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Abstract 

The natural variation of human populations was shaped by mechanisms of evolutionary selection 

as our species began their worldwide migration thousands of years ago. Candidate gene and 

genome-wide association studies have revealed evidence for ancestry-specific positive selection, 

yet we lack insights regarding the broader biological context of population-driven selection. In 

this thesis, I describe my efforts to explore how interactions within biological pathways might 

impact evolution, using a comparative population-based analysis of pathway enrichment and 

inter-chromosomal allelic association. I compared genetic data from individuals of European-

American and African-American ancestry, and identified enrichment for several biological 

processes, with prominent signals of genetic coevolution in two immune-associated pathways 

among African-Americans exclusively. Substantiated by considerable experimental-based 

literature, these findings suggest an effect of population variation on pathway-level selection, in 

which a global comparative analysis would further the ultimate goal of precision medicine.  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1. Thesis rationale and structure 
 Several lines of evidence show that numerous regions of the human genome are under 

forces of adaptive evolutionary selection, which has enabled the analysis of mechanisms by 

which selection has shaped the natural variation of human populations. Early studies in the field 

primarily employed scans for positive selection upon the identification of trait-associated 

variants via candidate gene and genome-wide association approaches. Although this research 

provided compelling evidence for ancestry- or region-specific positive selection acting on 

various genomic loci, evidence remains lacking for selective pressures acting within biologically 

meaningful pathways associated with human ancestral background, particularly among the 

ethnically underrepresented. This gap in knowledge emphasizes the need to explore evolutionary 

mechanisms in a broad biological and phenotypic context. An opportunity to address this gap is 

presented by the plethora of ethnically diverse panels of single nucleotide polymorphism (SNP) 

genotyping data and pathway annotation resources currently available to the scientific 

community. In this thesis, I used computational and biostatistical methods to investigate evidence 

for the phenotypically-favourable maintenance of physically unlinked genetic interactions within 

pathways (i.e., SNP-SNP pairs annotated to genes on separate chromosomes within the same 

pathway) of biological relevance and importance to human ancestral background. I uncovered 

evidence for within-pathway epistatic coevolution based on differential signals of inter-

chromosomal allelic association between individuals of European-American and African-

American ancestry. A flowchart summarizing the computational pipeline I developed is shown in 

Figure 1. 
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Figure 1. Flowchart illustrating the computational pipeline developed for discovering 

population-driven pathway enrichment and selective associations in human genomics data. 

Circled numbers adjacent to text boxes represent modifiable arguments at various stages of the 

pipeline that require predefinition. These arguments require the user to: (1) determine the method 

of calculating the SNP-level test statistic (i.e., directional or absolute value); (2) limit the 

minimum and maximum number of genes per pathway; (3) run the genotype- or phenotype-

based permutation method; (4) set the number of permutation cycles to run; and (5) set the 

thresholds to define significant pathway enrichment and non-enrichment. Abbreviations: HM3; 

International HapMap Project phase 3; PNC, Philadelphia Neurodevelopmental Cohort; 1KGP, 

1000 Genomes Project; SNP, single nucleotide polymorphism; GSEA, Gene Set Enrichment 

Analysis. 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2. Introduction 

2.1. The history of modern human adaptation 

 Our understanding of life on Earth was fundamentally shifted when British naturalists 

Alfred Wallace and Charles Darwin each described their discoveries of the theory of natural 

selection in the mid-19th century [1]. Darwin’s primary work, On the Origin of Species by Means 

of Natural Selection, or the Preservation of Favored Races in the Struggle for Life [2], provided 

the scientific community, along with the entire global community, insight into the mechanisms 

by which evolutionary change is mediated by natural selection. In the years following this 

seminal discovery, research in the field of population genetics had advanced extensively, paving 

the way to considerable progress in the elucidation of the various molecular and mechanistic 

factors behind the evolution of natural populations [3]. Furthermore, we now understand the 

important contribution of both random chance and natural selection as drivers of evolutionary 

change [4, 5], an understanding that has resulted in the evolution of the very concept of natural 

selection. Several modes of selection have thus been characterized, all of which ultimately stem 

from whether an allele is advantageous or deleterious within a certain population. Like Darwin 

and Wallace, I was primarily interested in exploring modes of adaptive evolution, which is 

controlled by positive evolutionary forces acting on phenotypically-beneficial loci [6]. 

 The story of modern human adaptive evolution begins with the out-of-Africa migration 

that occurred roughly 200,000 years ago. Our species spread across the globe to inhabit a variety 

of novel habitats, from tropical to arctic climates, from high- to low-altitude terrains, and even 

from regions of high-fat to starch-rich nutritional diets. During this migration period, our early 

human ancestors encountered and interbred with archaic populations such as Neandertals and 

Denisovans, resulting in the introgression of archaic genomes into the modern human genomes 

of non-African, and possibly African, populations [7, 8]. In addition, several human populations 

underwent rapid growth in population size, primarily due to the transition from a primitive 

hunting-gathering lifestyle to the era of practicing agriculture and pastoralism. This shift in 

lifestyle resulted not only in rapid population growth and increased population densities, but also 

an overall increase in infectious diseases [9]. As a result of having to adapt to such newly diverse 
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dietary practices and geographic environments, local positive selection pressures were driven 

towards population- or region-specific mutations that influence adaptive phenotypes, such as 

skin pigmentation, height, lactase persistence, hypoxia modulation, and endemic pathogenic 

response [9].  

 Interpreting the multifaceted nature of local human adaptation has proven to be 

particularly challenging, as it ultimately requires the “identification of the genomic regions under 

selection, the phenotypes that selection is acting upon, and ideally, the external conditions 

driving the selection” [9]. Candidate gene and genome-wide association studies (GWAS) 

represent two complementary approaches traditionally used to identify the genetic basis of 

common diseases [10], and have been widely used to draw connections between genetic 

variation and natural selection before the maturation of population genomics [11]. In this vein, 

several methods have used these complementary approaches to identify candidate trait-associated 

variants and subsequently employ genome-wide scans for selection [12, 13]. Although these 

single-loci methods have their inherent pitfalls, as I will discuss in further detail below, they have 

shed considerable light on the history of global human adaptation, assisting us in understanding 

how natural selection has shaped modern population variation. Notably, this work has provided 

compelling evidence for strong population-specific selective pressures acting upon numerous 

genomic loci, some of which include: LCT [14], granting the persistence of lactose tolerance 

throughout adulthood within various populations of northern Europe and Africa; EPAS1 [15], 

allowing individuals of Tibetan ancestry to thrive in a heavily oxygen-depleted environment; and 

G6PD [16], DARC [17, 18], and HBB [19, 20], which, on their own, confer a reduced risk to 

malaria infection within populations of sub-Saharan Africa. 

2.2. Pathway analysis—bridging the gap between complex 
genotype and adaptive phenotype 

 As of September 2016, numerous human GWAS publications have described more than 

20,000 unique SNP (single nucleotide polymorphism) associations to a wide variety of diseases 

and traits [21], after which candidate gene approaches can be applied to gain an improved 

understanding of those genetic associations. However, due to the inherent circular nature of the 

candidate gene study, inferring new hypotheses about development and disease from GWAS-
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identified SNP associations has been a major ongoing challenge. A candidate gene study requires 

both the formation of an a priori hypothesis about the potential genes under selection, as well as 

an understanding of the underlying genotype–phenotype relationships, an understanding that is 

crucial to forming the initial hypothesis [22]. For a handful of traits with a well-defined, 

Mendelian-like architecture, such as lactase persistence and cystic fibrosis, the identification of 

the proper candidate genes to study can be accomplished due to the ease of distinguishing their 

adaptive phenotypes. However, this identification process becomes increasingly difficult for 

complex phenotypes with uncertain genetic architecture [6], which is the case for the majority of 

common traits and diseases. Several studies have thus attempted to focus on genes that 

frequently appear as targets of selection, such as those involved in the immune response [23], but 

could ultimately lead to a biased set of candidate loci. Also, the majority of significant trait-

associated functional variants are located in regulatory regions far removed from genic loci [24], 

which poses a major issue when attempting to efficiently detect positive selection using a 

candidate gene approach [6]. Finally, those variants with genome-wide significance typically 

account for a small portion of the observed heritability of a given trait—a phenomenon 

commonly known as the problem of missing heritability [25]. 

 Researchers have since explored the mystery of missing heritability, and evidence 

suggests that estimates of total heritability may be inflated by genetic interactions [26]. Unlike 

additive effects, genetic interactions describe unexpected phenotypes that result from 

combinations of two or more functionally-related genetic variants [26, 27]. For example, a 

synthetic lethal genetic interaction results when the combined mutation of two or more genes 

causes cell death, while the mutation of either single gene does not [28]. Recently, the first global 

genetic interaction network for any system was completed by mapping millions of double mutant 

genetic interactions in S. cerevisiae [29]. The network revealed the complex functional wiring of 

the cell, demonstrating that interactions tend to occur in particular network structures connecting 

across functionally-related biological mechanisms and pathways. Within the yeast genome, 

~1000 genes are essential for haploid cell viability and may be considered as Mendelian-like 

genetic traits as the phenotype is manifest following mutation of a single gene [30, 31]. In 

contrast, ~500,000 negative digenic interactions exist in the global genetic interaction network, 
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including ~10,000 synthetic lethal interactions between nonessential genes [29], highlighting the 

power of genetic interactions to compound phenotypes associated with single mutations and 

generate unexpected phenotypes. Previous studies have shown that for essential pathways and 

gene complexes (e.g., the proteasome), numerous within-pathway hypomorphic alleles can 

combine to generate a synthetic lethal phenotype [32, 33]. However, many more between-

pathway synthetic lethal interactions have identified pathways that operate together to control 

essential cellular functions [34]. Between-pathway interactions in human genetics data have 

recently been explored using a method known as BridGE (Bridging Genes with Epistasis) [34], 

which I discuss in more detail later [4.3 Research applications]. 

 A genetic interaction in which one mutation masks or suppresses the effects of an allele at 

another locus is referred to in classical genetics as epistasis, and may explain a significant 

component of missing heritability [25, 26], though the mechanistic details are difficult to infer 

[35]. It is clear from many genetic studies that epistatic interactions can affect heritability [36]. 

For instance, it is fairly common for the phenotypic effect of a gene knockout to be masked by a 

second knockout [37], or for an additional mutation to be required to elicit a phenotypic effect in 

a particular mutant background [38]. Epistasis is also of fundamental importance at the 

macroevolutionary scale. In terms of molecular evolution, advantageous changes in the genotype 

of one species are often deleterious in others, indicating that the genotypic effect on fitness is 

dependent upon the genetic background in which it is identified [39]. Below, I will return to a 

discussion of the role of epistasis in relation to missing heritability and evolutionary selection. 

But first, I will highlight a relatively novel methodological approach that has been devised to 

address the aforementioned issues regarding candidate gene and genome-wide association 

studies—pathway enrichment analysis. 

 Given our understanding that most common allele associations identified by GWAS have 

exhibited modest effect sizes and that genes typically function and interact within functionally 

associated pathways and networks [35], genome-wide datasets are increasingly being used as 

foundations for uncovering pathways and networks associated to phenotypes. A major motivation 

for this type of analysis is the vital importance of developing strategies for the diagnosis, 

treatment, and prevention of complex, polygenic diseases [36]. During the last several years, 
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pathway-based methods have been increasingly used for secondary post-GWAS analysis [22]. 

Generally, pathway enrichment analysis tests for the significant relationship of biologically or 

functionally associated sets of genes with a phenotype, and can reveal hidden effects that would 

otherwise be missed from single loci analyses [22]. In cases where individual loci fail to exhibit 

significant genome-wide association with a trait, pathway-based studies have demonstrated that 

functionally related loci can collectively have a large impact on biological phenotypes and 

disease susceptibility, as has been shown in studies of breast cancer [37], Crohn’s disease [38], 

and type 2 diabetes [39]. Pathway analysis thus represents an increasingly “powerful and 

biologically-oriented bridge between genotypes and phenotypes” [22], and will serve as the 

primary tool I utilize to draw functional associations between pathways and human ancestry. 

2.3. The progressive diversification of the genomics study 
sample landscape 

 For my thesis work, I take advantage of the diverse catalogues of human genetic variation 

(i.e., SNP array-based genotyping data) that have become available to discover how biologically 

meaningful pathways are associated with ancestral background. Prior to 2009, however, this 

effort would have been challenging since the vast majority of GWAS participants were of 

European ancestry (96%) [40]. In an effort to avoid limiting the benefits of genomics research 

and medicine to “a privileged few” [41], the scientific community began investigating 

individuals from an increasingly broader panel of ancestral backgrounds, and as a result, 

increased the proportion of GWAS participants of non-European descent or admixed origin five-

fold by 2016 to nearly 20% [42]. However, most non-European participants were of Asian 

ancestry, with individuals of African and Latin American ancestry, Hispanic people, and native or 

indigenous peoples together representing less than 4% of all samples analyzed in GWAS [42]. 

 Thus, despite the US National Institutes of Health (NIH) mandating the inclusion of 

diverse participants in its funded biomedical research more than 20 years ago, NIH-funded 

genomics studies are still missing a large portion of global genetic variation [42]. The lack of 

diversity in study samples impairs our ability not only to accurately identify associations 

between genetic variants and disease in people of a variety of ancestral backgrounds, but also 

affects our ability to detect rare conditions in underrepresented populations [43]. A complex 
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network of logistical, cultural, and historical factors likely contribute to this observed “European 

bias” [42] in GWAS, and the lack of sampling diversity remains an issue when considering the 

widespread application of genome-wide association findings to the greater global population. In 

the case of targeted drug therapies, ancestry-specific differences determine the frequency of 

metabolism-associated variants, and consequently have crucial implications in the consideration 

of drug efficacy and safety between individuals of various backgrounds [44]. Additionally, recent 

research has found that, compared with Europeans, individuals of African ancestry have a greater 

chance of being genetically misdiagnosed with a mutation that gravely increases the risk of 

hypertrophic cardiomyopathy [45], a misdiagnosis that could be prevented by including more 

ethnically diverse controls in candidate gene studies [43]. In fact, this misclassification has been 

primarily attributed to the fact that the original study control sample was mostly comprised of 

European individuals [46]. Since the implications of using undiversified ethnic sampling in 

genomics studies are significant, several integral efforts have since addressed the pervasive 

sampling bias in this line of research. 

 One of the first resources describing population genetic variation was released in 2001, 

providing a high-density SNP map of over 1.4 million genetic variants [47] of which ~2% were 

genotyped in three populations by the SNP Consortium [48]. Closely following this initiative 

was the International HapMap Project [49], an effort that provided a publicly available 

microarray-based variant catalogue and associated haplotype map of 3.8 million variants 

genotyped in several populations from Europe, Africa, Asia, and America, allowing researchers 

to begin studying natural variation at the population level. More recently, whole genome and 

whole exome sequence data are being used for genotyping studies as accessibility to these tools 

increases [42]. In 2008, the 1000 Genomes Project (1KGP) [50] was launched to establish a deep 

catalogue of human genetic variation, and by October 2015, the project had genotyped ~88 

million variants across 26 populations worldwide. Prior to the recent release of the final 1KGP 

dataset, the previous data releases had inspired researchers to begin the fine mapping of GWAS-

identified genomic loci [51], revealing further insights into the molecular basis of several 

complex diseases. Other studies have identified between-population differences in the genetic 

architecture of several traits and diseases using ancestry-specific variant panels derived from the 
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1KGP data [52]. Using these rich catalogues of ethnically diverse genetic variation provided by 

the HapMap and 1000 Genomes projects, I aimed to identify signals of ancestry-specific 

selection within the context of biologically meaningful pathways via statistical measures of 

population variation. 

2.4. Detecting evidence for pathway-level epistatic coevolution 
via linkage disequilibrium 

 A key distinguishing feature of genetic variation among human populations is the 

nonrandom association between pairwise combinations of sites in the genome, otherwise known 

as linkage disequilibrium (LD) [53]. In statistical terms, LD is defined as the difference between 

the observed frequency of a particular combination of alleles at two loci and the frequency 

expected for random association, based on the assumption that recombination will result in an 

equilibrium distribution of alleles at each locus given sufficient evolutionary time [54]. Between 

proximally linked sites in the genome, disequilibria is predominantly the result of random 

genetic drift, and comparably, the common ancestry of unrecombined regions of a chromosome 

[55]. Such instances of proximally linked, or short-range, LD are of great practical interest as 

they can be used for the identification and/or localization of genes contributing to disease 

susceptibility [56]. Additionally, recent and ongoing selective sweeps can be identified using 

blocks of unrecombined chromosome regions [57, 58]. Though these instances of short-range LD 

have been well studied, LD between sites separated by considerably larger distances, including 

those residing on entirely separate chromosomes, have not been characterized to the same extent. 

Despite the term ‘linkage’ in linkage disequilibrium, alleles at separate physically unlinked loci 

may also exist in disequilibrium [53], and was originally devised to detect allelic association due 

to epistatic selection [59, 60]. Notably, such instances of allelic association could potentially 

reveal the presence of significant evolutionary pressures on the genome, given that random 

recombination events tend to rapidly break down disequilibria between sites separated by large 

physical distances, and since sites on separate chromosomes are not physically linked. In other 

words, the existence of allelic association between physically unlinked genomic loci suggests the 

possibility of counteracting evolutionary forces at work [55]. 
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 Several potential forces may explain the observation of LD between largely separated or 

physically unlinked genetic variants, including population admixture, random genetic drift, 

hitchhiking, chromosomal structural variation, and epistatic selection [55]. Population admixture 

has been proposed to explain unusual patterns of long-range LD found in the Southern African 

Lemba tribal population [61]. Random genetic drift may also contribute to long-range LD but, 

even in a population at demographic equilibrium, recombination between distant chromosomal 

sites will largely, but not completely, eradicate LD caused by random genetic drift. Further, 

disequilibria can be generated and amplified by recurrent bottlenecks [62] and/or changes in 

population demography [63], respectively, as these forces may have contributed to the 

disequilibria identified in some non-African populations [64]. Genetic hitchhiking could also 

explain patterns of long-range LD by generating large haplotype blocks with a positively selected 

mutation, resulting in widespread disequilibria over the spanning region [57]. In terms of 

structural variation, chromosomal inversions can effectively alter patterns of recombination and 

consequently cause LD to extend over unusually large regions of a chromosome [65]. Finally, 

and of most interest for my thesis work, epistasis can create and maintain LD indefinitely [59] by 

selecting for specific combinations of alleles at different loci. Notably, epistatic coevolution 

between two physically unlinked loci has been reported in the human genome [66]; however, test 

power was not high enough to reliably detect associations given the study sample size. 

Therefore, by testing for significant signals of inter-chromosomal pairwise linkage 

disequilibrium within pathways enriched for human ancestry, I aimed to increase the power of 

detecting selection-induced allelic associations and determine evidence for biologically 

meaningful epistasis. 

 As eloquently stated in Phillips’ paper, epistasis has long been recognized to be 

fundamentally important to understanding both the structure and function of genetic pathways 

and the evolutionary dynamics of complex genetic systems [67, 68]. Since the favoured 

phenotype depends on particular epistatic interaction of alleles at multiple loci, the nonrandom 

association between those alleles is expected to increase over generations [69], and can thus be 

used to study the occurrence of species-specific evolutionary forces. In model organisms such as 

S. cerevisiae [70, 71], C. elegans [72], and D. melanogaster [73] these interactions have been 
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widely observed, but in humans, they are difficult to detect and explain in a functional context. 

This challenge may reflect several factors relating to human samples, such as diverse genetic 

background, low allele frequency, limited sample size, complexity of interactions, and 

insufficient effect size [74, 75]. Despite these drawbacks, several genome-wide interaction-based 

association studies have provided evidence for epistasis in a variety of complex traits and 

diseases in humans [76-82]. As an interesting example, a team of researchers recently found that 

the epistatic interaction between the risk alleles DDX39B (rs2523506) and IL7R (rs2523506A) 

increases the risk of multiple sclerosis considerably more than the independent effect of either 

variant [82]. Thus, identifying comparable interactions across the human genome may uncover a 

significant source of missing heritability for several complex traits and diseases [25, 26], and can 

shed additional light on evolutionary forces acting within functionally associated pathways (e.g., 

[83-86]) in an ancestry-specific manner. 

 In this thesis, I take advantage of existing databases of biological pathway annotations, 

ethnically diverse panels of genotyping data, and Gene Set Enrichment Analysis (GSEA) to 

identify pathways enriched for human ancestral background. I then perform a test for within-

pathway epistatic coevolution by measuring the extent and strength of allelic association between 

physically unlinked genetic interactions (i.e., statistical association of SNP-SNP pairs on separate 

chromosomes within a pathway) among those identified pathways. By explicitly filtering for 

pairwise combinations of variants interacting on separate chromosomes, I can effectively 

distinguish between signals of coevolution generated by epistatic selection from those generated 

by intrinsic cellular factors such as recombination, chromosomal structural variations and/or 

large sweeps resulting from genetic hitchhiking. Using this approach, I identify significant 

signals of adaptive coevolution within pathways primarily involved in the immune response 

among individuals of African-American ancestry.  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3. Results 

3.1. Environmentally associated pathways are enriched for 
human ancestry 

 To begin to identify biological pathways that are enriched for human ancestral 

background, I performed GSEA on the basis of SNP-level variation in minor allele frequency 

(ΔMAF) between individuals of European-American and African-American ancestry. I used SNP 

genotyping data from two independent datasets, the International HapMap Project phase 3 

(HM3) and the Philadelphia Neurodevelopmental Cohort (PNC) (Table 1). I gathered pathway 

annotation data from the publicly available Bader Laboratory database (http://

download.baderlab.org/EM_Genesets/), which provided a set of 3,781 biological pathways to 

test after controlling for pathway size (see Materials and Methods for additional details). Prior to 

running GSEA, I linked the array-based SNP genotyping data to pathways by the nearest-gene 

mapping method [87], and selected the single SNP with the largest positive ΔMAF test statistic 

to represent the operative signal of each gene. Typically, a GWAS is performed to generate SNP-

level p values or chi-squared values that are then used for downstream pathway enrichment 

analysis [88]. However, when I ran GSEA using either p values or chi-squared values obtained 

from GWAS, I saw widely insignificant pathway enrichment results. Therefore, for my analysis, 

I implemented a novel ΔMAF test statistic method (see Materials and Methods) due to its 

computational suitability for the type of array-based genomic data I analyze, and since it 

represents a straightforward indicator of population-based genomic differentiation. The 

distribution of the calculated ΔMAF statistic within the HM3 and PNC datasets is shown in 

Figure 2. 

 I first ran GSEA with the SNP genotyping data taken from the publicly available HM3 

dataset. Of the ~3,700 tested biological pathways, I identified 76 as significantly enriched (FDR 

≤ 0.1) for ancestral background (Supplementary Table 1; Table 2). Given the chosen FDR 

threshold, however, a 10% probability exists that the significantly observed pathway enrichments 

represent false positive findings. Thus, in order to uncover pathways that are confidently 

enriched for ancestral background, I repeated this analysis using the genotyping data taken from 

the independent PNC dataset. In this replication analysis, I identified 237 pathways with 
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Figure 2. Distribution of the ΔMAF SNP-level test statistic. The population-based difference in 

minor allele frequency was measured per genotyped SNP from the HM3 (N = 1,594,675) and 

PNC (N = 3,730,475) datasets (top panel). The ΔMAF distribution of the single largest gene-

mapped SNPs from the HM3 (N = 220,064) and PNC (N = 208,622) datasets is also shown 

(bottom panel). The relatively high proportion of 0-value ΔMAF SNPs in the complete HM3 

dataset (top left) represents those variants in which a minor allele frequency was not assigned 

(i.e., NA) in at least one population. This is an artifact that can most likely be attributed to the 

low sample size in the dataset. The two peaks within the positive and negative hemispheres of 

the PNC distribution plot (top right) represent concentrated subsets of SNPs with larger ΔMAF 

values in the European-American and African-American populations, respectively. 

Abbreviations: HM3, International HapMap Project; PNC, Philadelphia Neurodevelopmental 

Cohort; MAF, minor allele frequency. 
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Table 1. Sample size and number of genotyped SNPs from the HM3 and PNC datasets. 

Abbreviations: HM3; HapMap Phase 3; PNC, Philadelphia Neurodevelopmental Cohort; SNPs, single nucleotide 
polymorphisms. 

Table 2. Summary of GSEA input and results. 

Note—the FDR threshold used to determine pathway significance differed between each dataset, at FDR ≤ 0.1 and 
FDR ≤ 0.05 for the HM3 and PNC datasets, respectively, to account for the difference in sample size. The reported 
number of SNPs in pathways reflects the sum of unique variants mapped to all tested pathways after filtering out 

SNPs occurring > 10kb away from its mapped gene. The number of top SNPs reflects the number of unique variants 
mapped to pathways after selecting the single largest ΔMAF SNP to represent each gene’s operative signal. 
Abbreviations: HM3; HapMap Phase 3; PNC, Philadelphia Neurodevelopmental Cohort; SNPs, single nucleotide 

polymorphisms; CE, confidently enriched; nE, nonenriched. 

significant enrichment (FDR ≤ 0.05) for ancestral background (Supplementary Table 2; Table 

2). By explicitly searching for the pathways significantly enriched in both GSEA analyses, I 

identified a total of 19 biological pathways that demonstrate true enrichment for ancestral 

background. I provide a list of these pathways and their enrichment statistics in Tables 3 and 4, 

respectively, and I refer to them as the ‘confidently enriched’ or ‘ancestry-enriched’ pathways for 

the remainder of this thesis. To serve as a negative control for downstream analysis, I also 

defined a set of 18 pathways not enriched for ancestry, or ’nonenriched’ pathways, (Tables 3 and 

5) as a representative set of neutral pathways without enrichment for ancestral background. In 

other words, this set of pathways contain genes that are not largely differentiated in minor allele 

frequency between the two studied populations, potentially reflecting conserved biological 

functionality among European- and African-Americans, rather than conferring selective 

Dataset Sample size (N) SNPs genotyped (N) Overlap (N) Genotyping rate (%)

European African

HM3 165 83 1,594,675
863,354

87.25
PNC 3,314 1,840 3,730,475 98.51

Dataset Pathways 
(N)

Overlap 
(N)

Genes in 
pathways     

(N)

SNPs in 
pathways    

(N)

Top SNPs 
(N)

Significant 
pathways   

(N)

CE 
(N)

nE 
(N)

HM3 3,706
3,464

21,255 862,092 220,064 76
19 18PNC 3,526 18,978 1,799,870 208,622 237
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advantages. The marked variance of GSEA pathway enrichment statistics (particularly the 

normalized enrichment score (NES), nominal p value, and false discovery rate (FDR)) between 

the sets of enriched and nonenriched pathways is graphically represented in Figure 3. 

Encouragingly, the distribution of the ΔMAF SNP-level test statistic did not vary significantly (p 

= 0.434) across the pathway sets (Figure 4), providing evidence for non-artifactual enrichment 

of the confidently enriched pathways due to an overrepresentation of large ΔMAF SNPs mapped 

to those pathways. 

 I next generated a visual overlap-based network of the ancestry-enriched pathways using 

Enrichment Map [89], a tool that assists in prioritizing related pathways for further downstream 

exploration. Using this tool, I discovered prominent themes in the set of confidently enriched 

pathways that are associated with immunity, metabolism, and cell regulation (Figure 5). As an 

additional means of validation, I performed a simple cross-reference analysis of the confidently 

enriched pathway markers with all significantly identified GWAS SNP-trait associations [21]. 

Interestingly, of the pathway loci that overlapped with previously defined GWAS hits (~6%), a 

relatively high number were associated with various metabolic- and immune-related diseases and 

traits (Figure 6). In summary, the original HM3 ~1.5 million SNP dataset was filtered and 

characterized into a biologically meaningful set of 19 pathways significantly enriched for 

ancestral population based on SNP-level variation in minor allele frequency between European-

American and African-American individuals. These pathways will serve to aid in the 

interpretation of potential within-pathway signals of epistatic coevolution by providing a 

common phenotypic context for the statistically interacting SNP-SNP pairs.  



!16

Table 3. List of confidently enriched and nonenriched pathways as determined by GSEA.

ID # Pathway set

Confidently enriched Nonenriched

1 Cellular respiration Activation of gene expression by SREBP

2 Energy derivation by oxidation of 
organic compounds

Ameboidal-type cell migration

3 Eukaryotic translation termination COPII mediated vesicle transport

4 Liposaccharide metabolic process COPI-independent Golgi-to-ER retrograde 
traffic

5 Lymphocyte activation Extension of telomeres

6 Lymphocyte differentiation GABAB receptor II signaling

7 Macromolecular complex disassembly Hemopoietic progenitor cell differentiation

8 Morphogenesis of an epithelium Localization within membrane

9 Nucleoside monophosphate metabolic 
process

Mesoderm development

10 Nucleoside triphosphate metabolic 
process 

Negative regulation of inflammatory 
response

11 Protein complex disassembly Phospholipid transport

12 Regulation of bone mineralization Platelet aggregation

13 Regulation of cAMP biosynthetic 
process 

Positive regulation of NIK/NF-κB signaling

14 Regulation of cyclic nucleotide 
metabolic process

Positive regulation of telomere maintenance

15 Regulation of hemopoiesis Regulation of cell killing

16 Rhythmic process Regulation of DNA damage response, signal 
transduction by p53 class mediator

17 Toll-like receptor signaling pathway Transcriptional regulation of pluripotent 
stem cells

18 TP53 regulates metabolic genes Transport of the SLBP-dependant mature 
mRNA

19 Vacuole organization 



!17

Table 4. Significantly replicated GSEA pathway enrichment statistics. 

Note—Each ID number corresponds to the respective ‘Confidently enriched’ pathway ID number in Table 3 (left). 
FWER statistics were omitted from the table as they are not relevant to this thesis. Abbreviations: HM3; HapMap 

Phase 3; PNC, Philadelphia Neurodevelopmental Cohort; ES, enrichment score; NES, normalized enrichment score; 
NominalP, nominal p value; FDR, false discovery rate. 

ID # Size ES NES NominalP FDR

HM3 PNC HM3 PNC HM3 PNC HM3 PNC HM3 PNC

1 105 98 0.258 0.284 3.650 4.770 0.000 0.000 0.041 0.001

2 148 135 0.267 0.271 3.812 4.415 0.000 0.000 0.035 0.003

3 75 62 0.117 0.115 2.939 3.622 0.018 0.007 0.100 0.013

4 91 84 0.346 0.349 3.114 3.807 0.004 0.000 0.085 0.010

5 183 173 0.321 0.293 3.652 5.236 0.000 0.000 0.043 0.000

6 99 93 0.350 0.318 3.089 4.146 0.000 0.000 0.088 0.005

7 165 146 0.219 0.225 3.559 3.937 0.001 0.000 0.049 0.007

8 168 144 0.327 0.255 2.984 2.842 0.002 0.004 0.100 0.047

9 169 156 0.236 0.208 3.128 3.055 0.002 0.002 0.083 0.035

10 155 140 0.248 0.219 4.499 3.773 0.000 0.000 0.044 0.011

11 157 138 0.226 0.238 3.742 4.654 0.001 0.000 0.037 0.002

12 46 45 0.458 0.405 2.995 3.058 0.004 0.001 0.098 0.035

13 76 70 0.433 0.383 3.194 2.802 0.001 0.006 0.078 0.050

14 102 90 0.387 0.336 3.517 2.852 0.002 0.004 0.047 0.047

15 183 168 0.304 0.223 3.956 3.411 0.000 0.001 0.029 0.021

16 101 93 0.360 0.314 3.217 3.257 0.002 0.000 0.076 0.026

17 74 68 0.374 0.308 3.293 3.043 0.004 0.001 0.070 0.035

18 73 70 0.363 0.265 4.289 3.227 0.000 0.002 0.045 0.027

19 137 119 0.294 0.323 3.272 4.328 0.001 0.000 0.070 0.003
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Table 5. Insignificantly replicated GSEA pathway enrichment statistics. 

Note—Each ID number corresponds to the respective ‘Nonenriched’ pathway ID number in Table 3 (right). FWER 
statistics were omitted from the table as they are not relevant to this thesis. Abbreviations: HM3; HapMap Phase 3; 
PNC, Philadelphia Neurodevelopmental Cohort; ES, enrichment score; NES, normalized enrichment score; 
NominalP, nominal p value; FDR, false discovery rate. 

ID # Size ES NES NominalP FDR

HM3 PNC HM3 PNC HM3 PNC HM3 PNC HM3 PNC

1 39 37 0.280 0.261 -0.022 0.005 0.507 0.470 0.742 0.643

2 92 86 0.293 0.245 0.065 -0.014 0.456 0.499 0.721 0.650

3 64 63 0.234 0.217 0.047 0.065 0.475 0.455 0.725 0.620

4 28 28 0.356 0.345 -0.066 -0.024 0.521 0.494 0.755 0.654

5 24 22 0.280 0.186 -0.048 0.043 0.524 0.627 0.750 0.630

6 33 32 0.385 0.291 -0.025 0.096 0.492 0.434 0.742 0.611

7 25 23 0.227 0.190 -0.022 -0.002 0.565 0.628 0.742 0.646

8 94 86 0.270 0.242 0.041 0.085 0.481 0.459 0.727 0.615

9 48 41 0.238 0.200 0.001 0.030 0.495 0.509 0.734 0.635

10 47 36 0.196 0.166 0.066 0.018 0.456 0.546 0.721 0.640

11 48 40 0.365 0.337 -0.006 -0.090 0.500 0.527 0.736 0.673

12 29 25 0.238 0.187 -0.047 -0.058 0.539 0.637 0.750 0.665

13 20 20 0.302 0.208 -0.093 0.032 0.531 0.604 0.761 0.634

14 42 37 0.249 0.271 0.012 0.026 0.470 0.474 0.730 0.636

15 45 42 0.251 0.205 0.019 -0.004 0.468 0.491 0.730 0.647

16 24 24 0.307 0.258 0.003 -0.007 0.482 0.501 0.734 0.647

17 31 25 0.204 0.205 0.062 0.014 0.533 0.596 0.721 0.641

18 28 26 0.244 0.317 -0.073 -0.065 0.562 0.516 0.756 0.667
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Figure 3. Replication of GSEA pathway enrichment statistics. Each scatterplot represents the 

concordance of the given enrichment statistic calculated per replicated pathway (N = 3,464 total 

points per plot). The black dashed line in each plot represents the correlation of the enrichment 

statistic between both dataset analyses. The strength of correlation is indicated by the R2 

regression coefficient. The confidently enriched pathways (N = 19; pink) are characterized by a 

largely positive NES, low nominal p value, and low FDR. Conversely, the nonenriched pathways 

(N = 18; blue) are characterized by a 0-value NES, and a relatively high nominal p value and 

FDR. The lack of correlation between the nominal p value and FDR statistic can be explained by 

the relative difference in sample size between the HM3 and PNC datasets. This could effectively 

generate a lower pathway FDR in one dataset and not the other. Abbreviations: HM3; HapMap 

Phase 3; PNC, Philadelphia Neurodevelopmental Cohort; ES, enrichment score; NES, 

normalized enrichment score; NominalP, nominal P value; FDR, false discovery rate.  

R2 = 0.324 R2 = 0.174

R2 = 0.173 R2 = 0.166
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Figure 4. Distribution of the ΔMAF SNP-level test statistic per confidently enriched and 

nonenriched pathway. Each box plot represents the total ΔMAF distribution of all SNPs mapped 

to a pathway from the HM3 dataset. The mean ΔMAF of the complete set of confidently 

enriched (0.285 ± 0.157 s.d.) and nonenriched (0.290 ± 0.146 s.d.) pathways does not differ 

significantly (p = 0.434). The p value was calculated using the two-sided Student’s t-Test. 

Abbreviations: MAF, minor allele frequency; s.d., standard deviation. 
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Figure 5. Pathway enrichment map of the ancestry-enriched pathways. The set of confidently 

enriched pathways (N = 19 pink nodes) are visually summarized within thematically associated 

subnetworks using an overlap-based network algorithm, in which pathway nodes are laid out 

using a force-directed layout. Subnetworks (annotated circles) are annotated according to the 

shared function of the pathways within that cluster. The size of each node corresponds to the size 

of the given pathway. Green edges connect pathways with at least 0.375 gene member overlap. 
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Figure 6. Cross-reference of the confidently enriched pathway markers with known GWAS 

SNP-trait associations. Each bar represents the number of overlapping ancestry-enriched SNPs 

(N = 89 total) per GWAS trait, and are thematically grouped to 16 different categories according 

to the NHGRI-EBI GWAS Catalog. The GWAS SNP-trait associations (N = 50,086) were taken 

from the NHGRI-EBI Catalog database, version 1.0.1 (available for download online from 

https://www.ebi.ac.uk/gwas/docs/file-downloads, accessed September 26, 2017). To note, 

multifactorial traits and diseases are only assigned to a single category. For example, Crohn’s 

disease is classified as a disease of the digestive system but may also fall under the category of 

an immune system disease. Each ancestry-associated pathway contains at least one SNP with a 

GWAS-derived SNP-trait association. 

3.2. Immune response pathways demonstrate significant signals 
of coevolution in African-Americans 

 I measured inter-chromosomal pairwise linkage disequilibrium between pathway-level 

SNP-SNP associations to infer signals of within-pathway epistatic coevolution. Though I use the 

term LD to describe these associations, I want to reiterate that they are not a result of linkage 

between the loci. Instances of allelic association between physically unlinked loci could 

potentially reflect other population genetic factors unrelated to epistatic coevolution; however, 

until further validated, I will refer to any identified signal as within-pathway coevolution. For 

example, one possible contributor to is the difference of genotypic structure between the 
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Figure 7. Geographic location and genotype stratification of the European-American and 

African-American study samples. Of the two ancestral samples studied (A), principal component 

analysis (B) of the HM3 and PNC data visually stratifies the genotypes of the 83 African-

American ancestry individuals (yellow) and 165 European-American individuals (purple) from 

the HM3 dataset. Ethnicity of the PNC samples was defined as groups that lie within ±5 standard 

deviations of the PC1, PC2 centroid of the corresponding HM3 samples, resulting in 1,840 

African-American and 3,314 and European-American samples. Abbreviations: HM3; HapMap 

Phase 3; PNC, Philadelphia Neurodevelopmental Cohort; PC, principal component. 

European- and African-American populations (Figure 7). As mentioned previously in the 

Introduction, forces affecting population demography (e.g., bottlenecks, colonization) can 
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effectively generate disequilibria. The particular African population (ASW) I studied was 

sampled from the United States, and as such, genetically resembles a widely diverse mixture of 

African populations. The majority of African Americans are descended from the ~600,000 

Africans brought to British North America during the Atlantic slave trade [90, 91], and were 

deported primarily from particular geographic regions of western Africa, although more central 

and eastern locations have also contributed [92, 93]. The European population (CEU) was also 

sampled from the United States, but more specifically consists of individuals with northern and 

western European ancestry. This is a population known to have developed subsequent to the out-

of-Africa migration [94], a bottleneck which effectively resulted in decreased genetic diversity 

within this population, corresponding to their increased distance from Africa [95]. Overall, there 

is much historical and epidemiological evidence to suggest substantial heterogeneity in the 

genetic composition between individuals of European-American and African-American ancestry, 

which could play a role in the generation of disequilibria within each respective population. 

 I first determined all intra- and inter-chromosomal SNP-SNP interaction pairs within the 

complete sets of confidently enriched (N = 150,630 total pairs) and nonenriched (N = 19,565 

total pairs) pathways, filtered for the inter-chromosomal pairs among both sets of pathways 

(confidently enriched, N = 141,999; nonenriched, N =18,437; Table 6), and then measured the 

strength of association (R2) per inter-chromosomal SNP-SNP pair. I determined the overall 

strength of coevolution within the complete set of confidently enriched pathways by measuring 

whether the cumulative distribution of R2 correlation within the enriched pathways differed 

significantly from that of the nonenriched pathways (see Materials and Methods). I reasoned that 

rather than generating a null R2 distribution of ‘pseudo’ pathways as my negative control, by 

randomly grouping genes together without any functional or biological association, it would be 

more informative to identify a significant shift in R2 distribution between two functionally 

distinct pathway sets (i.e., enriched and not enriched for ancestry). This approach should 

facilitate discovery of confidently enriched pathways of true biological relevance to ancestral 

background, as opposed to determining the significance of pathway classification in general. 

Upon comparing the R2 distribution shift between the cumulative sets of enriched and  
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Table 6. Total number of within-pathway pairwise SNP-SNP interactions per complete set of 

enriched and nonenriched pathways. 

Abbreviations: Inter, inter-chromosomal; Prop, proportion. 

nonenriched pathways, I did not determine any significant evidence for coevolution (p = 0.54) 

within the entire set of confidently enriched pathways (Figure 8). It is highly plausible, however, 

that the cumulative R2 distribution could be negatively skewed by pathways containing variants 

with weak inter-chromosomal pairwise LD association. 

Pathway set All samples European only African only

Total 
(N)

Inter 
(N)

Prop 
(%)

Total 
(N)

Inter 
(N)

Prop 
(%)

Total 
(N)

Inter 
(N)

Prop 
(%)

Enriched 150,630 141,999 94.27 144,044 135,780 94.26 146,973 138,557 94.27

Nonenriched 19,565 18,437 94.23 18,745 17,673 94.28 19,291 18,175 94.21
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Figure 8. Degree of coevolution signal within the confidently enriched pathways. Density (A) 

and empirical cumulative distribution function (eCDF; B) plots graphically depict the strength of 

association (R2) between all inter-chromosomal pairwise SNP-SNP interactions within the 

confidently enriched (pink; N = 141,999 interactions) and nonenriched (blue; N = 18,437 

interactions) pathways. The strength of coevolution signal within the entire set of confidently 

enriched pathways is insignificant (p = 0.54) at this level. The p value was calculated using the 

two-sample one-sided Kolmogorov-Smirnov (KS) test. Abbreviations: LD, linkage 

disequilibrium; SNP, single nucleotide polymorphism.  

A

B
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Table 7. Number of inter-chromosomal pairwise interactions per confidently enriched pathway. 

Pathway name All samples (N) European (N) African (N)

Cellular respiration 4,766 4,577 4,677

Energy derivation by oxidation of organic 
compounds

9,581 9,177 9,320

Eukaryotic translation termination 2,438 2,134 2,185

Liposaccharide metabolic process 3,811 3,719 3,726

Lymphocyte activation 15,087 14,417 14,754

Lymphocyte differentiation 4,433 4,257 4,428

Macromolecular complex disassembly 12,579 11,954 12,430

Morphogenesis of an epithelium 13,285 12,806 13,132

Nucleoside monophosphate metabolic 
process 

12,602 11,991 12,168

Nucleoside triphosphate metabolic process 10,388 9,677 9,998

Protein complex disassembly 11,368 10,775 11,228

Regulation of bone mineralization 932 932 932

Regulation of cAMP biosynthetic process 2,644 2,364 2,645

Regulation of cyclic nucleotide metabolic 
process

4,700 4,328 4,700

Regulation of hemopoiesis 15,168 15,004 14,655

Rhythmic process 4,541 4,449 4,361

Toll-like receptor signaling pathway 2,549 2,548 2,408

TP53 regulates metabolic genes 2,420 2,351 2,353

Vacuole organization 8,707 8,320 8,456
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Figure 9. Degree of within-pathway signals of coevolution. Density (A, B) and eCDF (C, D) 

plots graphically depict the strength of association (R2) between all inter-chromosomal pairwise 

SNP-SNP interactions within each confidently enriched and nonenriched pathway. The x-axes of 

plots B and D (representative of plots A and C, respectively) are truncated at R2 ≥ 0.2 to 

A C

B D
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demonstrate the pathways with longer tails of inter-chromosomal pairwise SNP-SNP association. 

Abbreviations: LD, linkage disequilibrium; SNP, single nucleotide polymorphism. 
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Table 8. Significance of within-pathway coevolution signal per confidently enriched pathway. 

Note—p values were calculated using the two-sample one-sided KS test. Nominal significance was determined as p 
< 0.003 (Bonferroni corrected). 

Pathway name p value

Cellular respiration 1

Energy derivation by oxidation of organic compounds 1

Eukaryotic translation termination 1

Liposaccharide metabolic process 7.21×10-18

Lymphocyte activation 4.02×10-15

Lymphocyte differentiation 3.47×10-21

Macromolecular complex disassembly 1

Morphogenesis of an epithelium 1.14×10-53

Nucleoside monophosphate metabolic process 0.999

Nucleoside triphosphate metabolic process 1

Protein complex disassembly 1

Regulation of bone mineralization 1.74×10-42

Regulation of cAMP biosynthetic process 3.73×10-43

Regulation of cyclic nucleotide metabolic process 7.23×10-49

Regulation of hemopoiesis 9.59×10-24

Rhythmic process 5.65×10-19

Toll-like receptor signaling pathway 3.48×10-13

TP53 regulates metabolic genes 0.067

Vacuole organization 2.09×10-9
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 Given these observations, I next assessed the strength of coevolution within each 

confidently enriched pathway independently. To achieve this for a given pathway, I first 

measured the strength of association per inter-chromosomal pairwise SNP-SNP interaction 

(Table 7 and Figure 9), followed by the statistical comparison of the cumulative R2 correlation 

distribution against the entire set of nonenriched pathways (see Materials and Methods). Using 

this approach, I identified 11 out of the 19 ancestry-enriched pathways as having a nominally 

significant (p < 0.003) signal of within-pathway coevolution (Table 8). These pathways are: 

Liposaccharide metabolic process (p = 7.21×10-18), Lymphocyte activation (p = 4.02×10-15), 

Lymphocyte differentiation (p = 3.47×10-21), Morphogenesis of an epithelium (p = 1.14×10-53), 

Regulation of bone mineralization (p = 1.74×10-42), Regulation of cAMP biosynthetic process (p 

= 3.73×10-43), Regulation of cyclic nucleotide metabolic process (p = 7.23×10-49), Regulation of 

hemopoiesis (p = 9.59×10-24), Rhythmic process (p = 5.65×10-19), Toll-like receptor signaling 

pathway (p = 3.48×10-13), and Vacuole organization (p = 2.09×10-9). Examples of the top fifteen 

inter-chromosomal pairwise interactions among all tested pathways are shown in Table 9.  

 Overall, the primary goal of my thesis project was to ask if there were significant signals 

of evolutionary selection acting within biological pathways in a population-specific manner. As a 

result, I repeated the same analysis within the 11 pathways identified above among the 165 

European-American and 83 African-American individuals independently (Figure 10). This was 

accomplished by first categorizing SNP genotypes based on ancestral group and then measuring 

pathway-level inter-chromosomal pairwise SNP-SNP association among each set of population-

specific genotypes separately. Interestingly, only the Regulation of hemopoiesis (p = 4.74×10-4) 

and Toll-like receptor signaling pathway (p = 5.30×10-4) pathways remained nominally 

significant (p < 0.005) in the African-American ancestry group after population-based 

stratification (Table 10). These two pathways are distinct in function, with only 3% overall gene 

member similarity (Table 11), but each have marked roles in the human immune response. As 

described in AmiGO v.2.4.26, the Regulation of hemopoiesis pathway broadly constitutes “any 

process that modulates the frequency, rate or extent of hemopoiesis” [96], a process that is 

primarily involved with the development of the immune system. Hemopoiesis (or hematopoiesis) 

is defined as the ongoing production of blood cells and platelets throughout adulthood, starting 
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from embryonic development, to maintain the circulatory system [97]. By using model 

organisms such as zebrafish [98], mouse [99], as well as humans [100], researchers have begun 

to elucidate the mechanisms underlying hematopoietic stem cell development, an understanding 

that has important implications in the field of regenerative medicine [97]. Additionally, the Toll-

like receptor signaling pathway pathway is involved with the innate immune activation response, 

broadly constituting “any series of molecular signals generated as a consequence of binding to a 

toll-like receptor (TLR), [which] directly bind pattern motifs from a variety of microbial sources 

to initiate innate immune response” [96]. In contrast to the adaptive immune system, the innate 

immune system represents the non-specific primary defense mechanisms used to fight against 

pathogenic infection, and is phylogenetically conserved across almost all multicellular organisms 

[101]. In Drosophila, the Toll signaling pathway is crucial for the response to fungal infection 

[102] whereas, in mammals, TLR-originated pathways are mostly responsible for host defense 

against microorganisms [103] and thus have important roles in various immune disorders and 

infectious diseases [104]. In the Discussion, I discuss in more depth the relevance and 

implications of these pathway findings in regards to adaptive evolution among the studied 

populations, as well as the implications of discovering population-driven coevolving genetic 

interactions within those pathways.  

 In order to provide a visual representation of the significant pathway-level genetic 

crosstalk identified via the allelic LD association analysis, Figures 11 and 12 graphically depict 

the genome-wide distribution of the within-pathway inter-chromosomal pairwise SNP-SNP 

interactions among gene members of the Regulation of hemopoiesis and Toll-like receptor 

signaling pathway pathways, respectively, in 2D (generated via the RCircos package [105]). 

Additionally, examples of the top fifteen inter-chromosomal interactions among all tested 

pathways are shown in Table 12, which effectively depict the variation in the strength of SNP-

SNP inter-chromosomal association between individuals of European- and African-American 

ancestry.  
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Table 9. Pairwise R2 correlation value of the top within-pathway inter-chromosomal interactions. 

Note—Each ID number corresponds to the respective ‘Confidently enriched’ pathway ID in Table 3. As a result of 
the inherent similarity between a number of the ancestry-enriched metabolic pathways, for example the Nucleoside 

monophosphate metabolic process (#9) and Nucleoside triphosphate metabolic process (#10) pathways, the 
interacting loci are identical. This pathway similarity is captured by the enrichment map shown in Figure 5. The 
pathway marked by an asterisk (*) represents the nonenriched Ameboidal-type cell migration pathway (#2). 

Abbreviations: Chr, chromosome; SNP; single nucleotide polymorphism.  

Genetic interaction pair R2 ID #

Chr SNP Gene Chr SNP Gene

4 rs28476740 PIGY 1 rs34676516 PIGV 0.363 4

17 rs34165301 ALDOC 1 rs12135218 UQCRH 0.331 9

17 rs34165301 ALDOC 1 rs12135218 UQCRH 0.331 10

16 rs2967157 UQCRC2 10 rs12259919 NDUFB8 0.329 1

16 rs2967157 UQCRC2 10 rs12259919 NDUFB8 0.329 2

10 rs12259919 NDUFB8 3 rs11706052 IMPDH2 0.329 9

16 rs2967157 UQCRC2 10 rs12259919 NDUFB8 0.329 9

16 rs2967157 UQCRC2 10 rs12259919 NDUFB8 0.329 10

5 rs40680 SEMA5A 2 rs11691947 SEMA4F 0.296 2*

3 rs2713616 PLXND1 2 rs11691947 SEMA4F 0.245 2*

11 rs1794072 SYT7 7 rs2699803 SNX10 0.244 19

14 rs2301113 HIF1A 3 rs1126478 LTF 0.243 15

8 rs2409805 GATA4 5 rs6580257 FGF1 0.242 8

5 rs2227282 IL4 1 rs1057079 MTOR 0.241 15

16 rs12444401 PLCG2 13 rs12428172 FLT3 0.240 5
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Figure 10. Degree of ancestry-specific within-pathway signals of coevolution. Density (A, B) 

and eCDF (C, D) plots graphically depict the strength of association (R2) between all inter-

chromosomal pairwise SNP-SNP interactions within each confidently enriched and nonenriched 

pathway across the European- and African-Americans independently. The x-axes of plots B and 

D (representative of plots A and C, respectively) are truncated at R2 ≥ 0.2 to demonstrate the  

pathways with longer tails of inter-chromosomal pairwise SNP-SNP association. Abbreviations: 

LD, linkage disequilibrium; SNP, single nucleotide polymorphism.  

A C

B D
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Table 10. Significance of ancestry-specific within-pathway coevolution signal per previously 

identified coevolving pathway. 

Note—p values were calculated using the two-sample one-sided KS test. Nominal significance was determined as p 
< 0.005 (Bonferroni corrected). 

  

Pathway name p value

European African

Liposaccharide metabolic process 0.077 0.009

Lymphocyte activation 0.078 0.007

Lymphocyte differentiation 0.469 0.122

Morphogenesis of an epithelium 0.406 0.251

Regulation of bone mineralization 0.280 0.987

Regulation of cAMP biosynthetic process 0.106 0.493

Regulation of cyclic nucleotide metabolic process 0.316 0.452

Regulation of hemopoiesis 0.203 4.74×10-4

Rhythmic process 0.738 0.650

Toll-like receptor signaling pathway 0.051 5.30×10-4

Vacuole organization 0.307 0.019



!36

Table 11. Gene members of the Regulation of hemopoiesis and Toll-like receptor signaling 

pathway pathways. 

Note—Bolded genes represent those annotated to both pathways. Genes followed by an asterisk (*) represent those 
with evidence for recent positive selection (see Supplementary Tables 4 and 5 for additional details).  

Pathway name Gene members

Regulation of 
hemopoiesis 

HIF1A*, MTOR, CDK6, LTF*, PRKCZ, IL4*, PRDM16*, RUNX1, RC3H1, 
FOXO3*, DCSTAMP, ZBTB16, FNIP1*, KIAA0922, FOXP1*, PRKCA*, 
RARA, VNN1*, NLRP3, C1QC, PRMT1, HES1, GPR55, GLI2*, IL34, IL7, 
MEF2C, LILRB3, GAS6, SPI1*, CAMK4*, TAL1, NOTCH1, MEIS1, 
FLCN*, TMEM178A, CTNNBIP1, HIST1H4D*, TESPA1, TESC, GLI3*, 
MYC, MEIS2, AXL, ACE*, ACVR2A*, IHH, SPINK5, ACVR1B, LEF1, 
KMT2E, IL17A*, TRAF6, CASP8, TGFBR2, IRF4*, CDKN2A*, CSF1, 
BMP4, IFNA2, CD86*, GATA3, FOXC1, FSHR, PTPN2, CD80, ZAP70*, 
TLR4, PTK2B*, THPO, APCS, HES5, MYB, LYN*, LGALS3, TNFSF4, 
CARTPT*, SYK, ZC3H8, HIST1H4H, ZFPM1, FSTL3, IL12B, ANXA1, 
LGALS9, ARNT, ETS1, PURB, L3MBTL1, ZNF16, HMGB1, N4BP2L2, 
PDCD2, SCIN, TNFSF11*, ZNF675, MAPK14*, CD2, LDB1, CLPTM1, 
MMP14, SFRP1, NCKAP1L, TLR3, SOCS5, IL23R, FAM213A, SART1, 
FES, JAK3, IL12RB1, IRF1*, HLA-B, FADD, LIF*, ZBTB1, CD46, 
CCR1*, IL3*, SHH, HIST1H4C*, LEO1*, TNFSF9, CDC73*, CTLA4, 
IFNG*, LILRB1, OCSTAMP, CIB1, HCLS1*, CALCA, CTR9*, XBP1, 
EIF2AK2, HAX1, HIST1H4A*, HIST1H4B*, RIPK1*, MAPK11, 
HIST1H4F*, IL27, WDR61, CSF3, IKZF3, LILRB2*, MAFB, AGER, 
HOXA7, CCL3, LILRB4, HLA-G*, CCL19, ACIN1, HIST1H4J*, FOXJ1, 
IFNB1, INHBA*, LGALS1, PNP, INHA, ADIPOQ, TNF*, MED1, SOD1*, 
GAS2L1, MIXL1, HIST4H4, HOXB8, IL23A, HMGB2, PF4*, IFNL1, 
ADAM8*, HIST1H4E*, HIST1H4L*, HIST1H4K*, PRELID1, ANKRD54, 
IRF7, CEBPB, PPP2R3C, PAF1*, HOXA9

Toll-like receptor 
signaling pathway 

TRAF3, TLR1*, TLR10, UBE2D2, PIK3R4, UBC, IRF3, UNC93B1, 
CD180*, TAB2, PRKCE, TNIP1*, PIK3C3, PIK3AP1, CNPY3, MAP3K1, 
TBK1, CD36*, TRAF6, TLR6, CASP8, UBA52, NR1H4*, RFTN1*, 
LGMN, TRIL, TANK*, TNIP3, IRAK3, IKBKE, TLR4, CHUK*, TNIP2, 
UBE2D1, UBE2D3, CTSK, COLEC12, CTSS*, ITGB2, LGALS9, CTSL, 
IRAK4*, RIPK2, SCARA3, HSP90B1*, TICAM1*, S100A14, CTSB*, 
IRAK2*, TLR3, TLR5*, ITGAM*, FADD, LBP, TAB1, IKBKB*, CD14, 
HSPD1*, TLR2, MAP3K7, RIPK1*, LY96, REG3G, BIRC3, TIRAP, 
MAPKAPK2, MAPKAPK3*, TLR9, BCL10, BIRC2, MYD88, RPS27A, 
UBB, IRF7
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Figure 11. Graphical representation of inter-chromosomal pairwise genetic interactions within 

the Regulation of hemopoiesis pathway. The linked circos plot depicts the genome-wide spread 

of inter-chromosomal pairwise interactions found between the gene members (N = 183) of the 

Regulation of hemopoiesis pathway. Each coloured line represents a statistical interaction 

between a pair of physically unlinked loci. Only those interactions with a linkage disequilibrium 

correlation coefficient of R2 ≥ 0.1 are shown (N = 747 from 15,168 total interactions) to highlight 

the stronger inter-chromosomal interaction pairs within the pathway.  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Figure 12. Graphical representation of inter-chromosomal pairwise genetic interactions within 

the Toll-like receptor signaling pathway pathway. The linked circos plot depicts the genome-

wide spread of inter-chromosomal pairwise interactions found between the genes members (N = 

74) of the Toll-like receptor signaling pathway. Each coloured line represents a statistical 

interaction between a pair of physically unlinked loci. Only those interactions with a linkage 

disequilibrium correlation coefficient of R2 ≥ 0.1 are shown (N = 103 from 2,549 total 

interactions) to highlight the stronger inter-chromosomal interaction pairs within the pathway.  
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Table 12. Population-stratified pairwise R2 correlation value of the top within-pathway inter-

chromosomal interactions. 

Note—Each ID number corresponds to the respective ‘Confidently enriched’ pathway ID in Table 3. Abbreviations: 

Chr, chromosome; SNP; single nucleotide polymorphism. 

Genetic interaction pair R2 ID #

Chr SNP Gene Chr SNP Gene European African

20 rs6142206 PIGU 1 rs6427184 DPM3 5.89×10-5 0.325 4

14 rs7156293 TGFB3 12 rs10774604 PPP1CC 4.10×10-5 0.319 16

9 rs2310312 ANXA1 1 rs6671710 CD244 0.004 0.297 5

7 rs1005346 CDK6 6 rs1035798 AGER 0.004 0.283 15

3 rs2338577 CCDC39 1 rs3855955 DVL1 0.006 0.277 8

10 rs1043003 KLF6 6 rs4343924 ULBP2 0.002 0.277 5

3 rs5016648 RNF168 2 rs2140148 CD28 2.84×10-5 0.259 5

11 rs628957 UVRAG 8 rs10099610 CLVS1 0.002 0.257 19

7 rs3735035 PODXL 1 rs11161581 BCL10 0.003 0.253 8

14 rs7156293 TGFB3 12 rs8176345 CYP27B1 0.007 0.245 12

7 rs1636874 SHH 3 rs2338577 CCDC39 0.011 0.241 8

15 rs502720 EIF2AK4 1 rs35021967 LCK 1.25×10-4 0.241 5

19 rs7248036 ATG4D 17 rs4789814 WDR45B 0.004 0.240 19

17 rs1042678 SOX9 5 rs216136 CSF1R 0.018 0.238 8

19 rs11667267 TICAM1 4 rs223340 UBE2D3 0.030 0.236 17
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3.3. Epistatic selection as a biologically plausible explanation for 
signals of within-pathway coevolution 

 To validate the attribution of signals of within-pathway coevolution (i.e., significant 

association between physically unlinked SNP-SNP pairs within a pathway) to forces of epistatic 

selection, I next evaluated the degree of overlap between the ancestry-enriched pathways against 

an integrated map of 722 positively selected chromosome regions compiled by Akey in 2009 [6]. 

This map was compiled from nine genome-wide scans performed within the HapMap [49] and 

Perlegen Biosciences [106] datasets. These scans utilized datasets containing SNP genotyping 

data from individuals of European-American and African-American ancestral background, and I 

decided to use this resource for my analysis. For each confidently enriched (N = 19) and 

nonenriched (N = 18) pathway, I identified all gene members that overlapped with a region that 

appeared in Akey’s compilation of genome-wide scans (see Materials and Methods for additional 

details). To achieve this, I first compiled the genomic locations of all genes annotated to each 

pathway and then determined the relative degree of overlap with Akey’s selection regions on a 

pathway by pathway basis. This method accounts for every possible variant mapped to a gene as 

a result, rather than restricting a gene’s location to its single most significant SNP. The degree of 

overlap between the confidently enriched pathways and genomic targets of positive selection is 

summarized in Table 13 and Figure 13.  

 When comparing the degree of overlap between the entire sets of confidently enriched 

and nonenriched pathways, I did not detect statistical significance (p = 0.926, OR = 0.555, 95% 

CI [0.198, ∞]) in favour of the enriched pathways. Notably, the pathways with the largest relative 

number of genes overlapping regions of positive selection included the Nucleoside 

monophosphate metabolic process, Regulation of cAMP biosynthetic process, and Regulation of 

cyclic nucleotide metabolic process pathways. As a result of the inherent similarity between the 

latter two pathways, as characterized by the pathway enrichment map (Figure 5), the identified 

overlapping genes are identical. However, no genes within the Toll-like receptor signaling 

pathway pathway overlapped with a selection region and only a single gene within the 

Regulation of hemopoiesis pathway was found to overlap. Since these pathways represent those 
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of primary interest to this study, I did not conduct further downstream analysis to validate my 

evidence for ancestry-specific within-pathway coevolution via this methodology. 

 In addition to implementing the selection region overlap method originally proposed by 

Koch et al. [55] to validate the within-pathway signals of coevolution, I also performed a search 

for enriched pathway genes with evidence of recent positive selection using the recently curated 

database of Positive Selection across Human Populations (dbPSHP) [107]. As previously 

discussed, the International HapMap Project and 1000 Genomes Project produced high quality 

genotyping data across individuals of diverse ancestral backgrounds, enabling systematic 

detection of signals of natural selection on a genome-wide scale. Wang et al. have thus 

developed dbPSHP, a comprehensive web resource primarily focused on compiling evidence for 

positive selection across human populations. The database consists of > 15,000 recent signals of 

positive selection and related information in various human populations from the HM3 and 

1KGP genotyping datasets, and additionally contains 15 statistical measures of positive selection 

for each SNP site from both datasets (see Materials and Methods for additional details). Using 

this resource, I identified a total of 57 and 21 unique genes with evidence for positive selection 

within the Regulation of hemopoiesis and Toll-like receptor signaling pathway pathways, 

respectively (Supplementary Tables 4 and 5). However, upon controlling for pathway sizes 

between both sets of pathways, I did not detect statistical significance (p = 0.731, OR = 0.946, 

95% CI [0.802, ∞]) in favour of the ancestry-enriched pathways when comparing the degree of 

positive selection between the two sets (Figure 14). Nonetheless, the identification of numerous 

positively selected loci within my two primary pathways of interest remains a promising 

discovery for subsequent downstream functional analysis.  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Table 13. Confidently enriched pathway genes overlapping with positively selected genomic 

regions. 

Pathway name Overlapping gene(s)

Cellular respiration -

Energy derivation by oxidation of organic compounds PRKAG2

Eukaryotic translation termination -

Liposaccharide metabolic process -

Lymphocyte activation NOTCH2

Lymphocyte differentiation NOTCH2

Macromolecular complex disassembly NRG1

Morphogenesis of an epithelium -

Nucleoside monophosphate metabolic process MAGI3, ADK, DLG2, PRKAG2

Nucleoside triphosphate metabolic process PRKAG2

Protein complex disassembly NRG1

Regulation of bone mineralization FBN2

Regulation of cAMP biosynthetic process RAF1, GRM8, ADCY8

Regulation of cyclic nucleotide metabolic process RAF1, GRM8, ADCY8

Regulation of hemopoiesis CDK6

Rhythmic process -

Toll-like receptor signaling pathway -

TP53 regulates metabolic genes TNRC6B, PRKAG2

Vacuole organization -
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Figure 13. Pathway-level overlap with genomic targets of positive selection. Each bar represents 

the number of genes within a confidently enriched (pink) or nonenriched (blue) pathway that 

physically overlaps with a previously identified region of positive selection in the genome. Only 

pathways with at least one gene overlapping a selection region are shown. The entire set of 

confidently enriched pathways do not demonstrate a significantly greater (p = 0.926, OR = 

0.555, 95% CI [0.198, ∞]) degree of overlap compared with the nonenriched pathways upon 

controlling for pathway size. The p value was calculated using the one-sided Fisher’s exact test.  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Figure 14. Pathway genes with evidence for recent positive selection. Each bar represents the 

number of genes within a confidently enriched (pink) or nonenriched (blue) pathway that 

contains statistically significant evidence for recent positive selection according to dbPSHP. The 

cumulative set of confidently enriched pathways do not demonstrate a significantly greater (p = 

0.731, OR = 0.946, 95% CI [0.802, ∞]) degree of overlap compared with the nonenriched 

pathways upon controlling for pathway size. The p value was calculated using the one-sided 

Fisher’s exact test. 
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4. Discussion 

4.1. Summary and implications of research 

 In this thesis, I investigate evidence for within-pathway epistatic coevolution based on 

differential signals of SNP-level inter-chromosomal pairwise SNP-SNP association between 

individuals of European-American and African-American ancestry. As discussed in the 

Introduction, the human species encountered a highly diverse set of climatic, nutritional, and 

pathogenic conditions during their migration across the globe. Phenotypic traits increasing their 

chances of survival and reproduction in such environments were largely due to variation in 

genetic make-up and, as such, were transmitted across successive generations. Over the years, 

candidate gene and genome-wide association approaches have been used to identify the common 

variants associated with adaptable traits, allowing us to explore how past demographic events 

and natural selection have shaped the genetic diversity of human populations [95]. However, 

given the non-independent involvement of genes within functionally associated pathways, I 

implemented the GSEA pathway enrichment analysis method to identify sets of genetic variants 

associated with ancestral background, and identified 19 pathways enriched for various metabolic 

and immunological functions. Such observation of pathway enrichment might be expected due to 

the marked environmental heterogeneities experienced by European- and African-American 

populations. It is well known that the genetic make-up of the Americas has been significantly 

shaped by the Colonial Era and the Atlantic slave trade, which has long suggested historical and 

epidemiological evidence in support of substantial compositional heterogeneity between 

populations of European-American and African-American ancestry [108]. 

 Exploration of the human genome for evidence of evolutionary events in the human 

genome has been crucial for the identification of genes underlying the broad morphological and 

physiological diversity observed across populations [9, 109]. Earlier in this thesis, I discussed the 

existence of genetic associations between physically unlinked loci as a fundamental 

characteristic of population-based variation in humans, as these associations could ultimately 

indicate the presence of epistatically-driven evolutionary forces at work [55]. Epistasis, 

specifically, has long been considered fundamentally important to understanding both the 
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structure and function of genetic pathways and the evolutionary dynamics of complex genetic 

systems [68]. In this vein, I sought to uncover evidence for evolutionary adaptation acting within 

pathways enriched for human ancestral background via mechanisms of epistasis. Subsequent to 

the identification of 19 pathways confidently enriched for ancestry, I tested for signals of within-

pathway epistatic coevolution by measuring the cumulative strength of association between 

pairwise combinations of inter-chromosomal variants within the enriched pathways. I then 

sought to validate my results by cross-referencing those significantly coevolving pathway loci 

with known positively selected regions of the genome, as well as by explicitly searching for 

coevolving pathway genes with statistically significant evidence for recent positive selection. 

Exclusively among African-Americans, I identified significant signals of coevolution within the 

Regulation of hemopoiesis and Toll-like receptor signaling pathway pathways, two pathways 

involved in the immune system. Although I was unable to validate the biological plausibility of 

epistatic selection as the primary driver for the identified signals, substantial evidence exists for 

positive selection acting on immune-associated traits across diverse human populations, 

particularly among individuals of European- and African-American ancestry. 

 Over the last decade, genomic scans of natural selection have identified genes and 

functions relating to immunity and host defense as targets of adaptive evolution [95]. Genes 

undergoing adaptive evolution through positive selection provide evidence of the functional 

variability that is beneficial to particular human populations, with complementary studies of the 

effects of selection on the diversity of immune loci increasing our understanding of the 

biological relevance of the functions concerned [110]. The contribution of genetic variants to 

variation in immune-associated traits is widely documented by GWAS [111-113]. However, as is 

a common issue with genome-wide approaches, the multiple variants found to be associated with 

those immune phenotypes tend to have small individual effect sizes and, as a result, the 

identification of causal functional variants has been challenging [25]. In an effort to understand 

the relationship between genetic variation and diversity of immune phenotypes, as well as the 

nature of the immunological mechanisms under selection, researchers have recently been 

employing analyses of expression quantitative trait loci (eQTLs) [114]. These are regulatory 
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variants in the genome that influence gene expression, and are utilized as a tool to establish 

missing links between gene expression and immune response. 

 The analysis of eQTLs on lymphoblastoid cell lines from different human population 

cohorts has revealed that genetic variation accounts for differences in gene expression among 

individuals of various ancestral backgrounds [115-117]. One study measured gene expression in 

primary monocytes and T lymphocytes, demonstrating that cis-eQTLs are largely shared across 

populations, with only a small number of them showing population specificity [117]. 

Additionally, two recent studies determined the degree and underlying genetic mechanisms by 

which the response to immune stimulation is affected by population variation [118, 119]. Both 

studies explored the variance in transcriptional response to infection between European- and 

African-Americans through RNA sequencing, and mapped eQTLs in monocytes exposed to toll-

like receptor ligands and influenza A virus [119], and in macrophages exposed to Listeria 

monocytogenes and Salmonella Typhimurium [118]. Despite significant differences in the 

experimental settings, both identified variation in gene regulatory regions that displayed strong 

ancestry-specific variation in response to immune stimulation, with the regulatory variants 

involved presenting different allele frequencies between individuals of European and African 

ancestry. Specifically, one team demonstrated that African ancestry is associated with a stronger 

inflammatory response in comparison with Europeans by measuring the rate of bacterial 

clearance post-infection, and provided further evidence that natural selection contributed to the 

ancestry-associated differences in gene regulation [118]. Although these findings were 

demonstrated at the single-gene level, they provide substantial support for the ancestry-specific 

coevolution signal that I identified within the immune-associated Toll-like receptor signaling 

pathway pathway. Regarding the Regulation of hemopoiesis pathway, site-specific correction of 

the sickle mutation in mouse hemopoietic stem and progenitor cells has been recently discovered 

as an effective therapeutic intervention for sickle cell diseases [120], the most common inherited 

class of blood disorders in African Americans [121]. Although evidence has yet to be found in 

humans, it provides an interesting topic for future research in regards to elucidating functional 

ancestry-specific epistatic interactions within hemopoietic pathways for targeted therapy. 
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 On a somewhat separate note, the quantification of the epigenetic and environmental 

factors affecting the diversity of immune responses across human populations is crucially 

important to understand, as its variation cannot be entirely attributed to genetic factors [118, 119, 

122-124]. A recent study has shown that a number of nongenetic factors (e.g., age and gender) 

and environmental variables (e.g., annual seasonality) have a major impact on the production of 

inflammatory cytokines [125]. This study highlights the need to consider not only gene–gene but 

also gene–environment interactions. The immune system is a rich environment to observe 

epistasis due to the marked complexity of genotype and phenotype, and evidence for functionally 

important epistatic interactions has been observed in several autoimmune diseases, such as 

rheumatic arthritis, systemic lupus erythematosus, and multiple sclerosis [82, 126]. For example, 

the interaction of two multiple sclerosis risk alleles in DDX39B (rs2523506) and IL7R 

(rs2523506A) increases the risk of disease considerably more than either variant independently 

[82]. Interestingly, TLR genes and associated pathways, particularly the toll-like receptor 4 

pathway, have roles in multiple sclerosis [127-129]. Understanding these interactions at a 

functional and genetic level will be key elucidating mechanisms of susceptibility to a wide range 

of complex diseases in individuals of diverse ancestral background [130]. 

 Ultimately, the detection of epistatic interactions at the level of pathways will provide 

crucial insights into the biological mechanisms that underlie disease pathophysiology, as well as 

improve our understanding of trait heritability and disease genetic architecture across individuals 

of diverse ancestral backgrounds. Researchers and clinicians have long known that different 

people demonstrate different levels of susceptibility to disease, medication response, and 

standardized clinical test results [131]. Epistatic interactions, such as those seen between 

DDX39B and IL7R in multiple sclerosis, are likely widespread within and between pathways and 

may represent a significant source of missing heritability associated with human traits and 

diseases. Thus, understanding functional pathway-level epistasis across diverse human 

populations could inform precision medicine by providing information about how specific 

variant associations operate in different biological contexts, for example among associated loci 

within a toll-like receptor or hemopoietic pathway, as well as by identifying subsets of 

individuals in which those associations may have a significant impact. The consideration of 
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epistasis and genetic interaction networks in treatment thus remains a promising avenue for 

improving disease treatment, such as the prediction of drug response in tumours [132] and 

guidance of antibiotic drug-resistance [133]. 

4.2. Current limitations and future directions 

 The detection and quantification of long-range and unlinked linkage disequilibrium from 

high density genomic data challenging for population and evolutionary geneticists alike, with 

methods in the literature proposing widely variable ad hoc approaches [55]. Aside from the 

analysis by Koch et al. that I referenced earlier [55], I could find one other analysis of long-range 

LD associations in humans in the literature by Sved in 2011 [134]. In this study, correlations in 

heterozygosity between chromosome blocks in the HapMap dataset were explored and weak 

correlations between blocks on different chromosomes were discovered. However, neither the 

statistical significance of the correlations, nor integration of the findings within a biological 

pathway context, were reported. In this thesis, I measure the extent and strength of associations 

between inter-chromosomal SNP-SNP pairs to identify signals of epistatically-driven 

coevolution within functionally associated pathways—this is relatively novel territory. By and 

large, the approach I implement to detect these signals is a foundational, “first principles” 

method. I search for associations explicitly between physically unlinked loci to determine the 

level of coevolution signal within a pathway; consequentially, however, this fails to capture all 

potential SNP-SNP interactions within a given pathway. As previously discussed, I decided to 

employ this particular method as it allowed me to eliminate non-epistatic LD-generating effects 

that could cause confounding signals of LD association between genetic loci, such as 

recombination and genetic hitchhiking. Among genome-wide scans for signatures of positive 

selection, it is implicitly assumed that population demographic history is a genome-wide force 

affecting all loci independently and equally, whereas selection is a force acting only on a subset 

of loci [135]. Consequentially, I do not expect all members of a pathway to display significant 

association among all physically unlinked SNP-SNP pairs; nonetheless, it is highly promising 

that I identified two ancestry-enriched pathways with significantly stronger association compared 

to a set of pathways without that biological enrichment. 
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 Aside from selection, however, it is important to consider alternative processes that may 

be responsible for associations between physically unlinked alleles. One hypothesis is that the 

sample includes some sort of structure, such as population admixture. Though this was not 

detected in the original analysis of the HapMap dataset [136], a more recent study confirmed that 

the HapMap African-American population is a genetically recent admixture with an average of 

19.2% of European (CEU) and 80.8% of continental African (YRI; Yoruba in Ibadan, Nigeria) 

ancestry [137]. Additionally, African populations present the highest levels of diversity 

worldwide, with diversity of non-African populations decreasing with increasing distance from 

Africa, attesting to the occurrence of bottlenecks and founder events during their migrations 

across the globe [95]. Further analyses of within-pathway signals of coevolution will need to be 

applied to additional human population samples to test this hypothesis. A second hypothesis is 

that inter-chromosomal SNP-SNP association is the result of random genetic drift, perhaps 

amplified by variations in the demography of the studied European-American and African-

American populations. This represents the most plausible alternative explanation, but would be 

difficult to test given two factors: i) simulating datasets comparable to those I have analyzed is 

computationally challenging [138], and ii) these datasets would have to account for the complex 

demographic histories of the tested human populations [55]. 

 Several follow-up analyses can be potentially employed at this stage. For example, the 

genomes of modern human could be compared with those of Neandertals and Denisovans, as 

such studies have demonstrated evidence of adaptive archaic haplotypes in genes related to both 

metabolism and innate immune response in ethnically diverse modern human populations [7]. 

Future studies of ancient DNA will be informative for reconstructing the origin of functional 

variants and inferring the strength of selection based on direct observation of changes in allele 

frequencies over time [139]. However, our current understanding of ancient adaptation events is 

limited by sparse ancient DNA data in certain temporal and geographical regions, most notably 

in Africa, and methods for studying ancient genotype variation tend to focus on ascertained 

variants in European populations [7]. To pursue the method of detecting within-pathway epistatic 

coevolution via linkage disequilibrium, allelic association can be investigated among pairwise 

SNPs on the same chromosome flanking recombination regions, which would ultimately account 
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for a greater proportion of SNP-SNP interactions within a pathway, though additional 

experimental models to validate the findings would still be required. One such experiment could 

be modelled after the human epistatic interaction analysis performed by Galarza-Muñoz et al. 

[82]. Using logistic regression modelling, this team demonstrated the significantly increased 

joint genotypic effect of two risk alleles, DDX39B (rs2523506) and IL7R (rs6897932), on the 

risk of multiple sclerosis. To test the interaction of those alleles, they implemented a functional 

model that depleted HeLa cells of DDX39B and used IL7R splicing reporters carrying either the 

risk allele or protective allele. Subsequent RT (reverse transcription)-PCR analysis of exon 6 

splicing revealed higher instances of exon 6 skipping, a known driver of increased multiple 

sclerosis risk, when levels of DDX39B were reduced in the context of the risk allele compared 

with the protective allele. Notably, the DDX39B and IL7R risk variants reside on separate 

chromosomes, providing further evidence that inter-chromosomal genetic interactions represent 

biologically compelling models for disease genetics. As a result, downstream analyses could 

implement assay-based tests for functional epistasis between candidate allelic interactions upon 

testing for significant within-pathway signals of coevolution, in which the overall change in the 

pathway-associated phenotype can be assessed. Given the large number of ancestry-enriched 

pathway genes identified with evidence for positive selection (Figure 14), this analysis has 

promising functional implications.  

 In this regard, Figures 11 and 12 illustrate potential candidates for elucidating epistatic 

interactions within the Regulation of hemopoiesis and Toll-like receptor signaling pathway 

pathways, respectively, by searching for frequently interacting genetic loci. For example, in the 

Toll-like receptor pathway pathway, we can observe several interactions occurring with the 

LGMN locus as well as the TLR10-TLR1-TLR6 cluster. Mammalian LGMN is a newly identified, 

well-conserved lysosomal cysteine protease that processes the self and foreign antigens 

expressed by antigen presenting cells and proteolytically activates toll-like receptors. A recent 

study has implicated LGMN in the role of tumour development, and, as such, both diagnostic and 

therapeutic markers targeting these loci could potentially be developed [140]. Moreover, the 

TLR1-TLR6-TLR10 cluster has been identified as a target of recent selection among individuals 

of European ancestry [141, 142], which could have interesting implications when interacting 
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with LGMN. Considering the bigger picture, I used Reactome (version 3.5 database release 62) 

[143, 144] to observe the significant overrepresentation of the Regulation of hemopoiesis and 

Toll-like receptor signaling pathway pathways across an integrated network of biological 

pathways and processes. Here I observed a statistically significant overrepresentation (FDR ≤ 

0.05) of the Regulation of hemopoiesis pathway within processes related to gene expression 

(transcription) and the immune system, specifically adaptive immunity and cytokine signaling. 

The Toll-like receptor signaling pathway pathway is also significantly overrepresented within the 

immune system, as well as within processes relating to external stimuli cellular responses and 

programmed cell death. Interestingly, this pathway is also significantly overrepresented among 

diseases associated with the TLR signaling cascade, a family of diseases primarily involved with 

the deficiency of various classes of TLR proteins (e.g., IRAK4, MyD88). 

 Given the marked role of toll-like receptors in human immunological diseases, it may be 

interesting to explore how evolutionary processes and selection pressures from pathogens have 

shaped the spread of the TLR polymorphisms, and associated pathways, across ethnically diverse 

human populations. In the human innate immune system, TLRs are positioned directly at the 

host-environment interface, representing the first line of defense against pathogenic infection 

[145]. Due to potential coevolutionary dynamics with pathogenic molecules, certain TLR 

polymorphisms are thought to result from frequent protective evolutionary pressures [145], 

possibly explaining variation in disease susceptibilities and clinical manifestations of immune 

diseases among individuals of diverse ancestral backgrounds [146]. For instance, in the African 

population, a prevalent TLR4 variant adaptively protects against mortality caused by malaria 

infection [147]. And in the European population, as previously mentioned, the TLR1-TLR6-

TLR10 cluster is under evolutionary pressure [141, 142]. Furthermore, positive selection of 

certain TLR1 alleles also occurs in Europeans, which likely reflects an attenuated inflammatory 

response and beneficial effects in sepsis [141], and is associated with a large network of genes 

displaying decreased levels of expression in response to immune activation [119]. Ongoing 

studies are needed to further clarify the role of genetic variation and disease susceptibility in this 

important class of innate receptors, and to provide important clues for therapeutic targeting of 

TLR pathways for the treatment of various immunological diseases [146]. Overall, future 
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comprehensive analyses of large human populations are needed to address this hypothesis. 

Additionally, as previously mentioned, the elucidation of functional ancestry-specific epistasis 

within regulatory hemopoietic pathways would be an interesting line of research to pursue in 

regards to targeted sickle cell disease therapy. 

 Earlier, I highlighted the importance of applying the computational pipeline I have 

developed to a wide array of human population backgrounds in order to draw a complete picture 

of ancestry-enriched pathway coevolution. In this regard, I plan on analyzing a wider range of 

non-admixed population samples from the HM3 dataset, such as the Yoruba, Japanese, and 

Toscani ancestral populations. Currently, I have completed pathway enrichment analysis using 

whole-genome sequencing (WGS) SNP genotyping data from the 1KGP phase 2 dataset (https://

www.cog-genomics.org/plink/1.9/resources, accessed May 24, 2017), which includes ~36 

million SNPs genotyped across individuals from various ancestral backgrounds (see 

Introduction). WGS data undoubtedly holds greater information content in comparison with 

array-based data, providing the opportunity to determine intra- and inter-chromosomal LD 

structures at maximal resolution. Furthermore, WGS genotyping data lacks ascertainment bias 

that could be encountered with the use of array-based marker selection, a bias that has hampered 

the evolutionary analyses of SNP genotyping data [6]. In my thesis work, analysis was restricted 

to those SNPs that were segregating (polymorphic) in both populations to mitigate the impact of 

any ascertainment bias [148, 149]. Using ancestry-specific genotyping data from both the HM3 

and 1KGP datasets, I have performed pathway enrichment analyses of two additional population 

comparisons: i) European-American (CEU) versus Han Chinese (CHB), and ii) African-

American (ASW) versus Han Chinese (CHB). A summary of these findings is presented in 

Figure 15 and Table 14. My results thus far suggest that population variation has an effect on 

signals of epistatically-driven selective associations within biologically meaningful pathways, 

and that empirically evaluating these patterns, along with other lifestyle and environmental 

factors, across all ancestral populations of interest will be imperative towards understanding the 

background population-driven biases underlying pathway-level interactions and evolution.  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Figure 15. Venn diagram of significantly replicated ancestry-enriched pathways across three 

ancestry comparisons. Each coloured circle represents the total number of significantly replicated 

pathways that were identified from two independent GSEA analyses in the respective ancestry 

comparison. The overlap between the coloured circles represents the mutual ancestry-enriched 

pathways between the ancestry comparisons. The European vs. African comparison (pink) was 

completed using the HM3 and PNC array-based SNP genotyping datasets (i.e., the confidently 

enriched pathways presented in this thesis), whereas both the African vs. Chinese (blue) and 

European vs. Chinese (green) comparisons were completed using the HM3 and 1KGP datasets. 

The greater SNP coverage of the 1KGP whole-genome sequencing dataset most plausibly 

resulted in the higher number of significantly replicated pathways in the latter two analyses. 

Abbreviations: CEU, European-American; ASW, African-American; CHB, Han Chinese.  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Table 14. List of significantly replicated ancestry-enriched pathways across three ancestry 
comparisons. 

Pathway names

CEU vs. CHB ∪ ASW vs. 
CHB

CEU vs. ASW ∪ CEU vs. 
CHB

CEU vs. ASW ∪ CEU vs. 
CHB ∪ ASW vs. CHB

Ameboidal-type cell 
migration

TP53 regulates metabolic 
genes

Eukaryotic translation 
termination

Calcium ion import Morphogenesis of an 
epithelium

Cellular hormone metabolic 
process

Cellular lipid catabolic 
process

Cellular response to tumor 
necrosis factor

Eukaryotic translation 
elongation

Fatty acid metabolic process

Isoprenoid metabolic process

Lipid catabolic process

Mesenchymal cell 
development

Mesenchymal cell 
differentiation

Mesenchyme development

Negative regulation of cell 
growth

Negative regulation of 
cellular component 
movement

Negative regulation of growth

Negative regulation of WNT 
signaling pathway
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Abbreviations: CEU, European-American; ASW, African-American; CHB, Han Chinese.  

Nonsense mediated decay 
(NMD) independent of the 
exon junction complex (EJC)

Positive regulation of defense 
response to virus by host

Positive regulation of 
vasculature development

Regulation of cellular 
response to growth factor 
stimulus

Regulation of cellular 
response to transforming 
growth factor beta stimulus

Regulation of defense 
response to virus by host

Regulation of protein binding

Regulation of transforming 
growth factor beta receptor 
signaling pathway

Regulation of transmembrane 
receptor protein serine/
threonine kinase signaling 
pathway

Response to tumor necrosis 
factor

Retinoid metabolic process

Stem cell development

Stem cell differentiation

Steroid metabolic process

Visual phototransduction

Xenophagy
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4.3. Research applications 

 The original motivation for my thesis project was to gain an improved understanding of 

pathway-level genetic variation across individuals of diverse ancestral backgrounds. In an effort 

to gain such an understanding, researchers have increasingly been analyzing GWAS data at the 

functional pathway level (e.g., [150-154]). For example, a recent high-profile GWA study [152] 

identified 65 new breast cancer risk loci among individuals of European and East Asian ancestry, 

in which pathway enrichment analysis was performed in order to understand the broader 

biological context of the newly identified risk loci. Enrichment of several growth/development 

and cancer related pathways (e.g., interferon signaling and cell-cycle pathways) were discovered, 

in addition to other pathways not previously found in earlier breast cancer GWAS.  

 Recently, a method known as BridGE (Bridging Genes with Epistasis) [34] has been 

developed by the Myers Lab group based in the University of Minnesota, a group with strong 

collaborative ties to the Boone and Andrews Labs (visit https://www.bridgegenomics.com for 

additional details). From GWAS cohort data, BridGE identifies pathway-level genetic 

interactions in human populations based on the between-pathway framework of genetic 

interactions [155]. Specifically, this framework refers to the clustering of interactions into 

coherent groups that connect across two functionally-distinct pathways, in contrast to the within-

pathway framework that concerns the clustering of interactions within the same functional 

pathway. Using the BridGE method, significant pathway-level interactions were identified in 

several breast cancer cohorts representing many different ancestral backgrounds, in which the 

identified pathways included many relevant and newly-identified risk modifying variants 

associated with the disease, additionally demonstrating how genetic interactions differ across 

different human populations [154]. 

 In an additional approach to understand pathway-level population variation, members of 

the Bader Lab are currently developing a machine learning-based patient classification 

framework called netDx [153], a novel R-based tool that serves as a mechanism for identifying 

biological pathways and biomarkers important for clinical treatment response prediction using 

pathway-level gene expression data. Based on quantitative patient information present in 
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electronic medical record databases, the goal for netDx is to provide clinical researchers with the 

means to tailor treatment plans to a patient, ultimately providing a “complete framework for 

precision medicine” [153]. In the realm of post-GWAS analysis, netDx has widespread and 

intriguing biomedical and clinical applications.  

 However, these post-GWAS studies share a common methodological limitation—the 

inability, or lack of power, to identify pathway-level variation and genetic interactions across 

multiple populations in a single analysis. This limitation can be largely attributed to the lack of 

understanding background pathway-level biases present within human ancestral genomes, and 

thus the appropriate corrections cannot be made to address those biases. By implementing a 

comparative analysis of pathway enrichment and unlinked selective associations to characterize 

biologically meaningful within-pathway genetic interactions between pairs of diverse ancestral 

cohorts, we can begin to address this particular limitation. In this work, I have elucidated 

evidence for selection-induced genetic interactions within the Regulation of hemopoiesis and 

Toll-like receptor signaling pathway pathways specific to African-Americans as compared to 

European-Americans, demonstrating the potential of epistasis to promote associations between 

favourable allelic combinations among pathways that influence population fitness. A similar type 

of analysis can also be applied on a between-pathway basis in the future to discover the potential 

of adaptively compensatory pathways, ultimately advancing the goal of precision-based 

medicine via a global characterization within- and between-pathway genetic interactions across 

human populations.  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5. Materials and Methods 
 The complete pipeline can be accessed online at https://github.com/rosscm/

PopulationPathways (currently a privately owned repository). I developed this code primarily in 

the R statistical programming language [156]. 

5.1. SNP genotyping data and preprocessing steps 

 Genome-wide single nucleotide polymorphism (SNP) genotyping data were taken from 

the publicly available International HapMap Project phase 3 (HM3) (https://www.sanger.ac.uk/

resources/downloads/human/hapmap3.html) and the Philadelphia Neurodevelopmental Cohort 

(PNC) via dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000607.v1.p1). A tabular summary of these data can be found in Table 1. 

5.2. International HapMap Project phase 3 

 Data from the HM3 cohort consist of 1,594,675 non-imputed polymorphic SNPs (hg19 

build) genotyped (total rate = 87.25%) in 165 individuals of genetically European-American 

ancestry (CEU; Utah residents with Northern and Western European ancestry) and 83 individuals 

of genetically African-American ancestry (ASW; African ancestry in Southwest USA). The 

markers were genotyped in several other ancestral samples [49] that were not analyzed in this 

thesis. Principal components analysis (PCA) was performed via PLINK v1.9 [157, 158] to 

visually summarize the genotyping data in two dimensions (Figure 7). PCA effectively 

demonstrates the distinct genotypic makeup of the studied European- and African-American 

individuals.  

5.3. Philadelphia Neurodevelopment Cohort 

 Data from the PNC cohort consist of 3,730,475 imputed polymorphic SNPs (hg19 build) 

genotyped (total rate = 98.51%) in 9,498 subjects with medical, psychiatric, neurocognitive, and 

genomic data [159]. Since this data were previously available at the beginning of my thesis, they 

were used here for replication purposes when running pathway enrichment analysis. Imputation 

was completed by Shraddha Pai, a post-doc currently working in the Bader Lab, using tools 

provided by the Ritchie Lab (https://ritchielab.psu.edu; accessed in Summer 2016). Only imputed 



!60

SNPs with an info score > 0.8 were considered, a threshold chosen based on the pathway 

analysis performed by the Pathway Genomics Consortium working group [160]. Additional 

quality control measures included: retaining SNPs with geno score > 0.99, mind score > 0.99, 

and the exclusion of variants with one or more multi-character allele codes (performed via 

PLINK v1.9 [157, 158]). Final quality control measures were performed to extract ancestry-

specific samples, which included: excluding SNPs with mind score < 0.05 and geno score < 0.05, 

excluding samples that failed IBD threshold (139 samples), and excluding symmetric SNPs and 

SNPs from high LD regions (683,023 SNPs). Samples imputed on the Axiom genotyping array 

were removed as the imputation rate was skewed for this platform, removing 6 and 633 CEU and 

ASW samples, respectively. The final PNC dataset comprised genotyping data from 3,314 

individuals of genetically European-American ancestry (CEU) and 1,840 individuals of 

genetically African-American ancestry (ASW). Ancestry for these samples was defined as groups 

that were located within ±5 standard deviations of the PCA PC1, PC2 centroid in the reference 

HM3 population (Figure 7). 

5.4. Pathway annotations 

 I downloaded a set of human biological pathway annotations from the Bader Lab 

database (http://download.baderlab.org/EM_Genesets/April_24_2016/Human/symbol/

Human_GOBP_AllPathways_no_GO_iea_April_24_2016_symbol.gmt, accessed April 24, 

2016). This database contains a repository of regularly updated pathway annotations that is 

compiled from manually and electronically curated pathway databases, including Reactome, 

BioCarta, GO (Gene Ontology) biological process, NCI Pathway Interaction Database, 

HumanCyc, MSigdb, NetPath, and Panther. GO terms were restricted solely to the ‘biological 

process’ class of pathways, thereby excluding those from the ‘molecular function’ and ‘cellular 

component’ classes. This restriction was applied since the large, hierarchal structure of GO 

annotations result in a high level of pathway overlap that could potentially obscure the true 

source of an association signal [22]. The chosen pathway set also excludes annotations that were 

inferred from electronic annotation and/or reviewed computational analysis, as well as 

annotations without availability of biological data. Pathways were restricted to a minimum of 20 

genes and a maximum of 200 genes in order to control for potential inadvertent associations, as 
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small pathways can exhibit false positive associations due to large single-gene or single-SNP 

effects [161], and large pathways are more likely to show association by chance alone [162]. 

Final pathway size was determined by the total number of pathway genes that were included in 

the HM3 and PNC datasets upon SNP-to-gene mapping. These inclusion measures rendered a 

final set of 3,781 human biological pathways from the original set of 15,835 pathways that were 

tested. To note, of the 14,432 unique genes annotated to the pathways within the original 

annotation file, 13,957 (97%) are protein-coding according to HGNC (ftp://ftp.ebi.ac.uk/pub/

databases/genenames/new/tsv/locus_types/gene_with_protein_product.txt, downloaded January 

24, 2018). Similarly, ~97% of the 12,416 unique genes annotated to the size-reduced pathway 

annotation file are protein-coding. Additional pathway size thresholds were tested, but no 

significant differences were found in the results. 

5.5. Test for pathways enriched for ancestry 

 The pathway enrichment-based analysis method known as Gene Set Enrichment Analysis 

(GSEA) was used to identify biological pathways significantly enriched for human ancestral 

background. I performed GSEA using the perl GenGen v.1.0.1 package [88] (available from 

https://github.com/WGLab/GenGen/releases, downloaded May 24, 2017). In brief, the goal of 

GSEA is to determine whether the members of a pathway S are randomly distributed throughout 

the entire reference gene list L or are found primarily at the top or bottom of L (see 

Supplementary Figures 1 and 2), and is relatively robust to noise and outliers in the data. The 

initial step of pathway enrichment analysis requires the integration of genomic data into 

pathways by mapping such data to genes. For SNP-based genotype arrays, this is not a 

straightforward process since many SNPs are not located in known coding or regulatory regions. 

At this stage, I assigned each unmapped marker to its nearest gene via a simple distance-based 

SNP-to-gene mapping method [87]. Of the HM3 and PNC markers, 88% and 79% were mapped 

to protein-coding genes, respectively. GSEA utilizes one association signal per gene; however, 

SNP genotyping arrays include multiple, and possibly correlated, signals per gene. The operative 

signal of each gene was thus represented by the single largest positive (i.e., most significant) 

SNP-level test statistic of all SNPs mapped to that gene. For the purposes of my thesis, the SNP-

level test statistic was defined as the difference in minor allele frequency (ΔMAF) per SNP 
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between the tested populations (Figure 2). Population-stratified MAF was calculated using 

PLINK v.1.9 [157, 163], in which each SNP’s corresponding test statistic was defined as, 

!  

where popA and popB correspond to the European-American and African-American populations, 

respectively.  

 As a final filtration step before performing pathway enrichment analysis, SNPs located 

more than 10kb away from its mapped gene were excluded, leaving approximately 54% and 48% 

of the total variants genotyped in the HM3 and PNC datasets, respectively, to be analyzed within 

pathways (Table 2). The single-SNP-mapped genes are then grouped together as a biologically 

related set of genes, or pathways, based on a set of a priori pathway annotations (see Subsection 

4.4). Each pathway gene is ranked from highest to lowest according to its test statistic (ΔMAF), 

producing an overall ranked list of genes. The significance of each pathway is then judged based 

on overrepresentation of pathway genes toward the top of the overall ranked gene list. An 

enrichment score (ES) is produced using a rank-based Kolmogorov–Smirnov-like statistic, 

measuring the deviation of the association statistics in a given pathway in comparison with a set 

of randomly selected genes (of the same size to the tested pathway). The genes that appear in the 

ranked list L at or before the point at which the running sum reaches its maximum deviation from 

zero is the leading-edge subset, and represents the core genes that account for a pathway’s 

enrichment signal (Supplementary Table 3). However, since larger genes will harbour SNPs 

with higher test statistics by chance, a normalized enrichment score (NES) is also produced. The 

NES adjusts for gene size through permutation-based (N = 1,000 cycles) label swapping, which 

consequently allows for cross-comparison of GSEA results across all tested pathways. An 

empirical p value for each individual pathway is generated via the permutation approach, 

alongside a false discovery rate (FDR) calculated using NES scores from all permuted values in 

all pathways examined in a single experiment (see reference [88] for additional details). 

ΔMAF = MAFpopA − MAFpopB
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5.6. Determining true pathway enrichment 

 Pathways were determined to be confidently enriched for ancestry upon replication in 

two independent SNP genotyping cohorts. Significant pathway enrichment was defined as 

pathways with FDR ≤ 0.1 and FDR ≤ 0.05 in the HM3 and PNC datasets, respectively. FDR 

thresholds were chosen based on the relative difference in sample size between the two datasets 

(Table 1). The replicated pathways that passed the respective significance threshold in each 

dataset were referred to as the ‘confidently enriched’ or ‘ancestry-enriched’ pathways. The 19 

ancestry-enriched pathways contain a total of 2,307 single-gene-annotated SNPs (1,501 unique). 

Conversely, pathways without ancestral enrichment (i.e., nonenriched) were defined as those 

with a NES ≃ 0 (specifically within the range of [-0.1 ≥ NES ≤ 0.1]) in each dataset. Replicated 

pathways within this range were referred to as the ‘nonenriched’ pathways. The nonenriched 

pathways contain a total of 761 single-gene-annotated SNPs (672 unique). Given the nature of 

pathway enrichment analysis, it is possible that the association measure of a pathway can be 

erroneously inflated if a single SNP is correlated and consequently assigned to multiple genes in 

the same pathway (e.g., the HLA cluster on chromosome 6) [22]. However, since the primary 

aim of this thesis is to determine evidence for within-pathway epistatic selection by measuring 

linkage disequilibrium between variants residing specifically on separate chromosomes, I do not 

consider this as a potential confounder. An enrichment map was created to thematically 

summarize the confidently enriched pathways using the Enrichment Map version 3.0 app [89] in 

Cytoscape version 3.5.1 [164]. Related pathway nodes were clustered and labelled as themes 

using the AutoAnnotate Cytoscape app [165]. 

5.7. Test for within-pathway signals of epistatically-driven 
coevolution 

 In the Introduction, I characterized three patterns of linkage disequilibrium that can exist 

between loci throughout the human genome: (i) short-range on the same chromosome, (ii) long-

range on the same chromosome, and (iii) long-range on separate chromosomes (i.e., inter-

chromosomal). The first pattern of LD described is not of relevance to this thesis, as its primary 

use is concerned with disease association mapping. Between measuring the second and third 

patterns of LD, in the latter, I can effectively eliminate single-chromosome LD-generating 
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factors such as genetic hitchhiking and chromosomal structural variations, and focus specifically 

on the determination of LD generated by epistatic selection. I thus measured LD association 

explicitly between inter-chromosomal pairwise variants within each ancestry-enriched pathway 

as a proxy to test for signals of within-pathway epistatic selection. However, until subsequent 

validation of true epistatic effects, any significantly identified signal via this method was referred 

to as a coevolving pathway.  

 To measure linkage disequilibrium, the observed and expected frequencies for a biallelic 

pair of SNPs are compared, in which the difference between these two values constitutes the 

deviation or D for that particular combination. If two loci are in linkage equilibrium, then D = 0; 

conversely, if two loci are in linkage disequilibrium, then D ≠ 0. Thus, for a single inter-

chromosomal pairwise interaction between genes A and B, with alleles A/a and B/b 

!  

where pAB is the probability of seeing the marker allele pair AB, pA is the observed probability of 

allele A, and pB is the observed probability of allele B. I utilize the ld function from the R 

snpStats package [166] for this calculation, which reports LD association via the [-1, 1] scaled D′ 

statistic and the corresponding Pearson’s R2 correlation coefficient. I report the strength of each 

inter-chromosomal pairwise SNP-SNP interaction by the R2 correlation coefficient, which is 

calculated as 

!   

where pa (1 - pA) is the observed probability of allele a and pb (1 - pB) is the observed probability 

of allele B. In this equation, R2 = 0 indicates two loci existing in complete linkage equilibrium 

and R2 = 1 indicates two loci existing in complete linkage disequilibrium. For each pairwise SNP 

combination, phased allele pair frequencies are estimated by maximum likelihood using the 

method described by Clayton and Leung [167]. R2 arrays representing the strength of each inter-

chromosomal pairwise SNP-SNP interaction are then tabulated for each tested pathway. 

D = pAB − pA pB

R2 =
D2

pA pa pB pb
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5.8. Determining significance of within-pathway coevolution signal 

 Significance per within-pathway signal of coevolution was determined for the confidently 

ancestry-enriched pathways using the nonparametric two-sample one-sided Kolmogorov–

Smirnov (KS) test (less). The R2 distribution of the inter-chromosomal pairwise interactions per 

confidently enriched pathway (Xn) was compared to the total R2 distribution of the inter-

chromosomal pairwise interactions within the complete set of nonenriched pathways (Y). Each 

reported p value calculated by the KS test implemented the ‘less’ alternative hypothesis, which 

specifies that the true distribution function of Xn is lesser than the distribution function of Y. The 

KS test is a comparison of cumulative distribution functions in which the test statistic (D-) is the 

maximum difference in value, and is calculated as  

!  

when implementing the ‘less’ alternative. Thus, in the two-sample case, this test statistic includes 

distributions for which Xn is stochastically greater than Y (i.e., the cumulative distribution 

function of Xn lies below and hence to the right of that for Y) [156]. After applying a Bonferroni 

correction to adjust for multiple testing, nominal significance was determined as p < 0.003 

(0.05/19). Consequently, when assessing significance per ancestry-specific within-pathway 

signal of coevolution, nominal significance was determined as p < 0.005 (0.05/11). The 

denominator adjustment reflects the total number of pathways in which significant coevolution 

signal was previously identified from the total set of ancestry-enriched pathways. 

5.9. Validation of pathways as genomic targets of population-
driven epistatic selection 

 In order to validate whether the confidently enriched pathways are associated with 

previously identified targets of positive selection in the genome, and thereby as targets of 

epistatic selection, I evaluated the degree of overlap between the given pathway genes and an 

integrated genomic map of 722 positively selected chromosome regions compiled by Akey [6] (a 

method previously implemented by Koch et al. [55]). These regions contain a total of 2,465 

genes that span 245Mb of the genome (~8%), and were compiled from nine genome-wide scans 

performed in the HapMap [49] and Perlegen Biosciences [106] datasets. For the purposes of my 

D− = ma x[ fY(u) − fXn(u)]
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thesis, the coordinates of each selection region were lifted from the UCSC hg18 genomic build to 

the hg19 build (corresponding to the genome build of the HM3 dataset), which resulted in four 

dropped coordinates. The nine genome-wide scans employed tests based on within-species 

polymorphism to identify targets of positive selection in humans (Supplemental Table 1 in [6]). 

These methods fall into three general categories: (i) site frequency-based methods (Tajima’s D 

and Fay and Wu’s F), (ii) linkage disequilibrium-based methods (e.g., extended haplotype 

homozygosity test and integrated haplotype score), and (iii) population differentiation-based 

methods (FST fixation index) [109]. Studies have highlighted the importance of utilizing multiple 

measures to investigate evidence for selection [168], as each tool employs different patterns of 

genetic variation dependent on the nature and time scale in which the selection occurred [11]. 

For each confidently enriched pathway (N = 1,501 total unique genes), I identified all gene 

members that overlapped with a region appearing in Akey’s genome-wide scan. To determine if 

the number of these occurrences is larger than expected for any given non-associated pathway, 

the same test was conducted for the set of nonenriched pathways (N = 672 total unique genes). 

The genomic location and corresponding HGNC ID symbol for each pathway gene was 

downloaded in the hg19 assembly from https://genome.ucsc.edu/cgi-bin/hgTables (accessed 

October 10, 2017). Nominal significance (p < 0.05) was calculated using the one-sided Fisher’s 

exact test (greater). 

 As an additional method of within-pathway epistatic selection validation, I used the 

recently curated database of Positive Selection across Human Populations (dbPSHP) [107] in an 

effort to identify genes within the ancestry-enriched (N = 1,501 total unique genes) and 

nonenriched (N = 672 total unique genes) pathways with evidence for recent positive selection. 

The integrated literature-based database contains 15,472 manually collected loci physically 

located within approximately 8,000 genes (hg19 build) from studies that have detected positive 

selection in both a specific function-related manner (101 publications) and on a genome-wide 

scale (31 publications). For each genotyped SNP from the HM3 and 1KGP databases, 15 

statistical terms measuring the degree of positive selection is provided according to the 

population in which the evidence for selection was determined. According to the dbPSHP web 

browser, these statistical terms include measures of variant allele frequency, variant 
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heterozygosity, within population diversity, haplotype homozygosity, long-range haplotypes, 

pairwise population differentiation, and evolutionary conservation. Each empirical score 

employed a defined cutoff based on those frequently used for estimations of positive selection in 

current evolutionary studies in order to correct for false positive signals (Supplemental Table in 6 

[107]). The curated loci were further evaluated for reliability and accuracy by validating the 

statistical scores generated for two popular cases of strong population-specific selection, LCT 

and SLC24A5, and comparing the 15-score distribution for the observed selective loci against the 

background (i.e., random selection of genomic loci). The curated evidence file I use for reference 

was downloaded from ftp://jjwanglab.org/dbPSHP/curation/dbPSHP_20131001.tab (accessed 

January 4, 2018). Nominal significance (p < 0.05) was calculated using the one-sided Fisher’s 

exact test (greater).  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7. Appendix 
Supplementary Table 1. Significant GSEA pathway enrichment results using the HM3 dataset.

Pathway Size ES NES NominalP FDR

SEX DIFFERENTIATION 84 0.362 4.072 0.000 0.026

DEVELOPMENT OF PRIMARY SEXUAL 
CHARACTERISTICS

58 0.405 4.024 0.000 0.027

PROTEIN DEACETYLATION 48 0.406 3.985 0.000 0.028

CELL FATE COMMITMENT 109 0.372 4.138 0.000 0.029

MYELOID LEUKOCYTE ACTIVATION 60 0.414 4.078 0.000 0.029

REGULATION OF HEMOPOIESIS 183 0.304 3.956 0.000 0.029

ID 26 0.537 3.931 0.001 0.029

HISTONE DEACETYLATION 44 0.440 4.286 0.000 0.030

MACROMOLECULE DEACYLATION 54 0.389 4.152 0.000 0.033

PROTEIN DEACYLATION 53 0.395 4.188 0.000 0.035

REPRODUCTIVE STRUCTURE DEVELOPMENT 103 0.376 3.832 0.000 0.035

REPRODUCTIVE SYSTEM DEVELOPMENT 103 0.376 3.832 0.000 0.035

ENERGY DERIVATION BY OXIDATION OF 
ORGANIC COMPOUNDS

148 0.267 3.812 0.000 0.035

REGULATION OF CAMP METABOLIC PROCESS 85 0.431 3.799 0.001 0.035

GONAD DEVELOPMENT 57 0.399 3.775 0.000 0.036

PROTEIN COMPLEX DISASSEMBLY 157 0.226 3.742 0.001 0.037

REGULATION OF LEUKOCYTE 
DIFFERENTIATION

123 0.327 3.711 0.000 0.039

CELLULAR SENESCENCE 27 0.526 3.682 0.000 0.041

CELLULAR RESPIRATION 105 0.258 3.65 0.000 0.041

PURINE NUCLEOSIDE TRIPHOSPHATE 
METABOLIC PROCESS

139 0.231 3.639 0.000 0.041

NOTCH SIGNALING PATHWAY 46 0.439 3.625 0.000 0.041

LYMPHOCYTE ACTIVATION 183 0.321 3.652 0.000 0.043
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NUCLEOSIDE TRIPHOSPHATE METABOLIC 
PROCESS

155 0.248 4.499 0.000 0.044

TP53 REGULATES METABOLIC GENES 73 0.363 4.289 0.000 0.045

D-<I>MYO< I>-INOSITOL (1,4,5)-
TRISPHOSPHATE BIOSYNTHESIS

24 0.567 3.555 0.001 0.047

APPENDAGE DEVELOPMENT 57 0.442 3.528 0.000 0.047

LIMB DEVELOPMENT 57 0.442 3.528 0.000 0.047

REGULATION OF CYCLIC NUCLEOTIDE 
METABOLIC PROCESS

102 0.387 3.517 0.002 0.047

SENSORY ORGAN MORPHOGENESIS 88 0.419 3.54 0.000 0.048

MACROMOLECULAR COMPLEX DISASSEMBLY 165 0.219 3.559 0.001 0.049

HORMONE TRANSPORT 35 0.438 3.466 0.001 0.054

TRANSMEMBRANE RECEPTOR PROTEIN 
SERINE/THREONINE KINASE SIGNALING 
PATHWAY

135 0.347 3.429 0.001 0.058

PLASMA MEMBRANE ORGANIZATION 156 0.387 3.397 0.002 0.059

PURINE RIBONUCLEOSIDE TRIPHOSPHATE 
METABOLIC PROCESS

135 0.232 3.404 0.000 0.060

POLYOL METABOLIC PROCESS 62 0.412 3.408 0.000 0.061

DIGESTIVE TRACT DEVELOPMENT 55 0.424 3.367 0.000 0.063

ISOPRENOID METABOLIC PROCESS 89 0.338 3.331 0.002 0.068

TOLL-LIKE RECEPTOR SIGNALING PATHWAY 74 0.374 3.293 0.004 0.070

VACUOLE ORGANIZATION 137 0.294 3.272 0.001 0.070

CELLULAR RESPONSE TO BMP STIMULUS 59 0.410 3.274 0.001 0.071

RESPONSE TO BMP 59 0.410 3.274 0.001 0.071

REGULATION OF MYELOID LEUKOCYTE 
DIFFERENTIATION

61 0.368 3.294 0.001 0.072

NEGATIVE REGULATION OF PROTEIN KINASE 
B SIGNALING

26 0.502 3.296 0.001 0.073

BMP SIGNALING PATHWAY 55 0.412 3.229 0.001 0.075

DIGESTIVE SYSTEM DEVELOPMENT 58 0.404 3.238 0.001 0.076
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RIBONUCLEOSIDE TRIPHOSPHATE METABOLIC 
PROCESS

136 0.226 3.232 0.000 0.076

RHYTHMIC PROCESS 101 0.360 3.217 0.002 0.076

DEVELOPMENT OF PRIMARY MALE SEXUAL 
CHARACTERISTICS

33 0.443 3.186 0.002 0.077

MALE GONAD DEVELOPMENT 33 0.443 3.186 0.002 0.077

REGULATION OF NUCLEOTIDE METABOLIC 
PROCESS

141 0.362 3.171 0.001 0.077

REGULATION OF CAMP BIOSYNTHETIC 
PROCESS

76 0.433 3.194 0.001 0.078

MTOR SIGNALLING 37 0.410 3.172 0.001 0.078

REGULATION OF PURINE NUCLEOTIDE 
METABOLIC PROCESS

131 0.371 3.159 0.002 0.078

ATP METABOLIC PROCESS 131 0.229 3.197 0.000 0.079

REGULATION OF TOR SIGNALING 58 0.400 3.14 0.001 0.082

NUCLEOSIDE MONOPHOSPHATE METABOLIC 
PROCESS

169 0.236 3.128 0.002 0.083

LIPOSACCHARIDE METABOLIC PROCESS 91 0.346 3.114 0.004 0.085

CIRCADIAN REGULATION OF GENE 
EXPRESSION

49 0.417 3.105 0.004 0.087

NEGATIVE REGULATION OF SEQUENCE-
SPECIFIC DNA BINDING TRANSCRIPTION 
FACTOR ACTIVITY

113 0.334 3.087 0.002 0.087

PI3K CASCADE 66 0.358 3.081 0.001 0.087

INTRINSIC APOPTOTIC SIGNALING PATHWAY 
IN RESPONSE TO DNA DAMAGE BY P53 CLASS 
MEDIATOR

21 0.508 3.092 0.000 0.088

LYMPHOCYTE DIFFERENTIATION 99 0.350 3.089 0.000 0.088

PEPTIDE CHAIN ELONGATION 72 0.118 3.06 0.019 0.091

ODONTOGENESIS 41 0.409 3.047 0.002 0.093

EUKARYOTIC TRANSLATION ELONGATION 76 0.120 3.041 0.013 0.094

REGULATION OF ADENYLATE CYCLASE 
ACTIVITY

48 0.498 3.029 0.000 0.096
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Note—A total of 76 pathways are displayed at FDR ≤ 0.1. Abbreviations: ES, enrichment score; NES, normalized 

enrichment score; NominalP, nominal p value; FDR, false discovery rate. 

REGULATION OF BONE MINERALIZATION 46 0.458 2.995 0.004 0.098

MYD88-INDEPENDENT TOLL-LIKE RECEPTOR 
SIGNALING PATHWAY

28 0.438 3.014 0.000 0.099

NEGATIVE REGULATION OF LEUKOCYTE 
DIFFERENTIATION

47 0.371 3.006 0.003 0.099

MALE SEX DIFFERENTIATION 38 0.411 3.003 0.000 0.099

NEGATIVE REGULATION OF HEMOPOIESIS 80 0.317 2.998 0.001 0.099

TERPENOID METABOLIC PROCESS 73 0.356 2.932 0.002 0.099

MORPHOGENESIS OF AN EPITHELIUM 168 0.327 2.984 0.002 0.100

REGULATION OF BIOMINERAL TISSUE 
DEVELOPMENT

51 0.436 2.955 0.007 0.100

EUKARYOTIC TRANSLATION TERMINATION 75 0.117 2.939 0.018 0.100

NOTCH SIGNALING PATHWAY 56 0.439 2.934 0.006 0.100
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Supplementary Table 2. Significant GSEA pathway enrichment results using the PNC dataset.

Pathway Size ES NES NominalP FDR

LYMPHOCYTE AGGREGATION 117 0.330 6.005 0.000 0.000

SIRT1 NEGATIVELY REGULATES RRNA 
EXPRESSION

51 0.214 6.001 0.000 0.000

T CELL ACTIVATION 116 0.329 5.931 0.000 0.000

T CELL AGGREGATION 116 0.329 5.931 0.000 0.000

RNA POLYMERASE I PROMOTER OPENING 47 0.156 5.706 0.000 0.000

DNA METHYLATION 49 0.181 5.697 0.000 0.000

TCF DEPENDENT SIGNALING IN RESPONSE TO 
WNT

188 0.249 5.654 0.000 0.000

RESPONSE TO TOXIC SUBSTANCE 84 0.331 5.535 0.000 0.000

LEUKOCYTE AGGREGATION 123 0.314 5.390 0.000 0.000

REGULATION OF NEURON DEATH 103 0.367 5.375 0.000 0.000

LYMPHOCYTE ACTIVATION 173 0.293 5.236 0.000 0.000

LEUKOCYTE CELL-CELL ADHESION 145 0.286 4.893 0.000 0.001

CARBOHYDRATE DERIVATIVE CATABOLIC 
PROCESS

119 0.340 4.884 0.000 0.001

CELLULAR RESPIRATION 98 0.284 4.770 0.000 0.001

ASPARTATE FAMILY AMINO ACID METABOLIC 
PROCESS

45 0.395 4.725 0.000 0.002

POSITIVE REGULATION OF CELLULAR PROTEIN 
CATABOLIC PROCESS

144 0.277 4.717 0.000 0.002

POSITIVE REGULATION OF PROTEOLYSIS 
INVOLVED IN CELLULAR PROTEIN CATABOLIC 
PROCESS

137 0.278 4.669 0.000 0.002

PROTEIN COMPLEX DISASSEMBLY 138 0.238 4.654 0.000 0.002

G ALPHA (I) SIGNALLING EVENTS 177 0.246 4.569 0.000 0.002

PROTEIN TETRAMERIZATION 84 0.307 4.565 0.000 0.002

REGULATION OF NEURON APOPTOTIC PROCESS 73 0.353 4.549 0.000 0.002

REGULATION OF MYELOID CELL 
DIFFERENTIATION

101 0.280 4.518 0.000 0.003

NICOTINAMIDE NUCLEOTIDE METABOLIC 
PROCESS

58 0.355 4.428 0.000 0.003

PYRIDINE NUCLEOTIDE METABOLIC PROCESS 58 0.355 4.428 0.000 0.003

ENERGY DERIVATION BY OXIDATION OF 
ORGANIC COMPOUNDS

135 0.271 4.415 0.000 0.003



!90

PACKAGING OF TELOMERE ENDS 39 0.171 4.402 0.003 0.003

LYSOSOMAL TRANSPORT 54 0.436 4.398 0.000 0.003

CELL CYCLE CHECKPOINTS 171 0.220 4.387 0.000 0.003

ACTIVATION OF INNATE IMMUNE RESPONSE 171 0.263 4.345 0.000 0.003

CYTOKINE PRODUCTION 66 0.349 4.334 0.000 0.003

RESPONSE TO VIRUS 128 0.233 4.331 0.000 0.003

NEGATIVE REGULATION OF SECRETION 85 0.330 4.329 0.000 0.003

VACUOLE ORGANIZATION 119 0.323 4.328 0.000 0.003

REGULATION OF PROTEOLYSIS INVOLVED IN 
CELLULAR PROTEIN CATABOLIC PROCESS

197 0.257 4.300 0.000 0.003

GENERATION OF PRECURSOR METABOLITES 
AND ENERGY

196 0.216 4.292 0.000 0.003

REGULATION OF CALCIUM ION TRANSPORT 115 0.377 4.260 0.000 0.004

REGULATION OF ION TRANSMEMBRANE 
TRANSPORT

196 0.366 4.209 0.000 0.005

HEXOSE METABOLIC PROCESS 83 0.308 4.177 0.000 0.005

LYMPHOCYTE DIFFERENTIATION 93 0.318 4.146 0.000 0.005

NEGATIVE REGULATION OF SECRETION BY 
CELL

77 0.323 4.135 0.000 0.005

INNATE IMMUNE RESPONSE-ACTIVATING 
SIGNAL TRANSDUCTION

164 0.267 4.130 0.000 0.005

NONSENSE MEDIATED DECAY (NMD) 
INDEPENDENT OF THE EXON JUNCTION 
COMPLEX (EJC)

64 0.126 4.120 0.004 0.005

POSITIVE REGULATION OF PROTEIN CATABOLIC 
PROCESS

192 0.255 4.115 0.000 0.005

ACTIVATION OF RRNA EXPRESSION BY ERCC6 
(CSB) AND EHMT2 (G9A)

57 0.127 4.104 0.008 0.005

REGULATION OF PROTEIN MODIFICATION BY 
SMALL PROTEIN CONJUGATION OR REMOVAL

200 0.237 4.082 0.001 0.006

POSITIVE REGULATION OF PROTEASOMAL 
UBIQUITIN-DEPENDENT PROTEIN CATABOLIC 
PROCESS

62 0.378 4.077 0.000 0.006

PEPTIDE LIGAND-BINDING RECEPTORS 150 0.221 4.070 0.000 0.006

PROTEIN SECRETION 64 0.322 4.059 0.000 0.006

AMINE LIGAND-BINDING RECEPTORS 33 0.449 4.022 0.000 0.007

ENDOSOME ORGANIZATION 46 0.404 4.010 0.000 0.007

B CELL ACTIVATION 74 0.326 4.004 0.001 0.007
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BEHAVIOR 132 0.367 3.973 0.000 0.007

NEGATIVE REGULATION OF TRANSMEMBRANE 
TRANSPORT

56 0.377 3.965 0.001 0.007

MACROMOLECULAR COMPLEX DISASSEMBLY 146 0.225 3.937 0.000 0.007

OSTEOBLAST DIFFERENTIATION 65 0.329 3.946 0.000 0.008

ENDOSOME TO LYSOSOME TRANSPORT 30 0.478 3.931 0.000 0.008

ACTIVATED PKN1 STIMULATES TRANSCRIPTION 
OF AR (ANDROGEN RECEPTOR) REGULATED 
GENES KLK2 AND KLK3

50 0.150 3.890 0.003 0.009

LEARNING OR MEMORY 56 0.513 3.838 0.000 0.010

B CELL ACTIVATION 178 0.319 3.834 0.001 0.010

PROTEIN HOMOTETRAMERIZATION 35 0.449 3.831 0.000 0.010

BIOSYNTHESIS OF THE N-GLYCAN PRECURSOR 
(DOLICHOL LIPID-LINKED OLIGOSACCHARIDE, 
LLO) AND TRANSFER TO A NASCENT PROTEIN

65 0.372 3.814 0.000 0.010

AEROBIC RESPIRATION 36 0.420 3.808 0.000 0.010

LIPOSACCHARIDE METABOLIC PROCESS 84 0.349 3.807 0.000 0.010

RNA POLYMERASE I CHAIN ELONGATION 71 0.189 3.800 0.001 0.010

FOXO FAMILY SIGNALING 47 0.405 3.785 0.000 0.010

REGULATION OF METAL ION TRANSPORT 194 0.350 3.780 0.001 0.010

NUCLEOSIDE TRIPHOSPHATE METABOLIC 
PROCESS

140 0.219 3.773 0.000 0.011

OSSIFICATION 102 0.300 3.767 0.000 0.011

OXIDOREDUCTION COENZYME METABOLIC 
PROCESS

67 0.329 3.753 0.000 0.011

PYRIDINE-CONTAINING COMPOUND 
METABOLIC PROCESS

71 0.312 3.709 0.000 0.011

DNA REPLICATION-DEPENDENT NUCLEOSOME 
ASSEMBLY

28 0.184 3.705 0.008 0.011

DNA REPLICATION-DEPENDENT NUCLEOSOME 
ORGANIZATION

28 0.184 3.705 0.008 0.011

REGULATION OF NUCLEAR BETA CATENIN 
SIGNALING AND TARGET GENE TRANSCRIPTION

66 0.382 3.730 0.001 0.012

G ALPHA (S) SIGNALLING EVENTS 119 0.325 3.729 0.000 0.012

METABOLISM OF FAT-SOLUBLE VITAMINS 42 0.367 3.722 0.000 0.012

REGULATION OF PROTEIN UBIQUITINATION 185 0.233 3.722 0.001 0.012

CLASS I PI3K SIGNALING EVENTS MEDIATED BY 
AKT

32 0.454 3.716 0.000 0.012
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REGULATION OF PHOSPHOPROTEIN 
PHOSPHATASE ACTIVITY

42 0.445 3.714 0.000 0.012

PURINE NUCLEOSIDE METABOLIC PROCESS 184 0.215 3.691 0.001 0.012

REGULATION OF CELLULAR KETONE 
METABOLIC PROCESS

112 0.258 3.687 0.000 0.012

DOWNSTREAM SIGNALING EVENTS OF B CELL 
RECEPTOR (BCR)

154 0.306 3.680 0.000 0.012

REGULATION OF GENE EXPRESSION, 
EPIGENETIC

171 0.215 3.661 0.000 0.012

CELLULAR PROTEIN COMPLEX DISASSEMBLY 97 0.242 3.655 0.000 0.012

REGULATION OF NEUROTRANSMITTER LEVELS 113 0.367 3.650 0.000 0.012

POSITIVE REGULATION OF BONE 
MINERALIZATION

27 0.553 3.645 0.000 0.012

GLYCOLIPID METABOLIC PROCESS 82 0.350 3.633 0.000 0.013

G2 M CHECKPOINTS 144 0.218 3.631 0.000 0.013

REGULATION OF PROTEASOMAL UBIQUITIN-
DEPENDENT PROTEIN CATABOLIC PROCESS

111 0.312 3.625 0.000 0.013

EUKARYOTIC TRANSLATION TERMINATION 62 0.115 3.622 0.007 0.013

PURINE RIBONUCLEOSIDE METABOLIC 
PROCESS

181 0.210 3.600 0.003 0.014

COGNITION 81 0.455 3.597 0.002 0.014

NEGATIVE REGULATION OF ION 
TRANSMEMBRANE TRANSPORT

52 0.382 3.594 0.002 0.014

ANION TRANSMEMBRANE TRANSPORT 162 0.337 3.576 0.001 0.014

GLUCOSE METABOLIC PROCESS 63 0.328 3.563 0.000 0.015

CELL RECOGNITION 73 0.369 3.544 0.001 0.016

NEURON-NEURON SYNAPTIC TRANSMISSION 23 0.562 3.540 0.001 0.016

NEGATIVE REGULATION OF NEURON DEATH 59 0.341 3.537 0.002 0.016

LEARNING 29 0.579 3.531 0.001 0.016

INNATE IMMUNE RESPONSE ACTIVATING CELL 
SURFACE RECEPTOR SIGNALING PATHWAY

90 0.282 3.470 0.001 0.019

CELLULAR MODIFIED AMINO ACID METABOLIC 
PROCESS

140 0.240 3.464 0.000 0.019

INFLAMMATORY RESPONSE 194 0.194 3.455 0.000 0.019

CELLULAR SENESCENCE 158 0.198 3.446 0.000 0.019

GLYCOSPHINGOLIPID METABOLIC PROCESS 49 0.446 3.448 0.002 0.020

REGULATION OF HEMOPOIESIS 168 0.223 3.411 0.001 0.021
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STIMULATORY C-TYPE LECTIN RECEPTOR 
SIGNALING PATHWAY

88 0.284 3.386 0.001 0.022

AMINOGLYCAN METABOLIC PROCESS 116 0.316 3.382 0.001 0.022

CELLULAR RESPONSE TO DECREASED OXYGEN 
LEVELS

79 0.288 3.378 0.001 0.022

NEGATIVE REGULATION OF ION TRANSPORT 69 0.360 3.375 0.001 0.022

CARBOXYLIC ACID TRANSMEMBRANE 
TRANSPORT

65 0.388 3.372 0.001 0.022

APOPTOSIS 140 0.259 3.363 0.000 0.022

3' -UTR-MEDIATED TRANSLATIONAL 
REGULATION

77 0.154 3.358 0.000 0.022

L13A-MEDIATED TRANSLATIONAL SILENCING 
OF CERULOPLASMIN EXPRESSION

77 0.154 3.358 0.000 0.022

REGULATION OF CELLULAR RESPONSE TO 
GROWTH FACTOR STIMULUS

138 0.281 3.389 0.002 0.023

LEUKOCYTE MIGRATION 181 0.229 3.387 0.000 0.023

REGULATION OF SYNAPSE STRUCTURE OR 
ACTIVITY

76 0.403 3.365 0.000 0.023

ROLE OF CALCINEURIN-DEPENDENT NFAT 
SIGNALING IN LYMPHOCYTES

50 0.400 3.358 0.001 0.023

PRC2 METHYLATES HISTONES AND DNA 56 0.228 3.350 0.000 0.023

PROGRAMMED CELL DEATH 143 0.253 3.335 0.001 0.023

LOCOMOTORY BEHAVIOR 28 0.445 3.335 0.000 0.023

CELL-CELL ADHESION VIA PLASMA-
MEMBRANE ADHESION MOLECULES

89 0.402 3.334 0.000 0.023

RESPONSE TO LIGHT STIMULUS 152 0.278 3.320 0.001 0.024

CHROMATIN SILENCING 62 0.127 3.318 0.006 0.024

NICOTINIC ACETYLCHOLINE RECEPTOR 
SIGNALING PATHWAY

52 0.346 3.316 0.000 0.024

ORGANIC ACID TRANSMEMBRANE TRANSPORT 69 0.385 3.303 0.001 0.024

NEGATIVE REGULATION OF PROTEIN COMPLEX 
ASSEMBLY

54 0.387 3.302 0.001 0.024

POSITIVE REGULATION OF PROTEASOMAL 
PROTEIN CATABOLIC PROCESS

73 0.310 3.302 0.000 0.024

METHYLATION 162 0.268 3.303 0.000 0.025

A6B1 AND A6B4 INTEGRIN SIGNALING 43 0.426 3.292 0.000 0.025

NEURON MIGRATION 33 0.540 3.284 0.003 0.025

RESPONSE TO STEROID HORMONE 144 0.269 3.273 0.003 0.025

CIRCADIAN RHYTHM 73 0.322 3.273 0.001 0.025
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TRANSPORT OF INORGANIC CATIONS ANIONS 
AND AMINO ACIDS OLIGOPEPTIDES

87 0.365 3.272 0.001 0.025

EMBRYONIC ORGAN DEVELOPMENT 126 0.252 3.269 0.001 0.025

RHYTHMIC PROCESS 93 0.314 3.257 0.000 0.026

RESPONSE TO TUMOR NECROSIS FACTOR 157 0.189 3.256 0.002 0.026

PROTEIN ALKYLATION 75 0.309 3.248 0.005 0.026

PROTEIN METHYLATION 75 0.309 3.248 0.005 0.026

NEGATIVE REGULATION OF PROTEIN 
MODIFICATION BY SMALL PROTEIN 
CONJUGATION OR REMOVAL

101 0.257 3.245 0.001 0.026

NEUROTRANSMITTER TRANSPORT 88 0.362 3.234 0.003 0.027

HUMORAL IMMUNE RESPONSE 106 0.220 3.230 0.006 0.027

TP53 REGULATES METABOLIC GENES 70 0.265 3.227 0.002 0.027

PHOSPHOLIPASES 35 0.435 3.214 0.002 0.027

NEGATIVE REGULATION OF NEURON 
APOPTOTIC PROCESS

47 0.331 3.199 0.003 0.028

NEGATIVE REGULATION OF CYTOKINE 
PRODUCTION

126 0.236 3.197 0.006 0.028

HOMOPHILIC CELL ADHESION VIA PLASMA 
MEMBRANE ADHESION MOLECULES

37 0.555 3.197 0.001 0.028

B CELL DIFFERENTIATION 51 0.339 3.196 0.002 0.028

ANTIGEN RECEPTOR-MEDIATED SIGNALING 
PATHWAY

134 0.335 3.191 0.001 0.028

DEACTIVATION OF THE BETA-CATENIN 
TRANSACTIVATING COMPLEX

34 0.387 3.171 0.002 0.029

MUSCLE CONTRACTION 151 0.314 3.170 0.001 0.029

POSITIVE REGULATION OF NEURON DEATH 24 0.486 3.167 0.000 0.029

REGULATION OF CALCIUM ION IMPORT 62 0.373 3.167 0.000 0.029

RIBONUCLEOSIDE METABOLIC PROCESS 197 0.201 3.175 0.002 0.030

REGULATION OF ESTABLISHMENT OF PROTEIN 
LOCALIZATION TO MITOCHONDRION

113 0.257 3.172 0.003 0.030

POSITIVE REGULATION OF BIOMINERAL TISSUE 
DEVELOPMENT

29 0.516 3.158 0.001 0.030

REGULATION OF SYNAPTIC PLASTICITY 47 0.427 3.152 0.001 0.030

SYNTHESIS OF SUBSTRATES IN N-GLYCAN 
BIOSYTHESIS

53 0.366 3.150 0.000 0.030

LEUKOCYTE DIFFERENTIATION 145 0.260 3.140 0.002 0.031

PI3K AKT SIGNALING IN CANCER 64 0.381 3.134 0.002 0.031
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CHROMATIN SILENCING AT RDNA 28 0.198 3.118 0.008 0.032

GLYCOSPHINGOLIPID METABOLISM 30 0.428 3.107 0.001 0.033

POSITIVE REGULATION OF PROTEIN SECRETION 111 0.278 3.104 0.001 0.033

VIRAL LIFE CYCLE 189 0.210 3.097 0.003 0.033

NEGATIVE REGULATION OF CELL MOTILITY 142 0.284 3.093 0.000 0.033

NEGATIVE REGULATION OF CELL MIGRATION 135 0.295 3.083 0.000 0.034

CELLULAR METABOLIC COMPOUND SALVAGE 28 0.443 3.079 0.000 0.034

PURINE-CONTAINING COMPOUND 
BIOSYNTHETIC PROCESS

82 0.312 3.077 0.003 0.034

NUCLEOTIDE CATABOLIC PROCESS 42 0.397 3.065 0.003 0.035

COMPLEMENT CASCADE 29 0.417 3.063 0.002 0.035

PROTEIN AUTOUBIQUITINATION 40 0.385 3.062 0.006 0.035

C-TYPE LECTIN RECEPTORS (CLRS) 105 0.282 3.058 0.004 0.035

REGULATION OF BONE MINERALIZATION 45 0.405 3.058 0.001 0.035

NEGATIVE REGULATION OF WNT SIGNALING 
PATHWAY

139 0.278 3.056 0.001 0.035

NUCLEOSIDE MONOPHOSPHATE METABOLIC 
PROCESS

156 0.208 3.055 0.002 0.035

B-WICH COMPLEX POSITIVELY REGULATES 
RRNA EXPRESSION

70 0.228 3.053 0.000 0.035

POSITIVE REGULATION OF PROTEIN 
MODIFICATION BY SMALL PROTEIN 
CONJUGATION OR REMOVAL

142 0.220 3.048 0.001 0.035

ANATOMICAL STRUCTURE HOMEOSTASIS 159 0.255 3.046 0.004 0.035

REGULATION OF CYTOSOLIC CALCIUM ION 
CONCENTRATION

112 0.356 3.044 0.000 0.035

TOLL-LIKE RECEPTOR SIGNALING PATHWAY 68 0.308 3.043 0.001 0.035

TRK RECEPTOR SIGNALING MEDIATED BY PI3K 
AND PLC-GAMMA

34 0.431 3.040 0.000 0.035

MONOSACCHARIDE METABOLIC PROCESS 112 0.270 3.038 0.003 0.035

HIV INFECTION 183 0.254 3.026 0.002 0.036

MULTI-ORGANISM BEHAVIOR 24 0.529 3.020 0.003 0.037

GLYCOSAMINOGLYCAN METABOLIC PROCESS 108 0.312 3.008 0.004 0.037

ORGANIC ACID TRANSPORT 190 0.304 3.004 0.002 0.038

GTP HYDROLYSIS AND JOINING OF THE 60S 
RIBOSOMAL SUBUNIT

78 0.147 3.002 0.001 0.038
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ETHANOLAMINE-CONTAINING COMPOUND 
METABOLIC PROCESS

67 0.316 2.999 0.001 0.038

REGULATION OF CYTOKINE SECRETION 82 0.300 2.996 0.003 0.038

SULFUR COMPOUND BIOSYNTHETIC PROCESS 146 0.281 2.994 0.004 0.038

SELENOCYSTEINE SYNTHESIS 63 0.094 2.984 0.032 0.038

REGULATION OF TRANSPORTER ACTIVITY 143 0.382 2.980 0.001 0.039

MODULATION OF SYNAPTIC TRANSMISSION 121 0.389 2.968 0.002 0.040

REGULATION OF MITOCHONDRION 
ORGANIZATION

183 0.218 2.963 0.004 0.040

NEGATIVE REGULATION OF CANONICAL WNT 
SIGNALING PATHWAY

119 0.283 2.960 0.004 0.040

PI3 KINASE PATHWAY 34 0.447 2.954 0.001 0.040

CARBOHYDRATE BIOSYNTHETIC PROCESS 75 0.288 2.941 0.001 0.042

CELLULAR RESPONSE TO OXYGEN LEVELS 83 0.286 2.936 0.003 0.042

MULTIVESICULAR BODY ASSEMBLY 24 0.476 2.927 0.000 0.042

SIG PIP3 SIGNALING IN CARDIAC MYOCTES 54 0.394 2.926 0.003 0.042

APOPTOTIC SIGNALING PATHWAY 193 0.222 2.925 0.003 0.042

POSITIVE REGULATION OF MITOCHONDRION 
ORGANIZATION

144 0.227 2.921 0.005 0.042

ENDOSOMAL TRANSPORT 185 0.290 2.928 0.002 0.043

REGULATION OF CYCLIC NUCLEOTIDE 
BIOSYNTHETIC PROCESS

79 0.367 2.918 0.003 0.043

CONNECTIVE TISSUE DEVELOPMENT 65 0.322 2.915 0.003 0.043

INSULIN-MEDIATED GLUCOSE TRANSPORT 27 0.427 2.912 0.000 0.043

SIGNAL TRANSDUCTION BY P53 CLASS 
MEDIATOR

97 0.305 2.910 0.001 0.043

SKELETAL SYSTEM MORPHOGENESIS 55 0.308 2.908 0.007 0.043

REGULATION OF TRANSLATION 199 0.248 2.900 0.004 0.043

EPIGENETIC REGULATION OF GENE 
EXPRESSION

122 0.223 2.901 0.000 0.044

POSITIVE REGULATION OF ESTABLISHMENT OF 
PROTEIN LOCALIZATION TO MITOCHONDRION

104 0.249 2.896 0.006 0.044

CAP-DEPENDENT TRANSLATION INITIATION 84 0.142 2.885 0.001 0.044

EUKARYOTIC TRANSLATION INITIATION 84 0.142 2.885 0.001 0.044

REGULATION OF GLYCOPROTEIN 
BIOSYNTHETIC PROCESS

26 0.426 2.886 0.001 0.045
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Note—A total of 237 pathways are displayed at FDR ≤ 0.05. Abbreviations: ES, enrichment score; NES, 
normalized enrichment score; NominalP, nominal p value; FDR, false discovery rate. 

REGULATION OF CYTOKINE-MEDIATED 
SIGNALING PATHWAY

94 0.257 2.880 0.005 0.045

PURINE NUCLEOSIDE MONOPHOSPHATE 
METABOLIC PROCESS

148 0.202 2.875 0.008 0.045

PURINE RIBONUCLEOSIDE MONOPHOSPHATE 
METABOLIC PROCESS

148 0.202 2.875 0.008 0.045

REGULATION OF GLYCOPROTEIN METABOLIC 
PROCESS

30 0.394 2.874 0.002 0.045

RIBONUCLEOSIDE MONOPHOSPHATE 
METABOLIC PROCESS

151 0.209 2.856 0.006 0.047

FORMATION OF A POOL OF FREE 40S SUBUNITS 70 0.136 2.852 0.007 0.047

REGULATION OF CYCLIC NUCLEOTIDE 
METABOLIC PROCESS

90 0.336 2.852 0.004 0.047

MACROMOLECULE METHYLATION 141 0.280 2.850 0.005 0.047

MONOCARBOXYLIC ACID TRANSPORT 80 0.354 2.845 0.004 0.047

MORPHOGENESIS OF AN EPITHELIUM 144 0.255 2.842 0.004 0.047

CARBOXYLIC ACID TRANSPORT 187 0.300 2.839 0.005 0.047

SINGLE-ORGANISM BEHAVIOR 93 0.406 2.837 0.003 0.048

CASPASE CASCADE IN APOPTOSIS 48 0.325 2.833 0.008 0.048

CARBOXYLIC ACID BIOSYNTHETIC PROCESS 158 0.264 2.829 0.008 0.048

ORGANIC ACID BIOSYNTHETIC PROCESS 158 0.264 2.829 0.008 0.048

AMMONIUM ION METABOLIC PROCESS 114 0.293 2.826 0.003 0.048

GLYCOSYL COMPOUND CATABOLIC PROCESS 31 0.383 2.822 0.002 0.048

TUBE DEVELOPMENT 174 0.250 2.822 0.009 0.048

SENESCENCE-ASSOCIATED SECRETORY 
PHENOTYPE (SASP)

84 0.184 2.821 0.000 0.048

HDACS DEACETYLATE HISTONES 75 0.133 2.820 0.004 0.048

PROTEIN ACTIVATION CASCADE 42 0.339 2.808 0.005 0.049

PEPTIDYL-LYSINE METHYLATION 47 0.327 2.802 0.010 0.049

REGULATION OF CAMP BIOSYNTHETIC 
PROCESS

70 0.383 2.802 0.006 0.050

GENE SILENCING 146 0.221 2.799 0.003 0.050

NUCLEOSIDE PHOSPHATE CATABOLIC PROCESS 47 0.356 2.794 0.006 0.050
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Supplementary Table 3. Leading-edge subset per confidently enriched and nonenriched 

pathway. 

Abbreviations: HM3, HapMap Phase 3; PNC, Philadelphia Neurodevelopmental Cohort; LE, leading-edge. 

ID # Enriched Nonenriched

HM3 PNC HM3 PNC

Size LE Size LE Size LE Size LE

1 105 51 98  54 39  23 37  14

2 148 76 135  61 92  43 86  34

3 75 52 62  10 64  10 63  15

4 91 47 84  44 28  35 28  27

5 183  87 173  68 24  14 22  6

6 99  51 93  35 33  16 32  22

7 165  100 146  78 25  20 23  15

8 168  102 144  70 94  58 86  39

9 169  91 156  61 48  24 41  22

10 155  79 140  65 47  36 36  28

11 157  96 138  76 48  23 40  22

12 46  26 45  16 29  7 25  18

13 76  44 70  31 20  13 20  10

14 102  59 90  38 42  9 37  26

15 183  88 168  87 45  34 42  31

16 101  49 93  36 24  16 24  12

17 74  43 68  31 31  14 25  19

18 73  30 70  22 28  22 26  15

19 137 68 119 67 - - - -
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Supplementary Table 4. Regulation of hemopoiesis genes with evidence for recent positive 

selection via dbPSHP. 

Chrom Gene Population Description Function

chr17 ACE 52 worldwide 
populations

- climate adaption; 
metabolism

chr2 ACVR2A CEU-YRI 23.6/CLR -

chr10 ADAM8 CEU+YRI - -

chr10 ADAM8 CEU-ASN - -

chr6 AGER Mandenka - -

chr6 AGER CHB -2.189/Tajima's D; 
-3.508/Fay and Wu's 
H

-

chr6 AGER ASN - -

chr1 ARNT MKK 2.6089/absolute value 
of iHS

-

chr1 ARNT MKK 2.47585/absolute 
value of iHS

-

chr1 ARNT MKK 2.4139/absolute value 
of iHS

-

chr1 ARNT MKK 2.49442/absolute 
value of iHS

-

chr1 ARNT MKK 2.62799/absolute 
value of iHS

-

chr1 ARNT MKK 2.47308/absolute 
value of iHS

-

chr1 ARNT MKK 2.7361/average iHS -

chr1 ARNT MKK 2.22633/absolute 
value of iHS

-

chr1 ARNT MKK 2.65039/absolute 
value of iHS

-

chr1 ARNT MKK 2.72292/absolute 
value of iHS

-
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chr1 ARNT MKK 2.42302/absolute 
value of iHS

-

chr5 CAMK4 CEU - -

chr5 CARTPT Yoruba-Hazara-
Yakut-Mongola-
Xibo- Oroqen-
Hezhen-Maya

- -

chr3 CCR1 CEU+YRI - -

chr3 CCR1 YRI-CHB-CEU 0.5505/TD CEU; 
-1.2962/TD CHB; 
-1.7328/TD YRI

-

chr3 CD80 CEU-ASN - -

chr16 CD86 CEU 0.45/Fst; -2.73/iHS multiple sclerosis

chr1 CDC73 Bangladeshi 5.49/Max CMS score cholera susceptibility; 
chloride secretion; innate 
immune system

chr7 CDK6 GIH 3.56E-02/adjusted 
haploPS score

-

chr9 CDKN2A ASN-CEU - type 2 diabetes

chr11 CTR9 CHB+JPT - -

chr17 FLCN JPT 2.36E-02/adjusted 
haploPS score

-

chr5 FNIP1 Mbutipygmy - -

chr5 FNIP1 TSI 4.42E-02/adjusted 
haploPS score

-

chr5 FNIP1 CEU 2.60E-02/adjusted 
haploPS score

-

chr5 FNIP1 African Pygmy - human height; bone 
homeostasis

chr6 FOXO3 CHM,CEU 3.3625/Maximum 
iHS absolute value

-

chr3 FOXP1 Kalash - -

chr3 FOXP1 CHB+JPT - -

chr3 FOXP1 Oceania - -
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chr3 FOXP1 YRI - -

chr3 FOXP1 CHM-CEU 3.5358/Maximum 
XP-EHH score

-

chr3 FOXP1 CHM-CEU 3.2946/Maximum 
XP-EHH score

-

chr3 FOXP1 ASN-CEU-YRI 9/SNP with 
FST>0.65

-

chr2 GLI2 MKK 2.30136/absolute 
value of iHS

-

chr2 GLI2 ASN-CEU-YRI 19/SNP with 
FST>0.65

-

chr2 GLI2 ASN-YRI 341.1/max XP-CLR; 
0.0089/XP-EHH; 
0.2221/iHS(ASN); 
0.0079/iHS(YRI)

-

chr2 GLI2 CEU 4.94E-02/adjusted 
haploPS score

-

chr2 GLI2 MAS 2.51E-02/adjusted 
haploPS score

-

chr2 GLI2 MKK 2.96849/absolute 
value of iHS

-

chr2 GLI2 MKK 3.35722/absolute 
value of iHS

-

chr2 GLI2 MKK 2.20054/absolute 
value of iHS

-

chr2 GLI2 CHB 1.42E-02/adjusted 
haploPS score

-

chr2 GLI2 TSI 3.20E-02/adjusted 
haploPS score

-

chr2 GLI2 MKK 4.04988/absolute 
value of iHS

-

chr2 GLI2 JPT 2.32E-02/adjusted 
haploPS score

-

chr2 GLI2 MKK 3.49522/absolute 
value of iHS

-
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chr2 GLI2 MKK 2.96849/absolute 
value of iHS

-

chr2 GLI2 MEX 1.21E-03/adjusted 
haploPS score

-

chr2 GLI2 MKK 2.64/absolute value 
of iHS

-

chr2 GLI2 MKK 2.71923/absolute 
value of iHS

-

chr2 GLI2 MKK 3.35722/absolute 
value of iHS

-

chr2 GLI2 CHD 4.87E-02/adjusted 
haploPS score

-

chr2 GLI2 GIH 3.41E-02/adjusted 
haploPS score

-

chr7 GLI3 MKK 0.2521/Fst -

chr7 GLI3 MKK 0.2604/Fst -

chr7 GLI3 MKK 0.1711/Fst -

chr7 GLI3 MKK 0.1688/Fst -

chr7 GLI3 MKK 0.1752/Fst -

chr7 GLI3 MKK 0.1948/Fst -

chr7 GLI3 YRI - -

chr7 GLI3 MKK 0.2738/Fst -

chr7 GLI3 MKK 0.1726/Fst -

chr7 GLI3 MKK 0.1736/Fst -

chr7 GLI3 MKK 0.2509/Fst -

chr7 GLI3 MKK 0.1809/Fst -

chr7 GLI3 MKK 0.2266/Fst -

chr7 GLI3 MKK 0.2421/Fst -

chr7 GLI3 MKK 0.1948/Fst -

chr7 GLI3 MKK 0.1747/Fst -

chr7 GLI3 LWK 2.33E-02/adjusted 
haploPS score

-
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chr7 GLI3 MKK 0.2105/Fst -

chr7 GLI3 ASN-CEU-YRI 1/SNP with 
FST>0.65

-

chr3 HCLS1 ASN-YRI-CEU - Positive regulation of cell 
proliferation; Immune-
related

chr3 HCLS1 CEU-ASN - -

chr3 HCLS1 MEX 1.60E-02/adjusted 
haploPS score

-

chr14 HIF1A Daghestani - high-altitude adaptation

chr14 HIF1A CEU - -

chr14 HIF1A YRI - -

chr6 HIST1H4A GIH 1.33E-02/adjusted 
haploPS score

-

chr6 HIST1H4B GIH 1.33E-02/adjusted 
haploPS score

-

chr6 HIST1H4C GIH 1.33E-02/adjusted 
haploPS score

-

chr6 HIST1H4D JPT 3.94E-02/adjusted 
haploPS score

-

chr6 HIST1H4E JPT 3.94E-02/adjusted 
haploPS score

-

chr6 HIST1H4F JPT 3.94E-02/adjusted 
haploPS score

-

chr6 HIST1H4F CEU-CHB-YRI 44.027/CLR -

chr6 HIST1H4J TSI 3.54E-02/adjusted 
haploPS score

-

chr6 HIST1H4J MEX 4.58E-02/adjusted 
haploPS score

-

chr6 HIST1H4J CEU 2.91E-02/adjusted 
haploPS score

-

chr6 HIST1H4K CEU 2.91E-02/adjusted 
haploPS score

-
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chr6 HIST1H4K TSI 3.54E-02/adjusted 
haploPS score

-

chr6 HIST1H4K MEX 4.58E-02/adjusted 
haploPS score

-

chr6 HIST1H4L MEX 4.58E-02/adjusted 
haploPS score

-

chr6 HIST1H4L TSI 3.54E-02/adjusted 
haploPS score

-

chr6 HIST1H4L CEU 2.91E-02/adjusted 
haploPS score

-

chr6 HLA-G Oceania - -

chr6 HLA-G CHB - -

chr6 HLA-G Makrani-Yizu-
Miaozu

- -

chr12 IFNG CEU - -

chr6 IL17A America - -

chr5 IL3 Mbutipygmy - -

chr5 IL3 Csasia-Mideast-
Europe-America

- -

chr5 IL4 MKK 0.2460/Fst -

chr5 IL4 CEU - -

chr5 IL4 MKK 0.2483/Fst -

chr7 INHBA LWK 2.33E-02/adjusted 
haploPS score

-

chr7 INHBA present-day 
human-
Neandertal

- -

chr5 IRF1 CEU - Crohn's disease

chr5 IRF1 CEU 0.43/Fst; -2.6/iHS Crohn disease

chr6 IRF4 YRI-CEU-ASN - Hair colour

chr6 IRF4 YRI-CEU-ASN - Hair colour

chr15 LEO1 CHM-CEU 2.913/Maximum XP-
EHH score

-
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chr22 LIF CHM-YRI 3.2607/Maximum 
XP-EHH score

-

chr19 LILRB2 CHB+JPT - HLA class I-recognizing 
receptors; innate and 
adaptive immunity

chr3 LTF CEU+YRI - -

chr8 LYN CHM-CEU 7.2437/Maximum 
XP-EHH score

-

chr8 LYN CEU-CHB-YRI 25.735/CLR -

chr8 LYN CHM-YRI 6.008/Maximum XP-
EHH score

-

chr6 MAPK14 52 worldwide 
populations

- climate adaption; 
metabolism

chr19 PAF1 Bangladeshi 3.52/Max CMS score cholera susceptibility; 
chloride secretion; innate 
immune system

chr4 PF4 Mideast-Easia - -

chr4 PF4 Druze-Uygur-
Mongola-Naxi

- -

chr1 PRDM16 CEU - -

chr1 PRDM16 ASN-CEU-YRI 2/SNP with 
FST>0.65

-

chr17 PRKCA CEU - -

chr17 PRKCA CEU 2.87E-04/CMS test 
P-value

-

chr17 PRKCA CEU - -

chr8 PTK2B 52 worldwide 
populations

- climate adaption; 
metabolism

chr8 PTK2B 52 worldwide 
populations

- climate adaption; 
metabolism

chr8 PTK2B 52 worldwide 
populations

- climate adaption; 
metabolism

chr8 PTK2B 52 worldwide 
populations

- climate adaption; 
metabolism
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Note—57 unique genes (from 183 total) in the pathway demonstrate evidence for recent positive selection. Genes 
with multiple entires represent different positively selected loci identified within that gene. The ‘Description’ 
column indicates the particular statistical term for which the selective signal was determined. Abbreviations: YRI, 

Nigerian; CEU, European-American; GIH, Gujarati-Indian-American; MKK, Maasai Kenya; TSI, Italian; CHB, 
Han Chinese; JPT, Japanese; LWK, Luhya Kenya; CHD, Chinese-American; MEX, Mexican-American; FST, 
fixation index; iHS, integrated haplotype score; XP-EHH, cross-population extended haplotype homozygosity; XP-

CLR, cross-population composite likelihood ratio; CMS, composite of multiple signals (unknown/undefined 
acronyms: CHM, MAS). 

chr8 PTK2B 52 worldwide 
populations

- climate adaption; 
metabolism

chr8 PTK2B ASN-YRI-CEU - Positive regulation of cell 
proliferation; Immune-
related

chr6 RIPK1 CEU - -

chr21 SOD1 52 worldwide 
populations

- climate adaption; 
metabolism

chr21 SOD1 52 worldwide 
populations

- climate adaption; 
metabolism

chr11 SPI1 CEU-YRI-CHB - -

chr6 TNF CEU 1.16E-02/adjusted 
haploPS score

-

chr6 TNF JPT 2.45E-02/adjusted 
haploPS score

-

chr13 TNFSF11 Bedouin - -

chr6 VNN1 YRI - -

chr6 VNN1 YRI 3.18E-04/CMS test 
P-value

-

chr6 VNN1 LWK 2.27E-03/adjusted 
haploPS score

-

chr2 ZAP70 GIH 3.57E-02/adjusted 
haploPS score

-

chr2 ZAP70 India 0.00017/Empirical p-
value, India

-

chr2 ZAP70 Bangladeshi 7.2/Max CMS score cholera susceptibility; 
chloride secretion; innate 
immune system
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Supplementary Table 5. Toll-like receptor pathway genes with evidence for recent positive 

selection via dbPSHP. 

Chrom Gene Population Description Function

chr5 CD180 CEU - CD180 molecule

chr7 CD36 YRI - -

chr7 CD36 YRI 7.05E-09/p value -

chr7 CD36 YRI 3.78E-08/p value -

chr7 CD36 52 worldwide 
populations

- climate adaption; 
metabolism

chr7 CD36 YRI 2.72E-06/Empirical 
P-value

-

chr7 CD36 YRI 1.30E-02/adjusted 
haploPS score

-

chr10 CHUK YRI 3.16E-02/adjusted 
haploPS score

-

chr10 CHUK YRI 1.47E-03/CMS test 
P-value

-

chr8 CTSB Adygei-
Mongola-Tu-
Brahui-Pathan

- -

chr8 CTSB Bergamo-
Brahui-Uygur-
Xibo-Oroqen- 
Daur-Tujia-
Miaozu-Dai-
Lahu- Nasioi-
Papuan-Maya-
Colombian

- -

chr8 CTSB Csasia-America - -

chr8 CTSB CHM-CEU 3.5081/Maximum 
XP-EHH score

-

chr8 CTSB CHM-YRI 4.2413/Maximum 
XP-EHH score

-

chr1 CTSK MKK 2.7361/average iHS -
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chr1 CTSK MKK 2.68535/absolute 
value of iHS

-

chr1 CTSS MKK 2.70558/absolute 
value of iHS

-

chr1 CTSS MKK 3.58697/absolute 
value of iHS

-

chr1 CTSS MKK 3.40564/absolute 
value of iHS

-

chr1 CTSS MKK 3.3589/absolute 
value of iHS

-

chr1 CTSS MKK 2.49308/absolute 
value of iHS

-

chr1 CTSS MKK 2.71415/absolute 
value of iHS

-

chr1 CTSS MKK 3.47909/absolute 
value of iHS

-

chr1 CTSS MKK 3.45836/absolute 
value of iHS

-

chr1 CTSS MKK 2.45722/absolute 
value of iHS

-

chr1 CTSS MKK 3.31742/absolute 
value of iHS

-

chr1 CTSS MKK 2.7361/average iHS -

chr1 CTSS MKK 2.47647/absolute 
value of iHS

-

chr12 HSP90B1 MKK 1.47E-03/adjusted 
haploPS score

-

chr2 HSPD1 CEU-CHB-YRI 0.972/CLR P-value heat shock genes

chr8 IKBKB CEU - -

chr8 IKBKB MEX 1.62E-02/adjusted 
haploPS score

-

chr3 IRAK2 CEU - -

chr12 IRAK4 GIH 4.42E-03/adjusted 
haploPS score

-
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chr12 IRAK4 Cambodian - -

chr16 ITGAM MKK 0.1714/Fst -

chr16 ITGAM CEU-ASN - -

chr16 ITGAM ASN-CEU-YRI 2/SNP with 
FST>0.65

-

chr16 ITGAM Yakut-
Colombian

- -

chr3 MAPKAPK3 CEU+YRI - -

chr3 MAPKAPK3 Bangladeshi 4/Max CMS score cholera susceptibility; 
chloride secretion; innate 
immune system

chr12 NR1H4 CEU-CHB-YRI 37.529/CLR -

chr12 NR1H4 YRI-CHB-CEU -1.8667/TD CEU; 
1.9972/TD CHB; 
1.317/TD YRI

-

chr3 RFTN1 YRI - -

chr6 RIPK1 CEU - -

chr2 TANK Karitiana - -

chr19 TICAM1 CEU-ASN-YRI - TIR-containing adaptors of 
innate immune system

chr4 TLR1 YRI-CHB-CEU -0.4247/TD CEU; 
2.5188/TD CHB; 
-1.1971/TD YRI

-

chr4 TLR1 Pacific Islander 5.999/REHH activation of innate immune 
system; sepsis, leprosy and 
tuberculosis

chr4 TLR1 CEU 0.53/SIFT score activation of innate immune 
system; sepsis, leprosy and 
tuberculosis

chr4 TLR1 CEU 0.473/Fst activation of innate immune 
system; sepsis, leprosy and 
tuberculosis

chr1 TLR5 CHM-YRI 4.3193/Maximum 
XP-EHH score

-
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Note—21 unique genes (from 74 total) in the pathway demonstrate evidence for recent positive selection. Genes 

with multiple entires represent different positively selected loci identified within that gene. The ‘Description’ 
column indicates the particular statistical term for which the selective signal was determined. Abbreviations: YRI, 
Nigerian; CEU, European-American; GIH, Gujarati-Indian-American; MKK, Maasai Kenya; TSI, Italian; CHB, 
Han Chinese; JPT, Japanese; LWK, Luhya Kenya; CHD, Chinese-American; MEX, Mexican-American; REHH, 

extended homozygosity haplotype (EHH) based tests; FST, fixation index; iHS, integrated haplotype score; XP-
EHH, cross-population extended haplotype homozygosity; XP-CLR, cross-population composite likelihood ratio; 
CMS, composite of multiple signals (unknown/undefined acronyms: CHM, MAS). 

chr1 TLR5 MKK 2.86157/absolute 
value of iHS

-

chr1 TLR5 MKK 2.6131/absolute 
value of iHS

-

chr1 TLR5 YRI - -

chr1 TLR5 MKK 2.57621/absolute 
value of iHS

-

chr1 TLR5 CHM-YRI 3.5345/Maximum 
XP-EHH score

-

chr1 TLR5 MKK 2.92336/absolute 
value of iHS

-

chr1 TLR5 MKK 2.02128/absolute 
value of iHS

-

chr1 TLR5 MKK 2.50958/absolute 
value of iHS

-

chr1 TLR5 CHM-CEU 2.9636/Maximum 
XP-EHH score

-

chr1 TLR5 CHM-CEU 4.0257/Maximum 
XP-EHH score

-

chr5 TNIP1 Karitiana - -

chr5 TNIP1 America - -
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Supplementary Figure 1. GSEA enrichment plot and associated statistics per ancestry-enriched 

pathway. Tabular (A) and graphical (B) representations of a pathway enrichment score. The ES 

reflects the degree to which the genes in a pathway are overrepresented at the top or bottom of 

the entire ranked list of genes (see Materials and Methods for additional details). As 

demonstrated by the ‘Gene ranks’ column of A, a nonenriched pathway will have its genes 

Pathway Gene ranks NES pval padj

CELLULAR_RESPIRATION 3.65 0.0e+00 4.1e−02

ENERGY_DERIVATION_BY_OXIDATION_OF_ORGANIC_COMPOUNDS 3.81 0.0e+00 3.5e−02

EUKARYOTIC_TRANSLATION_TERMINATION 2.94 1.8e−02 1.0e−01

LIPOSACCHARIDE_METABOLIC_PROCESS 3.11 4.0e−03 8.5e−02

LYMPHOCYTE_ACTIVATION 3.65 0.0e+00 4.3e−02

LYMPHOCYTE_DIFFERENTIATION 3.09 0.0e+00 8.8e−02

MACROMOLECULAR_COMPLEX_DISASSEMBLY 3.56 1.0e−03 4.9e−02

MORPHOGENESIS_OF_AN_EPITHELIUM 2.98 2.0e−03 1.0e−01

NUCLEOSIDE_MONOPHOSPHATE_METABOLIC_PROCESS 3.13 2.0e−03 8.3e−02

NUCLEOSIDE_TRIPHOSPHATE_METABOLIC_PROCESS 4.50 0.0e+00 4.4e−02

PROTEIN_COMPLEX_DISASSEMBLY 3.74 1.0e−03 3.7e−02

REGULATION_OF_BONE_MINERALIZATION 3.00 4.0e−03 9.8e−02

REGULATION_OF_CAMP_BIOSYNTHETIC_PROCESS 3.19 1.0e−03 7.8e−02

REGULATION_OF_CYCLIC_NUCLEOTIDE_METABOLIC_PROCESS 3.52 2.0e−03 4.7e−02

REGULATION_OF_HEMOPOIESIS 3.96 0.0e+00 2.9e−02

RHYTHMIC_PROCESS 3.22 2.0e−03 7.6e−02

TOLL−LIKE_RECEPTOR_SIGNALING_PATHWAY 3.29 4.0e−03 7.0e−02

TP53_REGULATES_METABOLIC_GENES 4.29 0.0e+00 4.5e−02

VACUOLE_ORGANIZATION 3.27 1.0e−03 7.0e−02

0 500 1000 1500 2000

A

B
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spread more or less uniformly through the ranked list. A positively enriched pathway, on the 

other hand, will have a larger portion of its genes at the left end of the ranked list (and vice versa 

for a negatively enriched pathway). Graphically, the ES is represented by the maximum 

deviation from 0 as GSEA walks down the ranked list of genes, and is depicted by the top red 

dashed line in B. The green line represents the running sum enrichment score as GSEA walks 

through the ranked list of genes in a pathway. Both figures are generated via the fgsea R package 

(v1.4.1) [169]. Abbreviations: NES, normalized enrichment score; pval, Nominal p value; padj, 

adjusted p value (i.e., FDR). 
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Supplementary Figure 2. GSEA enrichment plot and associated statistics per nonenriched 

pathway. [See description for Supplementary Figure 1]. Abbreviations: PSCs, pluripotent stem 

cells.

Pathway Gene ranks NES pval padj

ACTIVATION_OF_GENE_EXPRESSION_BY_SREBF_(SREBP) −0.02 5.1e−01 7.4e−01

AMEBOIDAL−TYPE_CELL_MIGRATION 0.07 4.6e−01 7.2e−01

COPII_(COAT_PROTEIN_2)_MEDIATED_VESICLE_TRANSPORT 0.05 4.7e−01 7.2e−01

COPI−INDEPENDENT_GOLGI−TO−ER_RETROGRADE_TRAFFIC −0.07 5.2e−01 7.6e−01

EXTENSION_OF_TELOMERES −0.05 5.2e−01 7.5e−01

GABA−B_RECEPTOR_II_SIGNALING −0.03 4.9e−01 7.4e−01

HEMATOPOIETIC_PROGENITOR_CELL_DIFFERENTIATION −0.02 5.6e−01 7.4e−01

LOCALIZATION_WITHIN_MEMBRANE 0.04 4.8e−01 7.3e−01

MESODERM_DEVELOPMENT 0.00 4.9e−01 7.3e−01

NEGATIVE_REGULATION_OF_INFLAMMATORY_RESPONSE 0.07 4.6e−01 7.2e−01

PHOSPHOLIPID_TRANSPORT −0.01 5.0e−01 7.4e−01

PLATELET_AGGREGATION −0.05 5.4e−01 7.5e−01

POSITIVE_REGULATION_OF_NIK/NF−KAPPAB_SIGNALING −0.09 5.3e−01 7.6e−01

POSITIVE_REGULATION_OF_TELOMERE_MAINTENANCE 0.01 4.7e−01 7.3e−01

REGULATION_OF_CELL_KILLING 0.02 4.7e−01 7.3e−01

REGULATION_OF_DNA_DAMAGE_RESPONSE,_SIGNAL_TRANSDUCTION_BY_P53_CLASS_MEDIATOR 0.00 4.8e−01 7.3e−01

TRANSCRIPTIONAL_REGULATION_OF_PLURIPOTENT_STEM_CELLS 0.06 5.3e−01 7.2e−01

TRANSPORT_OF_THE_SLBP_DEPENDANT_MATURE_MRNA −0.07 5.6e−01 7.6e−01

0 200 400 600

A

B
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