

To compare the expected number of convergent events with the observed number of convergent 

events, the Poisson binomial distribution was used where the probability of having x convergent 

mice out of a total of n can be written as the sum below and Fk is the set of all subsets of x integers 

that can be selected from {1,2,3,...,n}.  

 𝑃𝑋(𝑥) = ∑ ∏ 𝑝𝑖 ∏(1 − 𝑝𝑖)

𝐴𝑐𝑖∈𝐴𝐴∈𝐹𝑘

 (9) 

Using this, the probability of x or more convergent mice can be calculated to find the p-

value for each convergent gene. False discovery rate (FDR) is used to adjust the p-values and genes 

with Q<0.05 are called significant (i.e. likely under the influence of convergent selection).   

3.3.8 Metastasis imaging 

3.3.8.1 Tissue Dissection and Imaging 

The brain and spine are dissected out of the mouse at end-point in one piece and transported 

in phosphate-buffered saline (PBS). Tissues are then washed with PBS and placed on a petri dish. 

The contiguous tissue is then separated into 4 regions (i.e. brain, cervical spine, thoracic spine, and 

lumber spine) to ensure there is no overlap between image acquisitions. The  Crebbp and SB 

Lgals3 Math1-GFP mice were imaged on the Leica Florence stereomicroscope (Wetzlar, 

Germany) using the Velocity imaging suite (v6.3). The SmoA1 Lgals3 Math1-GFP mice were 

imaged on the Nikon SMZ25 stereoscope (Minato, Tokyo, Japan) using the NIS elements imaging 

suite  (v5.0.2.01).  
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3.3.8.2 Metastatic area quantification 

All metastatic images were imported into the Met NIS elements imaging suite as either .tiff 

or .nd2 image formats and calibrated using the true size of each pixel. Each individual florescent 

met was manually circled as well as the total spine/brain area. In each mouse the metastatic spine 

area was summed together and divided by total spine area to calculate the spine met proportion. 

This was repeated for the brain lobe metastasis to calculate the brain met proportion. The total 

count of individual metastasis was summed and normalized by the size of each respective spine. 

Wilcox test was used for all statistical comparisons between groups.  

3.3.9 Pathway enrichment analysis 

Pathway analysis was performed using gProfiler. Genes were ranked by frequency of 

recurrence. Mouse gene sets from MSigDB, pathways from Reactome, and biological processes 

from Gene Ontology were included in the analysis. Significantly enriched pathways (FDR qvalue 

<0.05) were visualized using Enrichment Map in Cytoscape. Node sizes are proportional to the 

number of genes and edge weight (Jaccard and overlap coefficient set at 0.66 cutoff) represents 

the number of shared genes between each gene set.  

3.3.10  Illustrations 

All plots were generated using R (v3.5.1) Oncoprint landscape figures were generated 

using the ComplexHeatmap library155. 
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Sonic Hedgehog Medulloblastoma: Where do we go from here? 

4.1.1.1 Shh-MB landscape studies 

Medulloblastoma is one of the most common types of cancer in the developing brain and 

a significant cause of morbidity in children. It has been the subject of intense investigation in 

multiple groups throughout the world. Many hypothesis generating studies have focused on 

deciphering the pattern of somatic alterations across medulloblastoma. Each of these studies have 

revealed a more complete picture of this cancer, opening up new avenues for biological 

investigation. Up to date, large scale bioinformatic studies have utilized expression microarrays, 

SNP 6.0 copy number arrays31, methylation arrays99, proteomics165, and whole genome 

sequencing34–36,166. No technology is perfect, and each is best suited for a particular angle of 

investigation. In Chapters 2 and 3, a large variety of both human and mouse datasets were 

integrated together leveraging each of their strengths in order to paint the most comprehensive 

picture of alterations across Shh-MB. A number of therapeutic targets have been revealed which 

will be the subject of intense functional investigation for years to come.  

4.1.1.2 Shh-MB functional validation model systems 

There were a number of novel primary and metastatic driver genes discovered in this study 

that will need to be validated. Mouse transgenic models are most ideal, but they are time 

consuming, with a risk for embryonic lethality. Furthermore, the timing of alteration often plays 

an important role in cancer biology. Xenografts present an attractive alternative, but unfortunately 

in Shh-MB the choices are limited. Many established Shh-MB lines (i.e. DAOY, ONS76)167 have 

very little resemblance to the original tumor,  since in-vitro culture conditions select for a different 
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set of traits over the countless passages. Although there are now a number of in-vivo lines 

maintained in NSG mice (i.e. Med-1712FH, MED-813FH), these are unfortunately unable to grow 

in-vitro long enough for efficient genetic manipulation. Luckily, a recent report provides a valuable 

alternative through the use of human derived pluripotent stem cells reprogrammed to generate Shh-

MB tumors124. Neuroepithelial stem cell (NES) lines can be generated from human pluripotent 

stem-cell derived neural rosettes propagated in long time culture. Even if extracted from an adult 

they show similar characteristics to fetal NES cells. These progenitors differentiate to cerebellar 

granule neural precursors which are the cells of origin for Shh-MB15. Through introduction of 

PTCH1 or MYCN alterations, commonly found in Shh-MB, these cells form faithful orthopedic 

transplantation models. These would make ideal models for functional validation of candidate 

primary and metastatic driver genes because they are easy to propagate in culture, can be 

genetically modified, and don’t have any confounding somatic alterations.  

4.1.2 Shh-MB primary tumors 

4.1.2.1 RNAseq  

RNAseq can reveal both the quantity and presence of RNA in a biological sample at a 

given moment in time. It is unbiased in that it can look at the entire repertoire of expressed genes 

without any presumptions, which is an advantage compared to microarray based analysis. Since 

mRNA is transcribed directly from DNA, it can also serve as a proxy for somatic alterations in 

DNA. Mutations and structural variants (in particular fusions) can be confidently called from 

RNAseq. The 30-40x whole genome analysis commonly reported does not provide uniform 

coverage meaning fusion events can be missed even if they are highly expressed. Even if a 

structural variant is detected through such analysis, it is not clear what it’s doing without 
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corroboration at the mRNA or protein level. Likewise, since RNAseq can only evaluate expressed 

genes, it cannot call events from unexpressed genes. RNA editing also posses a technical challenge 

and serves as a confounding factor while calling point mutations. Lastly, like any short-read 

technology, RNAseq fragments can be erroneously filtered out/removed if a confident match is 

not present in the genome, potentially omitting important somatic events.  

4.1.2.2 RNAseq Study Summary 

In Chapter 2, RNAseq was utilized to acquire a comprehensive picture of the 

transcriptional landscape in human Shh-MB. Despite the use of poly-A enriched RNA it was clear 

that noncoding RNA play an important role in this disease. Of course, many non-coding transcripts 

that don’t utilize a poly-A tail would be missed by this analysis. It was also concluded that the 

fusion landscape of Shh-MB was much more complex than previously theorized. Fusions in Shh-

MB are very common, especially in Tp53 mutated Shh-α patients. There were also a number of 

loss-of-function fusions discovered in tumor suppressor genes such as PTCH, SUFU, and NCOR1. 

Collectively ≥20% of Shh-MB patients were shown to have fusions. Mutations were called despite 

the lack of germline controls. The most interesting were events in MYCN, GLI2, PPM1D, GNAS, 

and IKBKAP.  Mutations in MYCN were found in the region binding the ubiquitin ligase FBXW7 

which was also mutated in a fraction of tumors. Therefore, ~20% percent of Shh-MB patients had 

alterations that stabilize or overexpress MYCN protein. Another surprising discovery was the 

presence of recurrent fusions hubs in RALGPA2 and GNAS which are not a consequence of 

structural alterations in the DNA, but rather formed through trans-splicing.  
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4.1.2.3 Functional validation of GLI2 and MYCN 

One of the most common focal amplifications in Shh-MB encompasses GLI2, an important 

mediator of Shh signalling. This is the first study detecting recurrent mutations in GLI2. Despite 

being within the ‘activation’ domain of GLI2101 it is not clear if these missense events lead to a 

more active GLI2 protein (Figure 2.3a). Mutations can be introduced into the neuroepithelial stem 

cell (NES) Shh-MB model using CRISPR/cas9 to generate the appropriate amino acid changes 

(i.e. p.P1028L, p.H1073Y, p.Q1323H, p.A1514V). Then a luciferase reporter assay could be used 

to get a readout of GLI2 mutant activity. Specifically, the NES line can be transfected with a vector 

containing GLI binding sites and a δ-cristallin basal promoter driving expression of a luciferase 

gene allowing for a readout of GLI2 transcription factor activity168. In parallel, GLI2 mutant and 

wildtype NES cell lines could be orthopedically transplanted into mouse brains and monitored for 

tumor growth. RNAseq sequencing and classification could be used to infer SHH pathway activity 

and ensure that resulting tumors closely resemble Shh-MB.  

 Another gene to validate is MYCN, which was shown to be mutated around the FBWX7 

binding motif in 4% of patients (Figure 2.3c). It is hypothesized that these mutations would lead 

to a more stable MYCN since they would no longer be targeted for ubiquitin mediated protein 

degradation. In support of this hypothesis, there were also loss-of-function events in FBXW7 which 

were mutually exclusive of MYCN alterations. Like in GLI2, mutations can be introduced into the 

NES Shh-MB line using CRISPR to generate the appropriate amino acid changes. Western blot 

for MYCN can be utilized to get a readout of protein stability compared to normal controls. The 

tumorigenicity can also be assessed after orthotopic transplantation into the mouse cerebellum. It 

would be important to show that the increased stability is mediated through a decrease in FBXW7 
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mediated ubiquitination rather than other factors. FBXW7 can be blotted through co-

immunoprecipitation of MYCN to check for decreased binding. Furthermore, a ubiquitination 

assay can be used to show that MYCN is no longer targeted for degradation. Alternatively, it is 

possible to use transient expression of flag tagged MYCN and FBXW7 vectors in NES cells to 

streamline co-immunoprecipitation of the protein complex. 

4.1.2.4 Trans-splicing 

Alternative splicing is present in ~90−95% of all human genes. This process enhances 

genetic diversity by generating multiple protein isoforms from the same set of exons169. Most 

common is cis-canonical splicing which generates mRNA diversity through the use of exon 

skipping, exon retention, and alternative 3’ and 5’ splice site selection. Less commonly seen is cis-

splicing of adjacent genes (i.e. readthroughs), cis-backsplicing (i.e. circular RNA), intron 

retention, and cryptic splicing. In contrast to cis-splicing which involves a single or adjacent gene, 

trans-splicing brings together transcripts from spatially distinct genomic loci170. Spliced leader 

(SL) trans-splicing involves splicing of small nuclear RNAs (i.e. splice leaders) onto select pre-

mRNA. This process occurs in diverse groups of eukaryotic organisms, including nematodes and 

flatworms, and serves as an alternative way to cap mRNAs171. SL independent trans-splicing 

chimeras have been detected in higher eukaryote organisms including fruit flies, mice and even 

humans but its  purpose and mechanism has remained elusive. In Drosophila, mod(mdg4) is 

commonly trans-spliced to a variety of 3’ partners172. Using tiling deletion on the mod(mdg4) 3’ 

intron immediately after the trans-spliced exon, it was shown that there is a highly conserved motif 

able to bind U1 snRNP, and together with an enhancer motif mediate trans-splicing. Canonical 

spicing machinery was used in this context to generate a Y-structured outron instead of the typical 



 

85 

 

lariat. There have been numerous accounts of trans-splicing in human cell lines 170. Trans-splicing 

was also investigated as a means of gene therapy to replace mutated or deleted exons170, although 

this application has been limited by the difficulty involved in introducing genetic vectors into 

tumors. In human endometrial stromal tumors JAZF1-SUZ12 is a common fusion mediated 

through structural arrangements at the DNA level. Strikingly, the chimeric transcript is also 

commonly found in stromal cells of non-cancerous individuals173 suggesting that trans-splicing 

could be a precondition for RNA-mediated DNA recombination. A similar phenomenon is also 

observed in prostate cancer (SLC45A3-ELK4)174 and neoplastic haematopoietic cells (IGH-

BCL2)175. With progressing technology and large scale sequencing studies there is an increasing 

number of trans-spliced chimeric fusions being detected and categorized176. Most recently a PAN-

CAN report attempted to assign structural DNA rearrangements to each recurrent fusion across a 

large panel of tumors and suggested that up to 18% of fusion transcripts in cancer are generated 

through trans-splicing123. 

4.1.2.5 Deciphering the mechanism of trans-splicing in Shh-MB 

 There is an extensive network of fusion transcripts found in Shh-MB (Figure A4), likely to 

be tumor specific since fusions were filtered against a large library of gTEX and fetal cerebellum 

controls. Many of these fusions have no support in overlapping WGS, which might be due to the 

limited sample size and/or sensitivity of short-read technologies. Notable were fusions in 

RALGAPA2 and GNAS (Figure 2.7;Figure A6) which were hypothesized to result from trans-

splicing. These genes are unique in that they have a large multitude of 5’ partners even in the same 

tumor, which has not been reported in any other model. My study was focused on validating the 

presence of trans-splicing. Going forward, a number of steps need to be taken to decipher the 
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mechanism responsible for trans-splicing in Shh-MB and to test for a role for this process in 

tumorigenesis.   

Initially, differences in expression can be checked between patients with a high number of 

RALGAPA2 or GNAS chimeric reads compared to those with a low count (top 10th versus bottom 

10th percentile) to find genes and/or pathways differentially regulated in patients with trans-

splicing. Similarity, the proportion of chimeric reads can be correlated with the expression of all 

genes across Shh-MB to find significant hits. Despite the large number of detected 5’ genes, there 

does seem to be a subset of highly recurrent trans-spliced genes suggesting some sort of common 

splicing signal. It is also likely that the process is spliceosome mediated due to the presence of a 

strong U12 splicing signal. Just like in the Drosophila mod(mdg4), there could be specific motifs 

that bind and/or enhance spliceosome formation between RALGAPA2/GNAS and their respective 

5’ partners. To find possible binding motifs, the introns of recurrent 5’ partners can be compared 

against each other to find conserved sequences177. It is also possible that trans-splicing is in part 

mediated by close spatial proximity of fusion partner pairs in the nucleus. Available Shh-MB Hi-

C libraries can be used to test this hypothesis by calculating interaction scores between trans-

spliced partners and comparing it to random permuted gene pairs.  The most difficult question to 

answer is whether trans-splicing plays a role in Shh-MB tumorigenesis. Without a mechanism it’s 

impossible to increase the amount of trans-splicing in RALGAPA2 or GNAS. However, it may be 

possible to completely abolish it through genetic manipulation. This can be achieved with 

knockout of the intron immediately following the recurrent splice junction forming a large 

contiguous exon, thereby removing the need for splicing without altering the canonical gene 

transcript. Specifically for RALGAPA2, this would require using CRISPR/Cas9 to remove the 

intron between exons 37 and 38 in both alleles in the PTCH1 Shh-MB NES line and then 
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measuring the difference in primary tumor growth (and RALGAPA2 trans-splicing) compared to 

the control. The presence of trans-splicing would first need to be demonstrated in the NES Shh-

MB cell line before attempting this approach.  

4.1.3 Shh-MB metastatic tumors 

4.1.3.1 Study summary  

Metastatic dissemination yields a dismal prognosis for any medulloblastoma patient. 

Although Shh-MB patients are not as commonly metastatic as Group 3 and Group 4, it is still an 

important subject of study. Mouse models are essential to study metastasis since human biopsies 

of metastasis are rare. Multiple metastatic locations were sampled from a large cohort of Shh-MB 

SB mice. Human genomics studies have shown that potent cancer driver genes often have several 

spatially independent alterations due to convergent evolutionary pressure178. This model of 

convergent evolution was extended to SB mice to identify important, and potentially actionable, 

drivers in metastatic lesions. Using this method there was a large overlap in genes identified to 

those found using the gold standard gCIS analysis approach. Furthermore, there was a high degree 

of spatial heterogeneity between metastasis in the same animal, just like it was observed within 

medulloblastoma primary tumors179. Crebbp and Lgals3 were shown to be prominent metastatic 

drivers and were knocked out in various different transgenic Shh-MB models. A Math1 mediated 

Crebbp knockout was not shown to increase metastasis in Ptch1 driven Shh-MB, likely due to the 

timing of the Crebbp knockout. In contrast, mice missing one or both alleles of Lgals3 had 

significantly less metastasis of the spine in a SmoA1 model.  
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4.1.3.2 Functional validation of Shh-MB metastasis drivers 

Both the Crebbp and Lgals3 genes were chosen based on their recurrence and what is 

known in literature. There were many other drivers discovered and it would be beneficial to 

unbiasedly compare and validate their metastatic propensity. With the careful inspection of 

insertion profiles, it is clear that the majority of driver genes undergo loss-of-function in the 

metastasis. Therefore, it would be possible to use a CRISPRi library180,181 of all significant gCIS 

and convergent metastatic drivers in a Shh-MB NES model. There are PTCH1 and MYCN mutated 

versions of this model available, but the PTCH1 model would be best since the SB model was also 

driven by PTCH1 loss-of-function alterations. In order to fully represent the library of metastatic 

drivers in a CRISPRi screen, there needs to be sufficient representation of each set of CRISPR 

guides in the injected cell line. Millions of cells can be injected into the flank, whereas a maximum 

of 50,000 cells can be injected into the cerebellum of NSG mice without overflowing. This imposes 

a smaller theoretical maximum of driver gene guides that can be fully represented in the cerebellar 

injections.  Ideally there is a need for two CRISPRi experiments. One using the entire driver 

CRISPRi guide library (n = 431) with cells injected into the flank of NSG mice. In the other, cells 

would be injected into the cerebellum with a small high confidence subset of driver genes targeted 

by the CRISPRi guide library. Although Shh-MB grows in the cerebellum, the flank experiment 

would still be relevant because MB circulating tumor cells (CTC) can disseminate through both 

the blood and cerebrospinal fluid182. Furthermore, cerebellar injections are not 100% accurate and 

often result in cells being injected into the cerebrospinal fluid, thus skipping the primary tumor 

extravasation process. In both experimental setups, the metastatic tumors can be collected at 

endpoint and profiled to see which metastatic drivers are most represented. One drawback with 
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this system is the inability to look at synergistic effects between multiple drivers since each cell in 

the CRISPRi would have an average of one gene knockout. 

4.1.3.3 Functional validation of Crebbp and Lgals3 

Crebbp was found to be a highly recurrent driver in both the metastatic and primary tumors 

of SB mice. Furthermore, there were insertions in Ncoa3, which codes for an important component 

of the Crebbp protein complex. Using the current mouse models there was no significant difference 

in metastasis when both Ptch1 and Crebbp were targeted in Math1 expressing cells, which mark 

granule cells and their precursors (Figure 3.6). The timing of the CREBBP deletion has been shown 

to play an important role in Shh-MB primary tumor progression in humans163 and it is possible 

that such a early knockout would not lead to a higher propensity of metastasis. In future 

experiments, it would be better to first allow for primary tumor development and then knock out 

Crebbp. This can be achieved using a Ptch1;Crebbp(+/flox or flox/flox); Math1-GFP mouse along 

with a tamoxifen inducible CRE system. After formation of tumor (confirming by MRI), Crebbp 

can be knocked out through ingestion of tamoxifen. It is also possible that treatment in an 

established tumor with CREBBP inhibitors could push the mouse toward a more metastatic 

phenotype. Unfortunately current available CREBBP inhibitors don’t readily cross the blood brain 

barrier183. Lastly, rather than relying on costly and time-consuming transgenic experiments, NES 

cells can be used with Crebbp(flox) and a tamoxifen inducible CRE system. 

Galectins are a class of secreted lectins which contain a carbohydrate recognition domain. 

These proteins play numerous roles in development and homeostasis. Lgals3 is a unique galectin 

in that it also contains another domain allowing it to interact with non-carbohydrate ligands. Lgals3 

is expressed throughout the developing CNS system, in the meninges, choroid plexus, as well as 
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cerebellar cortex microglial and astrocyte subpopulations184. It is not clear whether Lgals3 is 

expressed in meninges of children and adults. Lgals3 is involved in a large number of normal 

processes including growth, adhesion, differentiation, cell-cycle, immune response, and apoptosis. 

In the context of metastasis, surface expression of Lgals3 on tumor cells can mediate homotypic 

cell adhesion by binding to soluble complementary glycoconjugates185 which allow it to bind and 

maneuver through endothelial cell layers into the circulation. Lgals3 interactions also allow CTCs 

to dock within distal metastatic sites.  

Lgals3 has shown great potential as a metastasis driver in Shh-MB. In the SmoA1 Shh-MB 

mouse model, Lgals3 (+/-) mice have a lower metastatic burden in the spine (Figure 3.7i). In SB 

mice, there is a trend towards less metastasis in Lgals3 homozygous knockout mice, but it is not 

significant (Figure 3.7j). The SB metastasis model has a large amount of tumor heterogeneity and 

is more aggressive compared to the SmoA1 model (Figure 3.7e−f). Both factors may allow SB 

metastasis to easily escape the restriction imposed by Lglas3 and utilize other pathways. More SB 

mice need to be studied to confidently assess the statistical significance of this data. It is possible 

that Lgals3 knockout mice are not metastatic in the spine because Lgals3 plays a role in the 

metastatic cell docking process along the spine meninges. The rate of extravasation does not seem 

to be changed in the SmoA1 model since tumor bearing mice with/without Lgals3 have a similar 

metastasis disease burden. It is unclear whether expression of Lgals3 in the meninges (rather than 

in the CTCs) mediates metastasis since the mouse model used a whole-body (constitutive) 

knockout of Lgals3. Lastly, the use of a Lgals3 inhibitor186 can be explored with SmoA1 or SB 

Math1-GFP mice as a means to inhibit spinal metastasis. 
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4.1.4 The difficult path to a cure 

Despite the enormous investment of time and money into medulloblastoma research the 

path towards a cure is still fraught with challenges. Medulloblastoma is comprised of four distinct 

subgroups, each with different clinical, methylation, transcriptional, and mutational 

characteristics. These subgroups should not be considered as one disease, but rather, therapy 

should be tailored for each subgroup. This is especially important for Wnt patients who would 

benefit from less radiation than the current standard of care (which is detrimental in the developing 

brain)76. WHO has recognized the importance of MB subtypes187, but their adaption is slow to 

follow in the medical community. More initiative is needed by clinicians to bring next generation 

technology into the clinic for diagnosis and patient stratification. NanoString, which measures 

expression of a selected gene panel, offers a cheap quick method to define subtype and is already 

used for clinical diagnosis in some centers17. More recently, methylation arrays have been used to 

classify brain cancers and subtypes, challenging the need for pathological characterization18. It is 

clear from previous chapters that there is enormous heterogeneity of somatic alterations within the 

same subgroup (Figure 2.8) and even within the same patient due to spatial heterogeneity179. In 

the approaching era of personalized medicine clinicians need to use subgroup and genomic 

profiling on multiple biopsies (to ensure gene targets are spatially ubiquitous) in order to make 

informed decisions on therapy. In Shh-MB progress has been made through the use of SMO 

inhibitors. Unfortunately, this therapy can only work for patients with alterations within or 

upstream of SMO77–79, emphasizing the need for genetic profiling before treatment. It is also 

important to consider combination therapy to circumvent resistance, as is commonly observed in 

SMO. Metastatic dissemination presents its own challenges since its typically too dangerous to 

biopsy and is spatially heterogenous. More research needs to be done to characterize common 
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pathways and to determine how metastatic cells interact with the local niche in order to uncover 

rationale therapies.  

Although, Medulloblastoma is a common pediatric brain tumor it is still a relatively rare 

cancer. In Canada there is an incidence of 4.82 per 1,000,000 resulting in about 181 

medulloblastoma cases per year188 which is in stark contrast to the ~26,900 women diagnosed with 

breast cancer each year. When further stratifying by subgroup and genetic targets it becomes 

impossible to conduct a clinical trail within a single center in a realistic amount of time. Therefore, 

it is extremely important that the brain tumor research community collaborate at an international 

scale − by doing so it becomes possible to recruit enough patients. There would be great benefit in 

the use of adaptive trail designs to allow opportunities to modify ongoing studies and integrate 

new hypothesises as data is accumulated and analyzed189. Due to the limited number of patients, 

it is also important to find the best possible therapeutic alternatives before going forward with 

trials. This is where pre-clinal models have great utility. Shh-MB has a number of transgenic and 

orthopedic mouse models which closely resemble their human counterparts. Most studies use Shh-

MB models with monotherapy which does not allow assessment of survival compared to existing 

combinations of neurosurgery, radiotherapy and/or chemotherapy used in humans. Although more 

involved, studies using the ‘mouse hospital’ approach would allow for more confident selection of 

therapies in human trials. It is also essential that models focus on study and treatment of tumors in 

the brain, rather than the flank, due to the blood brain barrier which posses a unique challenge in 

the brain cancer field. Despite all these issues, there has been enormous progress in the last decade. 

As the field continues to move forward, more and more effort will be put towards overcoming 

these hurdles in search for a cure.  
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Appendix 

THE TRANSCRIPTIONAL LANDSCAPE OF SONIC HEDGEHOG MEDULLOBLASTOMA 

 

Figure A1 Copy number responsive Genes in GISTIC regions 
(a, b) Gene type distribution of all genes found within GISTIC regions using (a) RNA-seq and (b) within the subset of genes 

found only on microarrays. (c) Distribution of significant copy number responsive genes (top) GISTIC peaks (bottom). Scores 

are calculated based on the absolute value of the fold change in GISTIC region expression and copy number responsive analysis 

FDR adjusted p-value. The threshold for GISTIC significant peaks is shown as a horizontal line. (d-f) Expression difference 

between copy number neutral and aberrant states in GISTIC regions. (c) All recurrently amplified genes in 12p13.32. (e) Copy 

number responsive genes in the 17q12 deletion GISTIC region. (f) Copy number responsive genes in 3q24 recurrently gained 

GISTIC region. Genes annotated with an asterisk are copy number responsive with (Kruskal-Wallis adjusted p-value < 0.1). The 

GISTIC region copy number segments are shown to the left of each graph. Numbers in square brackets denote number of tumors 

detected with the CNA. Expression of each gene was normalized by the expression median of the neutral copy number state. 
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Figure A2 Transcriptional landscape of aneuploid tumors 
(a) Number of diploid and aneuploid tumors across Shh-MB subtypes. (b) Tumor Purity assessment using RNA-seq ESTIMATE 

SNP6 Stromal and Immune scores.  Scores below zero denote higher tumor purity. (c) SNP 6.0 calculated purity compared to 

ploidy (left) and RNA-seq derived ESTIMATE scores (right). (d) GSEA enrichment map of genes differentially expressed in 

aneuploid (n = 29) compared to diploid (n = 94) Shh-MB tumors (FDR q-value <0.01). Node size is proportional to the number 

of genes and edge weight represents the number of shared genes between each gene set. The color represents where the pathway 

was found to be overexpressed; either diploid (blue) or aneuploid tumors (red). 
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Figure A3 Fusion calling overview 
Flowchart of the fusion calling method (n = 250) using InFusion, STAR-Fusion and Trans-ABYSS. Fusion contigs matching reads 

in the GTEx and Biotech control samples (n = 51) were filtered as well as any read through, subclonal, and intragenic fusions. 
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Figure A4 Fusion landscape 
Exon-exon fusion network in Shh-MB. The color represents orientation of the gene (5’ is blue , 3’ is red, and both is grey), while the size 

of the node is proportional to the recurrence of the gene. The color of the line shows fold change difference in gene 3’/5’ expression ratio 

fusion positive compared to negative patients, while line thickness is proportional to the recurrence. Fusion hubs supported by structural 

variants are encircled with highlighted gene names.  
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Figure A5 Copy number alterations in fusion hubs 
(a) Correlation between the number of copy number segments and the number of fusions in Shh-MB (n = 250), Group 3-MB 

(n= 56), and Group 4-MB (n= 61). Aneuploidy status is shown across all subgroups. p53 mutation status is only known for Shh-

MB tumors. (b-e) Correlation between expression and copy number for (b) GLI2, (c) NBAS, (d) BCAS3, and (e) EPB41L. Fusion 

patients are indicated in red. The fusion with the most read support in its respective patient is shown. 
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Figure A6 Promiscuous recurrent GNAS chimeric transcript breakpoints 
(a, b) Gene-level summary of (a) GNAS fusions detected by fusion-callers, and (b) their distribution across the genome. Refer 

to Extended Data Fig. 6b for schema description. (c, d) Distribution of GNAS exon 1 chimeric junction spanning reads across 

the genome with (d) genes found in >10 samples indicated. Chimeric reads were extracted from STAR alignments. (e) Splice 

site consensus sequence of GNAS 5’ chimeric fusion partner transcripts (n = 1,566). (f) PCR validation of GNAS fusion RNA 

transcripts in human Shh-MB samples with and without detected fusions (by RNA-seq) compared to Group 3-MB, Group 4-

MB and normal cerebellar controls. Patients with any detected chimeric transcripts at exon 1 in GNAS (by RNA-seq) are 

indicated as GNAS fusion positive (+). 
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Figure A7 Pacbio IsoSeq Validations 
(a) Table of GNAS and RALGAPA2 fusions validated using Pacbio Iso-seq RNA long read sequencing. (b, c) Pacbio Iso-seq RNA 

long read sequencing validated GNAS fusion. (d) PacBio Iso-Seq RNA long read sequencing validated RALGAPA2 fusions.   
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Figure A8 Shh-MB oncogenic pathways 
Enrichment map of biological processes and pathways affected by mutation or focal amplifications/deletions in Shh-MB subtypes. 

Each node represents a pathway or process and connecting lines represent common genes between them. Nodes with many shared 

genes are grouped together and labeled with a biological theme. The color of the nodes refers to the subtype(s) in which the process 

is enriched. The size of the node is proportional to the number of genes in process. Enriched processes were determined with 

g:Profiler (FDR-corrected q-value < 0.05) and visualized with the Enrichment Map app in Cytoscape. 
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Figure A9 DNA methylation anticorrelated with change in gene expression across Shh-MB 
(a, b) Scatterplot showing the mean difference in expression and methylation between samples with (a) two methylation clusters discovered 

by MethylMix, and (b) between samples from 3 methylation clusters (b). The size of the points is proportional to the number of patients 

with mutations found in the corresponding gene. Points are colored by their overlap in mutation events and if they were found to be copy 

number responsive. (c-i) Correlation of gene expression and DNA methylation in genes identified by MethylMix. The methylation clusters 

are highlighted in a histogram above each scatterplot and are represented by different shapes in the bottom plot. The point border and fill 

colors correspond to the copy number and mutation state of the given gene, respectively for each Shh-MB sample. 
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CONVERGENT EVOLUTION OF MEDULLOBLASTOMA METASTATIC TUMOURS 

 

 

 

 

 

Figure A10 Primary and metastatic oncogenic pathways 
GSEA enrichment map of primary (blue) and metastatic (red) driver genes in Shh-MB SB model (FDR q-value <0.01). Node 

size is proportional to the number of genes and edge weight represents the number of shared genes between each gene set. 
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Figure A11 Convergence of Crebbp and Ncoa3 across SB mice  
(a) Recurrence and overlap of Crebbp and Ncoa3 across mice (n = 98). (b, c) Driver profiles of mice containing both Crebbp 

and Ncoa3 insertions (highlighted with a line). Convergent insertions are indicated in red. 
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Table 2 Transgenic mice and genotyping PCR primer sequences 

All transgenic mice and genotyping primers used in Chapter 2 and 3.  

Common Name Full Description Direction Sequence 

GFP Tg(Atoh1-GFP)1Jejo 

Portion of Math1 enhancer 

used to drive expression of 

a nuclear GFP reporter in 
the Math1 lineage 

Forward 5’-CTGACCCTGAAGTTCATCTGCACC-3’ 

Reverse 5’-TGGCTGTTGTAGTTGTACTCCAGC-3’ 

SB68/SB76 TgTn(sb-T2/Onc)68Dla 

Sleeping Beauty 

transposon concatemer. 
SB68 is in chr15 while 

SB76 is in chr1 

Forward 5’-AGTGGGTCAGAAGTTTACATACAC-3’ 

Reverse 5’-GCTTCAGATCGAATTCCTGCA-3’ 

J2Q Tg(Atoh1-sb11)Mtay 

Transgene SB11 
transposase was expressed 

under regulation of mouse 

Atoh1 enhancer 

Forward 5’-GCTTGGGGTCATTGTCTTGT-3’ 

Reverse 5’-CTACGGTTTGCAAGAGCACA-3’ 

PTCH Ptch1tm1Mps/J 

promoterless lacZ-neo 
fusion gene was inserted 

into start codon deleting a 

portion of exon 1 and all 
of exon 2 

Forward 5’-TGTCTGTGTGTGCTCCTGAATCAC-3’ 

Reverse 5’-TGGGGTGGGATTAGATAAATGCC-3’ 

PTCH(flox) Ptch1tm1Bjw 

Exon 3 flanked by a single 
upstream loxP site in 

intron 2 and an FRT-neo-

FRT-loxP cassette in 
intron 3 

Forward 

 
5’-CCACCAGTGATTTCTGCTCA-3’ 

Reverse 5’-AGTACGAGGCATGCAAGACC-3’ 

SMOA1 
Tg(Neurod2-

Smo*A1)199Jols/J 

Transgene containing 

SmoA1 with constitutively 

active point mutation 
under control of  Neurod2 

promter which is specific 

to granule cells 

Forward 5’-AATCTCTGCTTTTCCTGCGTTGGG-3’ 

Reverse 5’-CTCGGTCATTCTCACACTTG-3’ 

CREBBP(flox) Crebbptm1Jvd/J 
loxP sites flanking exon 9 
of the Crebbp gene 

Forward 5’-TGGGTGTGTAGATGCAAGGT-3’ 

Reverse 5’-GGCTTGAACGCTGAAAGAAC-3’ 

LGALS3(flox) Lag3tm1Doi 

3.7kb of sequence, 

encompassing exons 2 

through 4, was replaced 
via the insertion of a 

neomycin selection 

cassette 

Forward 5’-GACTGGAATTGCCCATGAAC-3’ 

Reverse 1 5’-TCGCCTTCTTGACGAGTTCT-3’ 

Reverse 2 5’-GAGGAGGGTCAAAGGGAAAG-3’ 
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Name Sequence 

linker+ 5’-GTAATACGACTCACTATAGGGCTCCGCTTAAGGGAC-3’ 

linker- 5’-Phos-GTCCCTTAAGCGGAG-C3spacer-3’ 

IRR 5’-GGATTAAATGTCAGGAATTGTGAAAA-3’ 

IRL 5’-AAATTTGTGGAGTAGTTGAAAAACGA-3’ 

PBR 5’-CTCCAAGCGGCGACTGAG-3’ 

PBL 5’-CGATAAAACACATGCGTC-3’ 

JXR 5’-GTTGAGTACTAAGCTTGTGCTTAACAAT-3’ 

JXL 5’-CTAAGCTTTTAAATTGTTAAGCACAAGC-3’ 

linker-A1  5’-GTAATACGACTCACTATAGGGC-3’ 

IR-BARCODED 
5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

(BARCODE)TGTATGTAAACTTCCGACTTCAACTG-3’ 

PB-BARCODED 
5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

(BARCODE)TATCTTTCTAGGGTTAA-3’ 

Linker-A2 5‘-CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTAGGGCTCCGCTTAAGGGAC-3’ 

PB-Transposon 

5‘-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGAT 

CTTATCTTTCTAGGGTTAA-3’ 

Table 3 Sleeping Beauty sequencing primers 
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MEDULLOBLASTOMA PRIMARY TUMOR MAINTENANCE GENES 

Patryk Skowron*, Kevin Wang*, Raul A. Suarez, A., Xiaochong Wu, Michael, D. Taylor 

Lazy Piggy transposon system 

The Lazy Piggy (LP) system is a hybrid transposon system containing both PiggyBac and 

Sleeping Beauty (SB) excision sequences as well as cargo capable of dysregulating gene 

expression (Figure A12a). This system is spatially regulated using Nestin driven SB transposase 

(Nestin:Luc-SB100) and temporally regulated with a tamoxifen inducible PibbyBac transposon 

(Nestin:Cre/ R26:LSL-mPB-Ert2). Mobilization of the hybrid transposon in Nestin expression 

cells generates a highly penetrate model of medulloblastoma. Subsequent activation of R26:LSL-

mPB-Ert2 with tamoxifen then gradually depletes insertion events by removing cargo and 

restoring normal gene function. Initiation and passenger events in cells will be removed without 

any consequence, but remobilization of a transposon in a maintenance gene will result in cell death 

or failure to proliferate, thereby stopping its clonal contribution to the tumour. This process 

gradually depletes initiators and passenger events and enriches for maintenance insertions. 

Design and optimization of Lazy Piggy SPLINK- based library preparation  

Quintuple tamoxifen positive (TAM (+)) and litter matched tamoxifen negative (TAM (-)) 

tumours were used in the design and optimization of the library preparation protocol. A restriction-

based SPLINK protocol was designed to identify SB insertion (IR), excision junction events (JX), 

and PiggyBac maintenance events (PB) in both transposon orientations.  There were two donor 

mice generated, LP-137 and LP-128, with the donor concatemer located on chr10 and chr7 

respectively. Only LP-129 had a significantly different survival between TAM (+) and TAM (-) 

treatments (Figure A12b).  These differences were not due to the potential therapeutic effects of 

tamoxifen treatment since LP mice without active Piggybac transposition show no survival 

difference between TAM (+) and TAM (-) groups (not shown).  
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Analysis of Lazy Piggy TAM+ and TAM- mice  

The proportion of clonal insertions that overlap between IR and JX libraries was accessed 

in a pair-wise manor. The IR insertion set contains all clonal insertions including initiator, 

passenger, and maintenance events. The JX set contains insertions for which cargo had been 

excised and normal gene function was restored. It was hypothesized that TAM (-) LP tumours 

would not contain evidence for JX clonal insertions since the R26:LSL-mPB-Ert2 depends on 

tamoxifen dependant activation. Unfortunately, JX transposon scars were detected in TAM (+) 

and TAM (-) tumours, suggesting the system is intrinsically leaky (Figure A12c). Fortunately, 

there is significantly more overlap between IR and JX in TAM (+) compared to the TAM (-) 

tumours (p = 0.034; T-test) (Figure A12d), suggesting a higher rate of remobilization in TAM (+) 

tumours. To maximize power, TAM (+) and TAM (-) samples were pooled together for the gCIS 

analysis (Figure A12e) and genes predominately found in TAM (+) mice were shortlisted for 

validation. Most notable were genes coding the two potassium channel protein Kcnh2 and Kcnb1, 

and a recurrent medulloblastoma primary/recurrence tumor gene, Dyn1h1.  

RNAseq of Lazy Piggy Tumors 

With restriction-SPLINK insertion data it is not immediately clear what the result of 

integration is on gene expression, especially when multiple insertions are detected in the same 

gene or when insertions are detected in intergenic space. RNAseq has shown great potential in 

overcoming these problems190. A large cohort of tumours (n = 60) was sequenced by RNAseq (10 

million reads/sample) deep enough to detect clonal fusions. Clustering of data from RNAseq 

libraries using PCA analysis demonstrated a tendency for TAM+ samples to cluster closer together 

(Figure A12f). This was further confirmed using PCA on differentially expressed genes (Figure 

A12g). 
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Figure A12 Lazy Piggy mouse model analysis 
(a) Overview of the Lazy Piggy (LP) mouse model transposition system. (b) Survival difference between different LP donor mice. 

(c) Clonal insertion overlap matrix between all transposon (IR) and excision scar (JX) events. Red is tamoxifen positive (TAM 

(+)), blue is  tamoxifen negative (TAM (-)) and black is control samples with no LP. (d) Differences in clonal excision events 

between TAM (+) and TAM (-) samples. (e) gCIS analysis on combined TAM (+) and TAM (-) LP libraries (e) PCA analysis on 

60 RNAseq LP samples. (f) Hierarchical clustering of LP samples using TAM (+) vs. TAM (-) differentially expressed genes.   
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