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A clinically applicable integrative molecular 
classification of meningiomas
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Rosario I. Corona4, Lydia Y. Liu4,14, Caroline Y. Chen4, Ankur Chakravarthy5, Qingxia Wei1, 
Bharati Mehani6, Suganth Suppiah1,2,3, Andrew Gao7, Adriana M. Workewych1, 
Ghazaleh Tabatabai3,8, Paul C. Boutros3,4,9, Gary D. Bader10,11,12,13, Daniel D. de Carvalho5,14, 
Thomas Kislinger3,5,14, Kenneth Aldape1,3,6,16 & Gelareh Zadeh1,2,3,5,16 ✉

Meningiomas are the most common primary intracranial tumour in adults1. Patients 
with symptoms are generally treated with surgery as there are no effective medical 
therapies. The World Health Organization histopathological grade of the tumour and 
the extent of resection at surgery (Simpson grade) are associated with the recurrence 
of disease; however, they do not accurately reflect the clinical behaviour of all 
meningiomas2. Molecular classifications of meningioma that reliably reflect tumour 
behaviour and inform on therapies are required. Here we introduce four consensus 
molecular groups of meningioma by combining DNA somatic copy-number 
aberrations, DNA somatic point mutations, DNA methylation and messenger RNA 
abundance in a unified analysis. These molecular groups more accurately predicted 
clinical outcomes compared with existing classification schemes. Each molecular 
group showed distinctive and prototypical biology (immunogenic, benign NF2 
wild-type, hypermetabolic and proliferative) that informed therapeutic options. 
Proteogenomic characterization reinforced the robustness of the newly defined 
molecular groups and uncovered highly abundant and group-specific protein  
targets that we validated using immunohistochemistry. Single-cell RNA sequencing 
revealed inter-individual variations in meningioma as well as variations in intrinsic 
expression programs in neoplastic cells that mirrored the biology of the molecular 
groups identified.

Although previous studies on meningioma have provided important 
insights into the possibility for molecular data to refine meningioma 
classification3–8, the formal integration of multiple molecular datatypes 
in a unified analysis has not been performed. Here we assembled a 
large cohort of meningiomas that were enriched for the uncommon, 
higher-grade tumours with matched multidimensional molecular 
and high-quality clinical data. We generated matched DNA somatic 
copy number, DNA point mutation, DNA methylation, transcrip-
tomic and proteomic data to create a resource—similar to The Cancer 
Genome Atlas—for meningiomas that we further supplemented with 
single-cell RNA sequencing data. By integrating multiple datatypes 
in a unified analysis—as has been achieved for other cancers9–12—we 
define a molecular taxonomy for meningiomas that has direct clinical  
relevance.

 
Patient samples and clinical data
We used meningioma samples from 121 patients to define molecular 
groups, and 80 samples from an independent cohort to assess gener-
alizability. Samples were selected on the basis of availability of clinical 
data as well as the quality and quantity of tissue for analyses. Our cohort 
reflects the real-life diversity of patients with meningiomas and includes 
a substantial number of WHO (World Health Organization) grade 2 
and 3 meningiomas, which have been understudied to date because 
of their rarity. We performed whole-exome sequencing for germline 
polymorphisms, somatic point mutations and somatic copy-number 
alterations; EPIC array profiling for DNA methylome analysis; and 
mRNA sequencing for transcriptome analysis on all 121 tumours in 
the discovery cohort. Whole-cell proteomics was performed on 96 of 
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these tumours (Fig. 1a). DNA methylation was also performed on five 
healthy meninges samples for methylome comparison. Eight tumours 
and two healthy meninges samples were profiled by single-nucleus 
RNA sequencing to examine intratumoral heterogeneity. Grading was 
confirmed by two independent neuropathologists in accordance with 
the most recent 2016 WHO classification criteria. All samples were 
annotated with detailed high-quality clinical data elements that were 
established a priori (see Methods and Supplementary Table 1).

Interdependencies of datatypes
To examine relationships between datatypes, we computed the Mutual 
Information (MI) metric for each gene between all pairwise combina-
tions of datatypes and compared this to a permuted null distribution13. 
MI values of zero indicate orthogonal information. We found that the 
distribution of MI values was statistically significantly different between 
different datatype comparisons (Extended Data Fig. 1a). Moreover, 
consensus clustering of normalized MI values using genes where MI 
was significant for at least one datatype pair revealed four different 
gene clusters, each defined by distinct patterns of dependence between 
datatypes at different levels of the central dogma. These results show 
the potential value of formal unsupervised integration of multiple 
datatypes in meningioma.

Multiplatform integrative analyses
We next sought to combine whole-exome sequencing and copy number, 
DNA methylation, and mRNA sequencing data using cluster-of-cluster 

assignments (COCA)9–12. In this approach, cluster assignments from 
individual platform analyses are subjected to additional (second-order) 
clustering to examine the higher-order relationship between samples 
across molecular features.

Unsupervised sample-wise clustering of gene-level somatic 
copy-number alterations (CNAs), DNA methylome data and transcrip-
tome data in isolation revealed six stable subgroups for each data-
type with clinically relevant and significant differences in outcome 
(Fig. 1b, Extended Data Fig. 1b, d, f). Cluster assignments across data-
types were neither identical nor orthogonal (Fig. 1c) and cluster asso-
ciations with outcome were unique for each datatype (Extended Data  
Fig. 1c, e, g).

COCA analysis combining six copy-number clusters with six DNA 
methylation and six mRNA abundance clusters converged to reveal 
four stable molecular groups (MG1–MG4) of meningioma (Fig. 1d, 
Extended Data Fig. 1h). RNA cluster assignments were strongly asso-
ciated with MG1, MG3 and MG4, whereas CNA and DNA methylation 
cluster assignments were most strongly associated with MG2, and 
the relative importance of these datatypes was confirmed by formal 
unsupervised integration of two datatypes at a time (Supplementary 
Table 2). Tumours spanning all WHO grades were represented in each 
molecular group, with the exception of MG1, which was composed 
of only WHO grade 1 and 2 tumours. Tumours of higher WHO grade 
were enriched in MG3 and MG4 (Fisher’s exact test, P = 5.49 × 10−7). 
Notably, a clear one-to-one relationship between molecular group and 
WHO grade was not evident (Extended Data Fig. 1i), which prompted 
us to examine the clinical relevance of these newly defined integrative 
molecular groups.
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Fig. 1 | Integrative multiplatform analysis reveals four molecular groups of 
meningioma. a, Flow diagram showing the relationship between molecular 
datasets on tumours in this study: whole-exome sequencing (seq), DNA 
methylation and mRNA sequencing (RNA-seq) (n = 124), proteomics (n = 96), 
and single-cell data (n = 8). A total of 121 samples were used for discovery on 
bulk analyses, with an additional 3 samples assembled specifically for single 
cell analyses. b, t-distributed stochastic neighbor embedding (t-SNE) reduction 
of individual platform data with annotated unsupervised cluster assignments 
for each individual platform. c, Alluvial plot showing the relationships between 
unsupervised cluster assignments from individual platform analyses using 
DNA methylation, RNA sequencing and copy-number data. The widths of the 
nodes and edges are proportional to the number of samples. d, Multiplatform 

higher-order integration of genetic, epigenetic and transcriptomic data by 
cluster-of-cluster assignments. Cluster assignments for each independent 
platform (rows) are shown for each sample (columns). Membership for a given 
cluster is noted by a black tick. Annotation for clinical factors (WHO grade and 
the extent of resection (Simpson grade)) is shown above the matrix. e, Kaplan–
Meier estimates of recurrence-free survival of patients according to molecular 
group. f, Brier prediction curves for recurrence-free survival comparing 
classification by molecular group to WHO grade, DNA methylation cluster 
assignments by the DKFZ (German Cancer Research Center)3, and cluster 
assignments by the individual datatypes in this study. The integrated Brier 
score is shown for each datatype.
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Clinical relevance of integrative molecular groups
Although the discovery of the four molecular groups in this study 
was agnostic to patient outcomes, these groups were characterized 
by distinct and divergent patterns of recurrence-free survival (Fig. 1f). 
Overall, patients with MG3 and MG4 tumours had statistically shorter 
times to recurrence (log-rank test, P = 5 × 10−15), with the most unfavora-
ble outcomes for MG4 tumours. Classification by molecular groups was 
independently associated with recurrence-free survival as assessed 
by multivariable Cox regression, even after accounting for known 
prognostic clinical factors—including WHO grade, extent of surgical 
resection and receipt of adjuvant radiotherapy (see Supplementary 
Table 3). Significant differences in recurrence patterns persisted across 
molecular groups when tumours were analysed separately according 
to WHO grade (Extended Data Fig. 1j–l). For predicting time to recur-
rence, classification by molecular group was superior to WHO grade 
and previously described methylation-based classifications3 as well as 
classification by cluster assignments from each datatype individually 
(Fig. 1f). We confirmed the generalizability of molecular-grade classifi-
cation and outcomes in an independent cohort using mRNA signatures 
(Extended Data Fig. 2). This framework provides a blueprint for future 
independent validation and ongoing assessment of generalizability.

Mutational profiles of molecular groups
We next examined the somatic point-mutational profiles of molecular 
groups. While NF2 was, predictably, the most frequently point-mutated 
gene, the prevalence of such mutations differed significantly across 
molecular groups without distinct positional bias (Fig. 2a, Extended 
Data Fig. 3a). Nearly all MG1 meningiomas had mutations in NF2, 
whereas such mutations were extremely rare in the MG2 tumours (88% 
compared with 9%; Fisher’s exact test, P = 5.9 × 10−8). Conversely, the 
previously described mutations in TRAF7, AKT1, KLF4 and POLR2A were 
exclusively identified in the MG2 tumours at frequencies of 25%, 13%, 
13% and 6%, respectively (Fisher’s exact test, P = 1.20 × 10−8).

We found previously unidentified, statistically significant, recurrent 
nonsynonymous somatic driver mutations in genes that are involved 
in chromatin modelling and epigenetic regulation (KDM6A, CHD2), as 
well as in tumour suppressor genes (PTEN; Supplementary Table 4). 
Recurrent inactivating mutations in additional chromatin modelling 
(CREBBP, q = 0.127) and tumour suppressor (FBXW7, q = 0.226; RB1, 
q = 0.250) genes were also identified as subthreshold hits (Supple-
mentary Table 4). These mutations occurred at frequencies similar to 
those of other known meningioma driver genes (3–5%, Fig. 2a), and were 
collectively enriched in the aggressive phenotypes of meningioma, 
distinguishing MG3 and MG4 tumours from MG1 and MG2 tumours 
(Fisher’s exact test, P = 0.002). MG4 tumours had significantly greater 
mutational burden compared to MG1–MG3 tumours (P = 1.6 × 10−3, 
Kruskal–Wallis test; Extended Data Fig. 3b). The majority of point 
mutations in meningioma were clonal, with only a small subset seen 
as late-evolving drivers (Extended Data Fig. 3c–e). The specificity of 
different mutations for distinct molecular groups was particularly 
notable given that the generation of molecular groups was independ-
ent of point mutations.

Genomic disruptions across molecular groups
We next investigated the pattern of genome-wide CNAs across molecu-
lar groups (Extended Data Fig. 4a). MG1 tumours were relatively dip-
loid with the exception of uniform loss of chromosome 22q, which—in 
combination with concurrent NF2 point mutations—results in biallelic 
NF2 inactivation. There were two subsets of MG2 tumour: one in which 
tumours were copy-number neutral but harboured mutations in TRAF7, 
AKT1, KLF4 or SMO; and the other in which tumours did not harbour 
mutations but had consistent polysomies of chromosomes 5, 12, 13, 17 

and 20. MG3 and MG4 meningiomas were high-aneuploidy tumours 
with losses in chromosomes 22q (93% and 86%, respectively), 1p (77% 
and 89%), 6q (30% and 38%), 14 (47% and 35%) and 18 (19% and 38%). 
MG4 meningiomas also showed gain of chromosome 1q and a loss of 
chromosome 10, which were uncommon in MG3 meningiomas (34% 
versus 2% for chromosome 1q, P = 2.9 × 10−4, Fisher’s exact test; and 38% 
versus 14% for chromosome 10, P = 0.025, Fisher’s exact test). Some MG3 
and MG4 tumours containing wild-type NF2 showed silencing of NF2 
expression that was not associated with changes in methylation of the 
NF2 gene (Extended Data Fig. 4b, c). The degree of total genomic disrup-
tion, quantified as the percentage of the genome that was altered, was 
higher in MG3 (median 16.9%) and MG4 (median 19.5%) meningiomas 
compared with MG1 (median 3.5%) and MG2 (median 9.6%) tumours 
(P = 5.2 × 10−6, Kruskal–Wallis test). This was further supported by more 
frequent non-recurrent interchromosomal fusion events in MG3 and 
MG4 tumours compared to MG1 and MG2 meningiomas (Extended Data  
Fig. 4d, Supplementary Table 5). Taken together, these data point to an 
increase in genomic instability in MG3 and MG4 tumours, which have 
the most unfavorable outcomes.

Gene-expression networks of molecular groups
We next investigated the gene-expression pathways associated with 
each molecular group (Fig. 2b, Extended Data Fig. 5a). MG1 tumours 
showed greater immune infiltration and enrichment of pathways 
involved in immune regulation and signalling (Fig. 2b, inset, Extended 
Data Fig. 5b). By contrast, immune signatures were downregulated 
in MG4 tumours, and these tumours instead showed enrichment for 
pathways involved in cell-cycle regulation, as well as several critical 
and complementary proliferation-associated transcription factor net-
works (such as MYC, FOXM1, E2F) and protein complexes (for example 
mTORC1, CDKs, kinesins). MG3 tumours were uniquely enriched for 
pathways that converged onto the metabolism of several macromol-
ecules. Although we identified two subsets of MG2 tumour by mutations 
and copy number, the transcriptomes of these subsets were distinctly 
correlated (Extended Data Fig. 5c, d), and collectively enriched for vas-
cular and angiogenic pathways (Fig. 2b). Consequently, we designated 
the molecular groups as immunogenic (MG1), benign NF2 wild-type 
(MG2), hypermetabolic (MG3) and proliferative (MG4). It is notable 
that the association of molecular groups with outcomes was independ-
ent of molecular signatures of proliferation (Extended Data Fig. 5e,  
Supplementary Table 6).

We next sought to determine whether the distinct expression path-
ways could be exploited to identify new medical therapies for meningi-
omas, by mapping drugs approved by the United States Food and Drug 
Administration (FDA) to target genes in our enrichment network. We 
found that vorinostat, a histone deacetylase inhibitor, targeted several 
critical pathways that were specifically upregulated in proliferative 
(MG4) meningiomas (Fig. 2b). Treatment with vorinostat selectively 
decreased the viability of cell lines derived from patients with MG4 
tumours only, and not cell lines derived from patients with tumours 
belonging to other molecular groups (Fig. 2c, Extended Data Fig. 6a, b). 
By contrast, treatment of the same cell lines with a comparable agent, 
5-azacytidine, had no effect on cell viability. In mice with intracranial 
xenografts of patient-derived MG4 cell lines, treatment with vorinostat 
also attenuated tumour growth (Fig. 2d) and improved survival (Fig. 2e) 
compared with the control (Extended Data Fig. 6c, d). Overall, these 
findings suggest that tumours of different molecular groups might 
differ in their sensitivity to treatment with vorinostat, which warrants 
further investigation.

Proteogenomic characterization of molecular groups
Using a single-shot liquid chromatography–tandem mass spectrom-
etry approach, we quantified a total of 6,568 unique protein groups in  
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96 tumours with somatic mutation, epigenome and transcriptome data 
in our cohort. Enrichment scores of gene sets by mRNA and proteome 
data were correlated well when comparing samples of similar molecular 
groups (Extended Data Fig. 7a–c). Functional inference using protein 
data alone converged on biological networks that were highly similar to 
those obtained by transcriptome data (Fig. 3a, Extended Data Fig. 7d). 

Specifically, immunogenic (MG1) tumours were enriched for proteins 
involved in immunoregulation, whereas hypermetabolic (MG3) men-
ingiomas harboured enrichment of protein pathways converging on 
nucleotide and lipid metabolism, and proliferative (MG4) meningiomas 
were enriched for protein gene sets that regulate the cell cycle and cell 
proliferation.
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We next compared the association of mRNA and protein abundance 
with outcomes. Overall, the associations of protein and gene abun-
dance with outcome correlated well (Pearson’s ρ = 0.49, 95% confi-
dence interval 0.47–0.50, P < 2.2 × 10−16). Concordance was 213 times 
more likely (odds ratio = 213.17, 95% confidence interval 113.74–422.26) 
than non-concordance amongst the 682 genes that were significantly 
associated with outcome by either mRNA or protein data (Fig. 3b). It 
is noteworthy that genes associated with poorer outcomes in both 
datatypes were involved in both the cell cycle (false discovery rate 
(FDR) = 3.98 × 10−7, hypergeometric test) and metabolism by oxidative 
phosphorylation (FDR = 2.9 × 10−55, hypergeometric test).

We then identified, using proteomic data, proteins that were highly 
enriched in each molecular group: S100B for MG1, SCGN for MG2, 
ACADL for MG3 and MCM2 for MG4 (Supplementary Table 7, see Meth-
ods). We validated the enrichment of these proteins in each group by 
immunohistochemistry in a blinded fashion. Unbiased, digital quanti-
fication of each protein marker showed strong concordance between 
immunohistochemistry and proteomic data, and protein markers 
were found to discriminate between molecular groups well (Fig. 3c). 
These results show potential for molecular group classifications to 
be adopted in conventional neuropathology laboratories, following 
further independent validation.

Methylation characteristics of molecular groups
We next searched for differences in genome-wide DNA methylation pat-
terns between healthy meninges and meningiomas. We identified two 
sets of probes that differentiated healthy meninges from meningiomas 
as a whole (Extended Data Fig. 8a). In one set, probes were fully hypo-
methylated in healthy meninges and progressively gained methylation 
across molecular groups, whereas in the other set, probes were fully 
hypermethylated in healthy meninges, and progressively lost methyla-
tion across molecular groups. (Extended Data Fig. 8b). These patterns 
were similar when examining previously defined regions of the genome 
that either gain or lose methylation as a function of mitotic age14–16 (for 
example, epigenetic mitotic clocks, Extended Data Fig. 8c), pointing 

to the possibility that aberrant DNA methylation processes might be 
associated with the most aggressive molecular groups, although dif-
ferences in cell type composition could also be a contributing factor.

We then identified transcription factors that were enriched in each 
molecular group on the basis of hypomethylated enhancer regions 
within each group (Extended Data Fig. 8d), known transcription-factor 
binding site motifs and correlations with gene expression17. Hypometh-
ylation at enhancer regions was associated with transcription factors 
that aligned to the biology of each molecular group that we defined by 
gene and protein expression (Extended Data Fig. 8e, f).

Single-cell map of meningiomas
To investigate heterogeneity in meningiomas, we performed 
droplet-based single-nuclear RNA sequencing on eight tumours that 
were selected to span all molecular groups and WHO grades, as well 
as two healthy meninges samples for comparison.

In total, 54,393 high-quality and accurately genotyped single nuclei 
were analysed, and 14 distinct clusters were identified (Fig. 4a–d, Sup-
plementary Figs. 1, 2). Cells were assigned to cell type on the basis of 
consensus between expression-based clustering (Extended Data Fig. 9a), 
inference of CNAs (Extended Data Fig. 9b, c) and annotation by canonical 
markers (Extended Data Fig. 10a). The majority of cells in our data were 
neoplastic (69%), whereas 14% were immune cells (macrophages and 
T cells), 10% were fibroblasts and 6% were endothelial cells.

Non-neoplastic cells from different patients clustered together 
by cell type, whereas neoplastic cells clustered distinctly by patient, 
representing the inter-individual variability of meningiomas (Fig. 4a, 
Extended Data Fig. 10b, Supplementary Table 8). When neoplastic cells 
were considered in isolation, the variability between cells of different 
tumours was much larger than the variability within tumours (F = 65,538, 
P < 2.2 × 10−16, one-way ANOVA), and within the limits of differences in 
detection rates of genes between cells, the expression of neoplastic cells 
most closely resembled bulk molecular signatures of their tumour of 
origin (Extended Data Fig. 10c). Cycling neoplastic cells were enriched 
in MG3 and MG4 tumours (P = 2.2 × 10−2 and P = 1.49 × 10−2, respectively, 
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Fig. 3 | Proteogenomic characterization validates the robustness of 
molecular groups and identifies markers that can distinguish molecular 
groups by immunohistochemistry. a, Hierarchical clustering of genes from 
select pathways identified by gene set enrichment analysis (GSEA). Selected 
genes have been labelled. Gene annotation to pathway(s) is shown in the side 
bar. b, Scatter plot of hazard ratios of genes by gene expression (x axis) and 
protein abundance ( y axis). Genes with significant associations with outcome 
are coloured in red. Selected genes are labelled. Pearson correlation and its 

associated 95% confidence interval are shown. c, Immunohistochemistry 
results for group-specific markers. Selected are four representative cases 
(rows). Images shown for each patient are at the same region of the slide for 
each antibody. Scale bars, 50 µm. Each case was subjected to unbiased digital 
quantitation. Below the images of representative stains are the receiver–
operating characteristic curves for each antibody with the area under the 
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mixed-effects) whereas immune cells were enriched in MG1 tumours 
(P = 1.8 × 10−2, mixed-effects; Extended Data Fig. 10d, e). Indeed, decon-
volution of bulk RNA sequencing data using single-cell RNA sequencing 
signatures confirmed that macrophages were enriched in MG1 tumours, 
with additional differences in cell composition across molecular groups 
and healthy meninges (Fig. 4e, Extended Data Fig. 10f).

Heterogeneity by single cell
We first looked for discrete patterns of variation by clustering gene 
expression profiles of single cells from each sample individually using 
two independent clustering algorithms (Seurat and DBSCAN). When 
considering all cells within a sample, MG1–MG3 tumours showed sev-
eral discrete clusters that were largely explained by the abundance 
of stromal or immune cell types, whereas MG4 tumours—which were 

predominantly composed of neoplastic cells—did not show distinct 
clusters (Fig. 4f). To examine the neoplastic component of each tumour 
more carefully, we then selected the neoplastic cells of each tumour 
for additional sub-clustering using the same algorithms. Again, using 
both algorithms we found that most samples harboured one dominant 
cluster, and less commonly a second minor cluster of neoplastic cells. 
Copy-number profiles of neoplastic cells were, in general, similar to 
those observed by bulk analyses and again did not show substantial 
variability between cells (Extended Data Fig. 9b, c). These findings were 
in line with our results from clonality assessment of bulk mutation data 
(Extended Data Fig. 3c–e), highlighting the relative rarity of subclonal 
expansion in meningiomas.

We then used non-negative matrix factorization to identify programs 
that were intrinsically expressed in neoplastic cells and shared between 
samples. In total, we identified 24 such programs across neoplastic cells 
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of different samples that clustered to four ‘meta-programs’ on the basis 
of the degree of similarity by shared genes between modules (Fig. 4g, 
Extended Data Fig. 11a). The meta-programs were highly similar to the 
biology of the integrative molecular groups that we defined earlier, and 
the distributions of the activation of these programs across cells of differ-
ent tumours reflected this (Extended Data Fig. 11b). The most prominent 
program was related to cell cycle (FDR = 3.13 × 10−32, hypergeometric 
test), and this program was reflective of discrete patterns of variability 
in most tumours (Extended Data Fig. 11b, c). Other programs included 
cellular metabolism (FDR = 7.66 × 10−3, hypergeometric test), inflam-
matory TNF signalling (FDR = 5.99 × 10−13, hypergeometric test) and  
a general mesenchymal program (FDR = 2.12 × 10−15, hypergeometric 
test), which generally showed more continuous patterns of variability 
(Extended Data Fig. 11c, d). Overall, these programs represent more 
subtle patterns of variation in meningiomas; however, the similarity 
of these programs—which are intrinsic to neoplastic cells—to the biol-
ogy that we defined for the molecular groups introduced in this study 
points to the importance of these processes in meningioma biology. 
Indeed, deconvolution and partitioning of our bulk mRNA data using 
neoplastic and non-neoplastic signatures derived from our single-cell 
RNA sequencing data showed a high degree of similarity to the molecu-
lar groups that we define in this study (Extended Data Fig. 10g).

Conclusions
Here we present a resource for the meningioma community that con-
tains matched multidimensional bulk and single-cell molecular and 
high-quality clinical data. By integrating multiple datatypes in a unified 
analysis, we define a molecular taxonomy for meningiomas (Extended 
Data Fig. 12) that could supersede existing molecular and clinically 
used classifications and has the potential to inform future iterations 
of recognized grading schemes.
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Methods

Patient samples and clinical annotation
 Clinical data was collected for each sample using pre-established 
common data elements (CDEs) designed for reporting on molecular 
studies of meningioma. Definitions for CDEs were agreed upon using 
a systematic process of discovery, internal validation, external vali-
dation and distribution. A total of 19 core CDEs (including age, sex, 
country of care, history of neurofibromatosis, history of malignancy, 
previous exposure to cranial radiation or chemotherapy, history of 
multiple meningiomas, timing of surgery, location of tumour, extent of 
resection at surgery, histopathological grade (WHO) and year of WHO 
classification system, recurrence status, time to recurrence from index 
surgery, previous irradiation to meningioma, time to last follow-up) 
were collected for all samples and an additional 14 supplemental CDEs 
(including race/ethnicity, hispanic race, diagnosis of meningioma 
syndrome, tumour size, Simpson grade, performance status at recur-
rence or last follow-up, second intervention for recurrence, time to 
second intervention, histopathological subtype of recurrent tumour, 
vital status, cause of death, time to death) were collected per sample, 
where possible. Collection of samples and clinical data was carried out 
in accordance with individual institutional ethics and review board 
guidelines.

For the present study focusing on integration of multiplatform 
molecular studies, tissue and blood samples were selected on the basis 
of sufficient availability of specimens (>500 mg tissue and >1 ml of 
blood or plasma). In total, 124 fresh-frozen meningioma samples and  
5 healthy meninges samples from patients were collected for molecular 
analyses from the University Health Network Brain Tumour BioBank 
(Toronto) under the institutional Research Ethics Board. Samples were 
collected fresh from the patients at the time of surgical resection and 
immediately snap-frozen in liquid nitrogen and stored at −80 °C. 
Healthy meninges were collected from patients who underwent neu-
rosurgery for non-oncological disease.

Clinical data was collected as per pre-established consensus defi-
nitions as indicated above. In brief, for each case, haematoxylin and 
eosin (H&E) slides were reviewed by two experienced neuropatholo-
gists independently to confirm the diagnosis of meningioma, to grade 
tumours according to the current 2016 WHO criteria, and to subtype 
tumours according to recognized histopathological classifications, 
where appropriate. Given the tendency for local aggressiveness in a 
subset of meningiomas, tumour recurrence and time to recurrence 
were the primary outcomes of interest in this study. Recurrence was 
defined as tumour growth following gross total resection or tumour 
progression following subtotal resection that resulted in a change in 
management and the time to recurrence was determined by calculating 
the duration from the date of surgery to first postoperative imaging 
documenting tumour recurrence. The extent of resection (Simpson 
grade) was extracted from the surgeon’s operative report and checked 
using postoperative magnetic resonance imaging (MRI). Additional 
clinical information, including—but not limited to—sex, age at surgery, 
previous treatment, post-operative treatment and tumour location 
were annotated for each sample.

DNA and RNA processing
DNA and RNA were extracted from adjacent but regionally distinct 
tissue for each patient. DNA was extracted from tumour and matched 
normal tissue (whole blood) as well as from healthy meninges sam-
ples using the DNeasy Blood and Tissue Kit (Qiagen) and quantified 
using the Nanodrop 1000 instrument (Thermo Scientific). Total RNA 
was isolated from tumour samples using the RNeasy Mini Kit (Qiagen)  
and quantified using the PicoGreen assay. RNA integrity was 
assessed using the Agilent 2100 Bioanalyzer (RNA; Agilent) and sam-
ples with RNA integrity number (RIN) > 7 were selected for further  
sequencing.

Genome-wide DNA methylation
Illumina Infinium MethylationEPIC BeadChip array (Illumina) was used 
to obtain genome-wide DNA methylation profiles on 250–500 ng of 
bisulfite-treated DNA (EZ DNA Methylation Kit, Zymo) per tumour 
and healthy meninges samples. Raw methylation files (*.idat) were 
imported, processed and normalized (ssNoob) using minfi18 (v.1.34). 
Probes that failed to hybridize (detection P value > 0.01) in one or 
more samples were removed from downstream analyses. Probes that 
overlapped with known single-nucleotide polymorphisms (SNPs), 
cross-reactive probes and probes that localized on X and Y chromo-
somes were also removed for all unsupervised analyses. Differentially 
methylated probes were identified using a modelling approach based 
on limma19. When comparing meningiomas to healthy meninges, CpG 
sites were considered differentially methylated if the absolute mean 
differences in β value were >0.35 and adjusted P value (FDR-corrected) 
was <0.05. When comparing each molecular group to healthy meninges, 
this threshold was adjusted to absolute mean differences of β > 0.1 and 
adjusted P (FDR-corrected) < 0.05. Probe annotation was performed 
using the UCSC Genome Browse (hg38 assembly).

Whole-exome sequencing
Exome libraries were prepared using 100 ng DNA from tumour tissue 
or matched normal DNA. Exome capture was performed using Agilent 
SureSelect Human Exome Library Preparation V5 or V6 COSIMC + kits 
and sequenced (pair-ended) on a HiSeq 2500 platform to a median of 
191X. Raw sequencing data (fastq files) were aligned to the hg19 refer-
ence genome using BWA-MEM v.0.7.1220 with default parameters. PCR 
duplicate marking, indel realignment and base quality score recali-
bration were performed using Picard v.1.72 and GATK v.3.6.021. Data 
quality assessment was performed using CalculateHSMetrics from 
Picard. Somatic mutations were identified using Mutect V1.1.722 and 
Strelka v1.0.1323 for tumours with matched peripheral blood controls 
and Mutect2 V1.1 for tumours without matched peripheral blood con-
trols. All mutations in genes that are recognized drivers in meningi-
omas (NF2, SMARCB1, TRAF7, AKT1, KLF4, SMO, POLR2A, DMD) were 
retained for statistical analyses. For the discovery of new, functionally 
relevant genes, germline variants with GnomAD24 population frequency 
>0.01% were removed to retain putative somatic mutations. Variants 
with allele frequency of >10% and a TGL frequency database of vari-
ants of <1% were retained to filter out initial passenger events. Genes 
with at least two somatic protein-altering mutations were selected, 
and the statistical basis for the filtered mutations was checked using 
MutSigCV25 for the overall cohort. We used a threshold of FDR <0.1 
to consider variants as driver events, as described by the MutSigCV 
developers25. The functional effects of variants were subsequently 
annotated using Variant Effect Predictor v.92.026, OncoKB Precision 
Oncology Knowledge Base27, CancerHotspots.org28 and the dbNSFP 
database29. Statistically significant variants that were predicted to 
be actionable/driver alterations, or effects of which were predicted 
to be pathogenic or likely pathogenic, are reported and shown in  
Fig. 2a. Tumour mutation burden was calculated as the fraction of 
total number of protein-altering (nonsynonymous) somatic muta-
tions across the callable exome space (in Mb).

Gene-level copy-number profiling
To assess allele-specific copy-number profiles, we used Sequenza 
v.2.1.219 for tumour-normal pairs and CNVkit v.0.9.630 for unmatched 
tumour samples using a pooled reference set of 60 peripheral blood 
samples from individuals that were unrelated to the study. We used 
conventional thresholds set by cBioportal31 to classify chromosomal 
gains and deletions (log2ratio > 0.7 as a high-level gain and log2ra-
tio < −0.7 as a deep deletion). The degree of genomic disruption per 
sample was computed as the fraction of the genome that was affected 
by copy-number gains or losses.



RNA sequencing
mRNA libraries were generated using NEB Ultra II directional mRNA 
library prep kit according to the manufacturer’s protocol. Libraries were 
sequenced on the Illumina HiSeq 2500 high output flow cell (2 × 126bp), 
sequenced with 3 samples per lane to obtain approximately 70 million 
reads per sample. Raw sequencing data (fastq files) were processed 
and aligned to the human reference genome (GRCh38) using STAR 
(v.2.6.0a)32. Duplicate reads were removed, and reads were sorted using 
SamTools (v.1.333). Raw gene expression counts were computed for each 
sample using featureCounts in the package Rsubread (v.1.5.034) and 
subsequently normalized by counts per million (CPM) and subjected 
to TMM (trimmed mean of M) normalization using edgeR (v.3.22.3)35. 
TMM removes genes with low counts by CPM cutoff to filter out noise. 
The values for CPM cutoff were determined empirically by identifying 
the minimum value required to achieve the best normalization across 
samples. Using only protein-coding genes, the best CPM cutoff was 
determined to be 1.

Mutual information analysis
The MI metric13 was computed for each gene using all pairwise com-
binations of molecular data in our study (DNA methylation, CNAs, 
mRNA abundance, protein abundance). The MI metric measures the 
amount of information that is known about a gene by one datatype 
when the paired datatype is already known. Conceptually, MI is related 
to classic correlations (such as Spearman or Pearson correlations); 
however, statistical assumptions regarding linearity and ordering are 
not absolute, making this approach appropriate for the modelling of 
complex relationships such as those in cancer genomics. MI values of 
zero indicate completely independent variables, such that knowledge 
of one variable has no bearing on the knowledge of the other. For each 
pairwise comparison, data were discretized into 21 bins for each gene, 
and the MI between two datatypes was defined as MIxy = Hx + Hy − Hxy, 
where Hx and Hy the marginal entropies of datatypes x and y and Hxy is 
the joint entropy calculated using the R package Entropy (v.1.2.1). MI was 
normalized over the mean entropy of the two input vectors. To assess 
the statistical significance of normalized MI values, permutation test-
ing was performed. Gene-level data were permutated 100,000 times 
to generate a null MI distribution and P values were calculated as the 
proportion of null MI values that were greater than or equal to the true 
observed MI. P values were FDR-adjusted and the significance threshold 
was set at an FDR of 5%. Consensus clustering36 was performed on those 
genes for which MI was significant for at least one datatype pair, after 
subsetting for genes with data available for all four datatypes. The 
divisive analysis clustering (diana) algorithm was applied to z-scored 
normalized MI values, using a maxK of 10 with 1,000 resampling repeti-
tions. For methylation data, the Pearson correlation between gene-level 
RNA abundances and corresponding probe β values was calculated, and 
the probe with the greatest negative correlation was selected. For genes 
with annotated probes but without corresponding RNA abundance 
measures, the probe with the highest variance in β across samples 
was selected. This was done to achieve a 1:1 gene:probe relationship.

Single-platform clustering analyses
To identify the optimal number of clusters using mRNA data, gene-level 
somatic copy data and DNA methylation data, we performed consen-
sus clustering using the ConsensusClusterPlus36 R package for each 
individual datatype separately. Consensus clustering was performed 
using the top 5,000 most variably expressed genes, 1,000 most vari-
ably altered genes and 10,000 most variably methylated CpG sites, as 
determined by median absolute deviation of logCPM, log2CNV ratios 
(where CNV is copy-number variation) and β values across all samples 
for RNA sequencing, gene-level copy number and DNA methylation 
data, respectively. Clustering was performed using Pearson correla-
tion for the distance metric and Ward linkage algorithm with 1,000 

resampling repetitions (ε = 0.8). For each platform, we computed 
the average silhouette width as well as plots of the cumulative dis-
tribution function of the consensus matrix for each k subgroups to 
identify the optimal k at which the cumulative distribution function 
reaches an approximate maximum. For gene-level copy number and 
gene expression we determined the optimal k = 6. For DNA methyla-
tion data, both k = 5 and k = 6 provided similar results. Given previous 
reports of k = 6 methylation subgroups, we selected k = 6 as the optimal 
number of methylation-based clusters. Samples were then projected 
into a two-dimension space using t-SNE for cluster assignment and 
visualization for each individual platform separately. Divergence from 
expected recurrence-free survival patterns in our samples using a pre-
viously established methylation-based cluster classification3 led us to 
use data-driven methylation cluster groupings for our analyses in this 
paper. Adjusted Rand indices were calculated on cluster assignments 
for each pairwise combination of datatypes to determine the degree 
of cluster overlap.

Cluster-of-cluster assignments
To comprehensively integrate mRNA, copy number and DNA methyla-
tion data, we used the COCA algorithm that has been used by the The 
Cancer Genome Atlas to identify molecular subtypes of systemic can-
cers9–12. Cluster assignments from unsupervised t-SNE-based individual 
platform clustering were first binarized into indicator variables that 
were combined to construct a matrix of clusters (columns are binarized 
cluster memberships and rows are samples). This second-order matrix 
was then subjected to an additional round of consensus clustering to 
examine the relationship between samples across molecular features. 
The optimal number of subgroups was selected by computing and 
maximizing the average silhouette width from k = 2 to k = 10. To examine 
the relative importance of each datatypes, COCA was repeated with 
all combinations of two datatypes at a time. Cluster assignments by 
integration of three versus two datatypes were compared for overlap 
by computing Adjusted Rand Indices (ARI).

Estimation of the cancer cell fraction
The cancer cell fraction of variant i (CCFi) was calculated as follows:
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where ui is a function of the variant allele fraction of variant i (fi), sample 
purity (ρ), the local copy number of the tumour cells at site i (ntotal,t,i) 
and the local copy number of the normal cells at site i (ntotal,n,i, assumed 
to be 2) (ref. 37):
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The variant allele fraction of variant i (fi) was directly calculated using 
the number of reference reads for locus i (rref,i) and the number of alter-
nate reads for locus i (rmut,i).
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For each sample, we estimated sample purity (ρ) as previously described 
using DNA methylation data38. The local copy number of the tumour 
cells at site i (ntotal,t,i) was transformed from the segment mean at  
site i (si):
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The mutation multiplicity of variant i (mi) was determined using the 
following equation:
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Finally, if the CCFi was greater than 0.80, then variant i was considered 
clonal.

Differential gene-expression analysis
Differential gene-expression analysis was computed using gene-wise 
negative binomial generalized linear models with quasi-likelihood 
tests (F test, edgeR35 v.3.22.3). Genes were ranked by combining the 
direction of fold changes (FC) and computed P values using the follow-
ing formula: sign(log2FC) × −log10(P), where sign(log2FC) determines 
the direction of the change (upregulated is positive and downregu-
lated is negative) and −log10(P) determines the magnitude of rank-
ing. Gene-set enrichment analysis (GSEA, v.3.0) was performed as 
previously described, using ranked scores as input to determine 
whether differentially expressed genes belong to common biological  
pathways39.

Pathway analysis and network maps
Pathway analyses and network maps were generated as previously 
described39. Pathways were defined by the gene set file Human_GOBP_
AllPathways_no_GO_iea_June_20_2019_symbol.gmt that is maintained 
and updated regularly by the Bader laboratory (http://download.bad-
erlab.org/EM_Genesets/). GeneSet size was limited to range between 
10 and 200, and 2,000 permutations were carried out. The results of 
the pathway analysis were visualized using the EnrichmentMap App 
(v.1.2.0) in Cytoscape (v.3.7.2). Network maps were generated for nodes 
with FDR q value  < 0.01, P < 0.0001, and nodes sharing gene overlaps 
with Jaccard coefficient > 0.25 were connected by a green line (edge). 
Clusters of related pathways were identified and annotated using a 
Cytoscape app that uses a Markov Cluster algorithm that connects path-
ways by shared keywords in the description of each pathway (AutoAn-
notate, v.1.2). The resulting groups of pathways are designated as the 
major pathways in a circle.

FDA drug mapping
In order to discover realistic and new therapeutic agents, we examined 
whether FDA-approved drugs could be repurposed for the treatment 
of meningioma by examining for the presence of FDA-approved drug 
targets in our network analyses. Drugs were selected by the number 
of target genes in the leading edge of significant GSEA pathways for 
indicated comparison, then each drug was ranked by the number of 
genes plus pathways targeted. Finally, the number of significant genes 
targeted were divided by the total number of target genes of the drug to 
assess the specificity. This scoring system selected the drugs targeting 
the greatest number of driving genes in significant biological pathways 
with high specificity. The resulting list of drugs were grouped by com-
mon targets to produce a higher-level summary of the class of drugs 
with the highest possibility of effective treatment. Individual drugs 
were visualized on pathway maps using post-analysis function in the 
Enrichment Map plugin of Cytoscape app.

Gene fusion identification
Interchromosomal and intrachromosomal gene fusion events were 
detected using FusionCatcher v.1.1.0 with default parameters. Fusion-
Catcher aligns reads to the human reference genome (GRCh38) using 
Bowtie40 (v.1.2), Bowtie241 (v.2.3), BLAT42 (v.0.35) and STAR BLAT32 (v.2.7). 
Adjacent and read-through fusions were filtered out from analyses and 
fusions with Counts_of_common_mapping_reads = 0 were selected to 
reduce false positive detection of genes with similar sequence homol-
ogy. A stringent threshold for conservative estimation of fusion events 
(unique spanning reads ≥25) was used to assess interchromosomal and 
intrachromosomal fusion events.

Generalization cohort
Large (n > 50), multi-omic meningioma datasets in the literature with 
matched individual patient outcome data were not available for use as 
independent validation. Therefore, to confirm the generalizability of 
the association with integrative molecular groups and their association 
with outcomes, we assembled an independent cohort of 80 meningi-
oma patient samples with longitudinal outcome data and generated 
mRNA-sequencing data. Assignment of molecular group for each new 
sample was performed by a single-sample GSEA (ssGSEA) using the 
top 50 highly expressed genes for each group in the initial discovery 
cohort. Cluster assignment was determined by maximal scores from 
ssGSEA analysis and checked by unsupervised hierarchical clustering of 
ssGSEA scores. Kaplan–Meier estimates of survival with log-rank tests 
for association were performed to test the association of molecular 
groups in the new independent cohort with outcome. The associa-
tion of molecular groups with outcomes was compared to WHO grade 
by generation of Brier prediction curves and computation of Brier  
scores.

The discriminative capacity of gene-expression profiles to distinguish 
molecular groups overall was quantitated using true gene-expression 
classifiers (generalized linear model, default alpha and lambda param-
eters) for each molecular group in the discovery cohort. To do this, we 
randomly split our cohort into training and test sets, with 90% of the 
data in the training set and the remaining 10% of the data in the test 
set. Expression classifiers for each molecular group were trained using 
the top 50 highly expressed genes for each molecular group, and the 
performance for each classifier was tested using held-out samples in 
test cohort by computing the area under the receiver–operative char-
acteristic curve. This process was repeated for a total of 50 iterations 
of training and testing.

Epigenetic mitotic clock analyses
We used previously described mitotic clocks (epiTOC16, epiTOC215 and 
solo-WCGW14) that are based on DNA methylation to examine regions of 
the genome that are either fully methylated or unmethylated in multiple 
fetal tissues but gain or lose methylation as a function of mitotic age. 
The epiTOC model calculates a weighted average methylation over 354 
CpGs on the 850K array at gene promoters marked by the PRC2 com-
plex that are constitutively unmethylated in fetal tissue and increase 
in methylation with age and cell division. The epiTOC2 model esti-
mates the mitotic age (adjusted for chronological age of patient) using 
a weighted subset of 151 CpGs from the epiTOC model that are most 
likely to change in DNA methylation levels with age. The solo-WCGWs 
are a set of CpGs at the WCGW motif without flanking CpGs that are 
hypomethylated in fetal tissues and gain methylation with age and cell 
division. A total of 6,214 solo-WCGWs that were originally described 
are found on the EPIC array. Of note, 648 of these are uniformly hypo-
methylated across multiple fetal tissue types, as previously described, 
and therefore a weighted average of these 648 CpG sites was used to 
derive the ‘HypoClock’ score.

Transcription factor analyses
We identified master transcription factors for each molecular group 
as previously described using ElmerV217. First, differentially methyl-
ated distal CpGs at non-promoter (probes further than 2 kb from the 
transcription start site) sites were identified between each molecular 
group and every other molecular group independently as well as all 
other molecular groups as a group. Putative target genes were identi-
fied for each differentially methylated CpG by computing the cor-
relation between methylation of the probe and the expression of the 
closest 10 upstream and 10 downstream genes. Motif occurrences 
were identified using HOMER within 250-bp region for significantly 
hypomethylated probes with putative gene targets and enrichment for 
motifs are calculated by computing the odds ratio (and 95% confidence 
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interval) that each probe in a probe set contains motif occurrences  
in comparison to a background of all distal probes on the 850K array. 
Transcription factors were considered enriched if the lower bound 
of the 95% confidence interval was greater than 1.1. Finally, the  
mean methylation of all probes in probe-gene pairs that contained 
a given motif instance within 250 bp were compared to the average 
expression of a set of 1,639 transcription factors43,44. These were then 
ranked by degree of anticorrelation using −log10(FDR) in order to 
identify master regulator transcription factors by transcription fac-
tor subfamily.

Shotgun proteomics
Approximately 1–2 mg of fresh frozen meningioma tumours were 
pulverized using a Covaris cryoPREP Pulverizer. Pulverized tissue 
was then solubilized in 300 µl of 50% (v/v) 2,2,2-trifluoroethanol in 
phosphate-buffered saline (pH 7.4) with a 5 min incubation at 95 °C, 
repeated probe sonication, freeze-thaw cycling, followed by a two-hour 
heated incubation at 60 °C. Protein lysate (100 µg) was denatured 
with 5 mM dithiothreitol for 30 min at 60 °C and reduced disulfite 
bonds were subsequently alkylated with 25 mM iodoacetamide for 
30 min at room temperature in the dark. Proteins were digested into 
peptides with 4 µg of trypsin at 37 °C overnight. Peptides were then 
desalted and purified using C18-based solid-phase capture. Eluted 
peptides were lyophilized and solubilized in mass-spectrometry-grade 
water with 0.1% methanoic acid and peptide concentration was quanti-
fied using a NanoDrop Lite spectrophotometer (at 280 nm). For each 
sample, an Easy1000 nanoLC was used to load 2 µg of peptides onto 
a 2 cm trap column (Thermo Scientific). The peptides were separated 
along a four-hour gradient using a 50 cm EasySpray analytical column 
coupled by electrospray ionization to an Orbitrap Fusion (Thermo 
Scientific) tribrid mass spectrometer. Peptides were detected using 
a Top25 data-dependent acquisition method. The acquired data was 
searched using Maxquant (v.1.6.2.345) against a UniProt complete 
human protein sequence database (v.2019_04) with an FDR of 1% for 
peptide spectral matches. Two missed cleavages were permitted along 
with the fixed carbamidomethyl modification of cysteines, the vari-
able oxidation of methionine and variable acetylation of the protein 
N terminus. Relative label-free protein quantitation was calculated 
using MS1-level peak integration along with the matching-between-runs 
feature enabling a 2 min retention time matching window. Proteins 
identified with a minimum of two peptides were carried forward for 
further analysis. Protein groups with log2FC > 2 (that is, 4-fold higher 
expression or more), and FDR < 0.05 were considered specific for each  
group.

Validation of proteomic findings by immunohistochemical 
analyses
To validate the enrichment of group-specific proteins identified by 
proteomic data, we performed immunohistochemical analyses for 
S100B, SCGN, ACADL and MCM2 in a cohort of 44 tumours with known 
molecular group status. Experimentation and analyses were per-
formed blinded to molecular group status. In brief, consecutive 5-µm 
formalin-fixed paraffin sections were rehydrated and heat-mediated 
antigen retrieval using sodium citrate buffer (pH 6) was performed. 
Slides were washed in 3% H2O2 in methanol and blocked in 5% BSA  
in PBST for 1 h at room temperature followed by overnight incubation  
at 4 °C with anti-S100B (ThermoFisher, 701340, dilution 1:100), 
anti-SCGN (Sigma, HPA006641, dilution 1:500) anti-ACADL (Sigma, 
HPA011990-100UL, dilution 1:200) or anti-MCM2 (Cell Signaling, 
12079S, dilution 1:200). The expression signals were developed  
using DAB Peroxidase Kit and the slides were counterstained with hae-
matoxylin, dehydrated, and coverslipped. Whole-slide images were 
digitized and obtained using virtual microscopy. Tumour tissue was 
annotated in each whole slide by an experienced and blinded neu-
ropathologist and subsequently subjected to unbiased quantitative 

digital pathological assessment using the Multiplex IHC module on 
HALO software (Indica Labs).

Droplet-based single-nuclear RNA-sequencing
Ten frozen archived tumour specimens and two frozen archived healthy 
meninges were minced with a sterile scalpel and homogenized using a 
dounce tissue grinder (size A and B, Sigma Aldrich) in ice cold lysis buffer 
(0.32 M sucrose, 5 mM CaCl2, 3 mM MgAc2, 20 mM Tris-HCl, 0.1  EDTA, 
40 U ml−1 RNase inhibitor and 0.1% Triton X-100 in DEPC-treated water). 
Homogenized tissue was centrifuged at 500g for 10 min at 4 °C, washed 
in two rounds using ice cold wash buffer (1× PBS, 12 mM EGTA pH 8.0 
and 0.2 U μl−1 RNase inhibitor) and the nucleus pellet was subsequently 
resuspended in resuspension buffer (1× PBS, 0.04% BSA) prior to filtra-
tion using 40 μm Flowmi cell strainer (Sigma Aldrich). Isolated nuclei 
were stained with DAPI and fluorescence-sorted (BD Influx BRV, Bec-
ton Dickinson Biosciences) to retain healthy nuclei. DAPI+ nuclei were 
washed and resuspended in resuspension buffer. Nuclei were counted 
and approximately 6,000–8,000 nuclei were loaded onto a 10x Chro-
mium controller using the Chromium Single Cell 3’ Library & Gel Bead 
v3 (10x Genomics) for each sample. Single nuclei were partitioned into 
barcoded gel beads in emulsion in the Chromium instrument, followed 
by cell lysis and reverse transcription of RNA in the droplets. Breaking 
of the emulsion was followed by cDNA amplification and library con-
struction as per the manufacturer’s recommendations. Samples were 
sequenced Illumina NovaSeq (10x specific protocol) with a median 
target sequencing depth of 60,000 reads per nucleus.

snRNA-seq raw data processing, filtering and validation of cells 
to patients
Raw sequencing data (bcl files) were converted to demultiplexed fastq 
files (Illumina bcl2fastq, v.2.19.1) and aligned to the human genome 
reference sequence (hg38). Expression matrix of unique molecular 
identified counts per gene per nuclei was obtained using CellRanger 
(10x Genomics). As the first step for validating cells to patients, we 
looked to confirm that cells had data that covered known SNP regions. 
To do this, we quantified the number of unique molecular identifi-
ers (UMIs) mapping to a panel of 7.4 million SNPs identified through 
the 1,000 Genomes Project46 with minor allele frequency > 5% using 
cellsnp-lite. Two of our samples had highly sparse coverage of known 
SNP regions and were not reliably genotypable, and were therefore 
removed from further analyses.

To validate the assignment of cells to patients for samples that had 
potential overlap in processing, we compared SNPs derived from 
single-cell RNA sequencing data to SNPs derived from bulk RNA-seq 
data using demuxlet47. Demuxlet was developed to deconvolute sample 
identity when multiple samples are pooled by barcoded single-cell 
sequencing. Variant call format files from bulk RNA sequencing data 
were generated and compared to variants identified in single-cell data 
by demuxlet. Only cells with genotypes that aligned to the expected 
sample were retained for further analyses. Potential doublets were 
identified using scDblFinder (v.3.13) and removed.

From all remaining cells, we quantified two quality measures for 
each cell: the number of UMIs detected, and fraction of mitochondrial 
transcripts. Low-quality cells in which >1.5% of transcripts derived 
from the mitochondria and cells with low complexity libraries in which 
less than 1,000 UMIs were detected were removed. After data filter-
ing, a total of 54,393 high-quality single nuclei that were genotyped to  
10 samples were retained for analyses.

snRNA-seq clustering of all cells
Library size normalization was performed as previously described 
using scran, in which hierarchical clustering of cells using Spearman 
distances subset cells into more groups, and then scaling factors per 
cell were determined by randomly pooling cells, computing summed 
library sizes, and comparing to average library size across all cells in 
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each group48,49. Normalized UMI counts were used for clustering by 
optimizing a shared-nearest-neighbour modularity function with 
Seurat50. First, principal component analysis was performed using 
highly variable genes (FDR < 0.001) identified by scran. The number of 
significant principal components (PC, 10) was determined on the basis 
of the inflection point of a ‘scree’ plot. Next, a shared-nearest-neighbour 
graph was built from distances computed in first 10 PC space and clus-
ters were identified by optimizing the modularity function within this 
space with a resolution set to 0.1. Gene expression and clustering results 
were visualized using t-SNE of the selected principal components.

Cell type classification
Cells were assigned to different cell types based on consensus by:

(1) Similarity of expression profiles: As neoplastic and stromal/
immune compartments are expected to have different expression 
profiles, we first correlated (Pearson) the expression profile of each 
cell to every other cell. Unsupervised hierarchical Pearson clustering 
with Ward linkages on the matrix of correlation values was performed 
and two major clusters (putative neoplastic and non-neoplastic) of 
cells were identified.

(2) Copy number profiles. We used inferCNV(v1.1.1)51 to infer CNAs 
of neoplastic and non-neoplastic cells with snRNA-seq data. Cells from 
healthy meninges were used as the reference set. Genes were ordered 
from the human GRCh38 assembly, and a heat map illustrating relative 
expression intensities of neoplastic nuclei to reference population 
across the genome was generated for visualization. Almost all neoplas-
tic clusters harboured loss of chromosome 22q that was not observed in 
non-neoplastic cells that were generally devoid of significant CNA. We 
further computed a general metric of aneuploidy using inferred CNA 
data by first scaling CNA to the range of −1 to 1, and then summing the 
absolute copy number ratios for all genes. The degree of aneuploidy 
was later used to compare cells of high versus low potency.

(3) Expression of canonical markers: Significantly differentially 
expressed genes were identified for each cluster using FindAllMarkers 
in Seurat and these were inspected for canonical immune and stromal 
cell markers. Enrichment of these markers across clusters was visualized 
by bubble plots and was indicative of cell-type annotation. Predictions 
regarding cell cycle phases were made for neoplastic cells on the basis 
of the expression of a core set of genes, as previously described52.

Correlation of CNA inferred from snRNA-seq data and bulk 
whole-exome sequencing data
To correlate CNA data from snRNA-seq and bulk whole-exome sequenc-
ing data, inferred CNA ratios from snRNA-seq were scaled to values 
between −1 and 1 such that the two datasets were similarly scaled. 
Arm-level copy number ratios were then computed from snRNA-seq 
and bulk CNA data independently, as follows:
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Where CNi is the copy number ratio of the ith gene in segment s and Li 
is the length of the ith gene. Pearson and Spearman correlations were 
then computed on arm-level CNA ratios from both datatypes.

snRNA-seq clustering of individual samples
To examine heterogeneity within tumours, we clustered cells from each 
patient independently using two independent approaches (Seurat and 
DBSCAN). Clustering by Seurat50 was performed as described above, 
with resolution set to 0.05 to account for the smaller number of cells 
with single sample analyses.

DBSCAN identifies clusters by identifying dense regions in space, 
ensuring that the neighbourhood of a radius (ε) has to contain a mini-
mum number of neighbours (minPts). DBSCAN identifies outliers of 
cells that do not belong to any clusters (considered noise). To cluster 

cells by DBSCAN we first normalized raw expression levels for each 
sample as follows:

E =
log (1 + CPM )
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where CPMi for genes i to n was computed as 106 × UMIi/Σ(UMI1…n). 
These values were then centred to the average expression of the gene 
across all cells in the sample to define relative expression of each gene 
in each cell. Using this data, each sample was subjected to dimension-
ality reduction by t-SNE (with a perplexity of 30) followed by density 
clustering using DBSCAN (parameters ε = 1.8 and minPts = 5). Cells that 
did not meet these parameters were considered unclassifiable and 
coloured grey in the t-SNEs.

Statistical evaluation of between- and within-patient variation
We used a one-way ANOVA test on the top 10 principal components 
for all neoplastic cells to compare between-patient variability and 
within-patient variability as previously described53. The F statis-
tic by ANOVA divides the variability observed in the dataset into 
between-patient components and within-patient components. F sta-
tistics >1 indicate that the between-patient variation is greater than 
the within-patient variation.

Statistical evaluation of two cell features
To examine whether two features of a cell were associated, we used 
mixed-effects logistic regression models that are able to account for 
cell-to-patient dependencies, as previously described54. We specifically 
used these models to test for the enrichment of immune cells in MG1, 
the enrichment of cycling cells in MG3 and MG4.

Non-negative matrix factorization to identify intrinsic gene 
expression programs
To identify the intrinsic expression program, we applied NMF to relative 
expression levels used for DBSCAN analyses after transforming all nega-
tive values to zeros, as previously described54–56. Factors k ranged from 
six to nine and genes were ranked by NMF scores for each expression 
programs identified. A total of 39 expression programs were identified 
across eight tumour samples. We then performed hierarchical cluster-
ing of programs using the extent of shared genes as a distance metric 
(using the top 50 genes in each program) to identify meta-signatures 
that were recurrent across samples. We calculated the Pearson correla-
tion coefficient between NMF scores and the fraction of mitochondrial 
genes to assess for the relationship of each program with technical 
confounders. One cluster of programs (25–39) showed higher positive 
correlation with fraction of mitochondrial genes quantitated. This was 
confirmed by manual inspection of the genes, which showed several 
mitochondrial and ribosomal genes that highly score in these programs. 
These programs were excluded from further analyses as they were 
favoured to reflect technical artifacts. We then computed activation 
scores of each NMF program from all cells using AUCell34(v.1.8.0) and 
compared the distribution of activation scores across tumours.

Deconvolution of bulk RNA-seq data using snRNA-seq 
signatures
We used CIBERSORTx57(v.1.0) to deconvolute bulk mRNA-seq data from 
all samples in this study. We first used CIBERSORTX to generate a gene 
signature matrix for each single-cell cluster from our single-cell RNA 
sequencing data. Genes with weights greater than 400 were selected 
for each cluster and used in consensus k-means clustering with 5,000 
repeats to partition bulk RNA sequencing data into four groups for 
comparison with bulk molecular classification.

We then generated a signature matrix for each cell type (macrophage, 
T cell, endothelial cell, fibroblast, neoplastic) using CIBERSORTx, 
and then used this to determine cell-type composition of each of our 



samples with bulk RNA sequencing data using single cell Correction 
S mode with 100 permutations.

Patient-derived cell lines
Fresh tumour specimens were obtained intraoperatively from five 
patients from whom informed consent for tissue banking was obtained 
previously. Cell suspensions were created and maintained as previ-
ously reported (PMID 26174772) on ThermoFisher BioLite 100 mm 
Tissue Culture dishes in DMEM/F12 (Life Technologies, 10565) sup-
plemented with 1 mM non-essential amino acids (Life Technologies, 
11140), 100 U ml−1 antibiotic-antimycotic (Life Technologies, 15240) 
and 10% fetal bovine serum (Life Technologies, 16141) in a humidified 
atmosphere with 5% CO2. Once confluent, cells were passaged following 
trypsinization. DNA and RNA were extracted from an aliquot of each 
cell line. DNA was subjected to bisulfite conversion for DNA methyla-
tion profiling. To demonstrate that these cell lines are faithful models 
of meningiomas, we compared the genome-wide methylome profiles 
of cell lines to meningiomas from our cohort as well as a published 
panel of 2,798 tumours from 40 brain tumour types58. We found that 
all cell lines in this experiment clustered together with human men-
ingioma tumours. In addition, classification of our cell lines using a 
publicly available DNA methylation-based random-forest model (DKFZ 
MolecularNeuropathology.org online classifier v.3.1.5) assigned all 
primary patient-derived cell lines into the meningioma methylation 
class with high calibrated scores (0.97–0.99). To assign cell lines to 
molecular groups, we generated mRNA sequencing data from cell lines 
and performed ssGSEA using the top 50 highly expressed genes for 
each molecular group from the cohort of tumours in our dataset. Cell 
lines were assigned to molecular group by maximal ssGSEA scores.

Cell viability assay
Meningioma cells (ranging from 1,500–4,500 cells based on the plat-
ing efficiency of each cell line) were plated in technical triplicates in 
Corning 96-well white-walled plates. Cells were treated with vorinostat 
(SAHA/MK0683, InvivoChem V0255; diluted to concentrations 100 nM, 
500 nM, 1,000 nM, 5,000 nM) or 5-azacytidine (InvivoChem V0404; 
10 nM, 50 nM, 100 nM, 500 nM, 1,000 nM) for 10 days. A medium-only 
control was used for each replicate of each drug treatment, and a 
DMSO control was used for vorinostat and 5-azacytidine-treated cells. 
Three separate biological replicates separated by at least one passage 
of each cell line were completed. After the completion of treatment, 
CellTitre-Glo luminescent cell viability assay was performed on all sam-
ples in accordance with the manufacturer’s instructions (Promega, 
G7570). Cells were incubated for 10 min with the CellTitre-Glo reagent 
and luminescence was measured using a 96-well plate reader (GloMax-96 
microplate luminometer; Promega). Background luminescence was 
measured in blank wells with medium without cells and subtracted from 
experimental values automatically. Statistical analyses of intergroup 
differences between cell lines at each dose of each respective drug were 
performed using a two-way ANOVA followed by Tukey’s test.

In vivo patient-derived xenograft
For intracranial xenograft experiments, 1 × 106 MG4 patient-derived 
cells were injected into the subdural space of NSG mice. Mice were 
anaesthetized and their craniums were fixed in a stereotaxic frame. 
An incision was made 3 mm lateral to the midline on the right side of 
the skull. The bregma was visualized and a burrhole was drilled using 
an automated 1.5 mm drillbit 3 mm lateral and 1 mm anterior to the 
bregma. Cells were injected at a depth of 1 mm to the skull surface using 
a 26-gauge needle and stereotactic Hamilton syringe in 5 μl of media 
over 3 min. After injection, the syringe was slowly removed over 2 min to 
limit reflux of cells. The incision was closed with 6-0 absorbable sutures 
and Vetbond tissue adhesive was applied on top. Mice were treated 
with either vorinostat (50 mg kg−1 1:1 DMSO:PBS) or vehicle control 
(1:1 DMSO/PBS at equivalent volume) via intraperitoneal injection 

daily for 10 days, starting on post-implantation day 7. All mice were 
imaged at 3–5 days post xenograft implantation using a Bruker 7-Tesla 
preclinical MRI (STTARR imaging facility, Toronto, Ontario) to confirm 
intracranial implantation. Additional serial MRI scans were performed 
every 3 to 7 days based on the availability of our imaging facility to 
document interval tumour growth. MRI volumetric analysis of tumours 
was performed by an individual blinded to treatment group using the 
Horos/OsirixTM open source DICOM reader (GNU Lesser General Public 
License, v.3 (LGPL-3.0)). Xenograft tumours were segmented on each 
MRI slice manually and then reconstructed automatically to obtain a 
volume measurement for each mouse at each radiographic time point. 
Statistical analyses comparing the mean xenograft volume between 
the vorinostat-treated and control mice were performed at each time 
point using a Mann–Whitney U-test, with statistical significance set at 
P < 0.05. Mice were euthanized when they reached their physiological or 
experimental endpoint in accordance with our animal care facility and 
the Canadian Council on Animal Care (CCAC) guidelines. Specifically, 
the endpoint was reached when mice lost >20% of their starting body 
weight, demonstrated considerable lethargy and decreased activity, 
had visible cranial enlargement, or had tumour volumes exceeding 
500 mm3 on MRI volumetric measurements. None of the mice in our 
study exceeded these endpoints without being mandatorily euthanized 
and no mouse tumours achieved or exceeded the volumetric endpoint.

Survival analyses
For comparison of survival between independent groups, Kaplan–
Meier survival plots were generated using the package survminer and 
log-rank tests were performed to test the null hypothesis of no differ-
ences between independent subgroups. Univariable hazard ratios 
with 95% confidence interval and P values for clinical factors as well as 
MG1–MG4 were computed by fitting Cox proportional hazards models. 
Multivariable survival analyses were performed by fitting Cox propor-
tional hazards models that included all factors that were significant on 
univariable analyses. Prediction error curves were generated to com-
pare the discriminative capacity of Cox proportional hazards models 
by leave-one-out cross-validation.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw sequencing data for all datatypes have been deposited into public 
repositories. Proteomic data has been deposited to the Mass Spectrom-
etry Interactive Virtual Environment (MassIVE, https://massive.ucsd.
edu/; ID MSV000086901). DNA methylation idat files have been depos-
ited to the Gene Expression Omnibus (GEO; GSE180061). Whole-exome 
sequencing (fastq), bulk mRNA (fastq) and snRNA (fastq) datasets 
have been deposited to the European Genome Archive (https://www.
ebi.ac.uk/ega/) under study ID EGAS00001004982 and dataset IDs 
EGAD00001007051, EGAD00001007494 and EGAS00001004982. The 
processed genomic data has been submitted to cBioportal at https://
www.cbioportal.org/study/summary?id=mng_utoronto_2021. Source 
data are provided with this paper.

Code availability
Specific code will be made available upon request to G.Z.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Individual datatype classification of meningiomas. 
a, Violin plots showing the distribution of the normalized mutual information 
(MI) for each pairwise comparison of datatype. Median is shown as white dot. 
The number of total genes and number of genes with statistically significant 
(FDR < 5%) MI values are shown. Below this is a heatmap showing the consensus 
clustering of genes where MI was significant for at least one datatype pair. Rows 
represent a gene for which data exists from all data types. b,d,f, Unsupervised 
consensus hierarchical clustering of (b), 5,000 genes that show that highest 
median absolute deviation across expression values, (d), 10,000 CpG sites that 
show that highest median absolute deviation across β-values, (f), 1,000 genes 
that show that highest median absolute deviation across copy number ratios. 
Heatmap of consensus matrices with K = 6 groups (b,d,f) are displayed. Overall, 
six groups were most stable across all platforms. c,e,g, Kaplan Meier-plot 

displaying recurrence-free survival (RFS) distributions of unsupervised cluster 
assignments by (c) mRNA data, (e) DNA methylation data, (g) copy number 
data. The associations with outcomes are unique for the 6 cluster groups 
obtained on individual platform analyses. h, Average silhouette widths for 
unsupervised consensus hierarchical clustering from K = 2 to K = 10. The 
silhouette score is a measure of stability of number of groups. Higher scores 
indicate greater stability and robustness. Average silhouette width is highest at 
K = 4 subgroups. i, Alluvial plot demonstrating associations between WHO 
grade and integrative molecular groups defined in this study. j-l, Kaplan Meier-
plot displaying recurrence-free survival (RFS) distributions of patients 
stratified and colored by molecular group assignments for WHO grade  
1 tumors ( j), WHO grade 2 tumors (k), and WHO grade 3 tumors (l).



Extended Data Fig. 2 | Generalizability of the association of molecular 
groups with outcome. a, Ensemble of Receiver Operating Characteristic 
(ROC) curves from 50 iterations of trained MG-versus-other models. Overlaid 
for each model is the mean Area Under the Curve (AUC) and its associated 95% 
confidence interval for samples in corresponding test sets. b, Heatmap 
showing results of single-sample Gene-Set Enrichment Analysis (ssGSEA) using 
mRNA data in an independent cohort of 80 meningioma samples. Each sample 
in the validation set was assigned a score for molecular groups 1, 2, 3 and 4 using 
gene-expression based signatures from the discovery cohort. MG designation 
was determined by highest scores from ssGSEA assignments. Unsupervised 
hierarchical clustering using scores from MG assignments revealed four 
distinctive groups of tumors w with 97% of samples having concordant 

assignment by maximal scores. Samples almost always showed high scores that 
were distinctive to only a single group, highlighting the robustness of 
classification in an independent cohort. c, Brier prediction curve for 
recurrence-free survival comparing molecular group to WHO grade in the 
generalization cohort. The models tested were those developed on the 
discovery cohort. Prediction errors are consistently lowest using molecular 
groups in comparison to the validation cohort. d, Kaplan Meier-plot displaying 
recurrence-free survival (RFS) distribution of patients stratified and colored by 
molecular group assignments for generalization set. P value reported is a Log 
Rank Test. Distributions are highly similar to those obtained in discovery 
cohort.
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Extended Data Fig. 3 | Most mutations are clonal in meningioma. a, Lollipop 
plots showing the distribution of NF2 mutations by genomic regions within 
each molecular group. b, Mutational burden (nonsynonymous mutations per 
megabase) of meningiomas stratified by molecular groups in comparison to 
other TCGA solid cancers. Every dot represents a sample and horizontal lines 
are median number of mutations in each cancer type. Mutational burden in 
each cancer is ordered by percentile rank. Cancer types are ordered on the 
horizontal axis based on their median numbers of somatic mutations. 
Mutational burden of MG4 tumors is statistically higher than tumours in MG1-3 

(P = 1.6 × 10−3, Kruskal Wallis test). c, Distribution of the number of mutations 
that are considered clonal per each patient sample (column). A total of 26% of 
tumors exhibited only clonal point mutations. In the median tumor, 75% of 
single nucleotide variants were clonal. d, Cancer cell fraction of all variants in 
each patient sample (columns) ordered as in (c). Variants are colored according 
to the classification in the legend. e, Cancer cell fraction of recurrent 
oncogenic driver mutations (columns). Variants are colored according to the 
classification in the legend.



Extended Data Fig. 4 | Genomic disruptions differ among molecular 
groups. a, Genome-wide copy-number alterations computed from 
whole-exome sequencing data. Arrangements of copy number profile are 
matched to the samples from mutation plot above. Only mutations that are 
relevant to discussion in text are shown.b, Boxplots showing the mRNA 
expression of NF2 stratified by molecular group. Each dot is a sample. Samples 
are colored by NF2 mutation status and shapes are according to NF2 deletion 
status by CNA. Some MG3 and MG4 meningiomas that are NF2 wildtype show 
silencing of NF2 expression. c, Boxplots comparing the mean methylation level 

of NF2 wildtype MG3 and MG4 meningiomas with high versus low NF2 
expression using all probes (left), those mapping to the promoter region 
(middle), and those mapping to the gene body (right). d, Circos plot showing 
the landscape of interchromosomal gene rearrangements detected using a 
stringent threshold for conservative estimation of fusion events (unique 
spanning reads ≥ 25) in each molecular group. Total number of 
interchromsomal fusion in MG1, MG2, MG3 and MG4 are 2, 7,18, and 23, 
respectively.
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Extended Data Fig. 5 | Gene expression profiles of molecular groups.  
a, Hierarchical clustering of the expression of genes from select pathways 
identified in Fig. 2a. Selected genes have been labeled. Redundancy of genes to 
pathways is shown in the side bar. b, Boxplots showing the results for estimates 
of immune and stromal infiltration by DNA methylation (LUMP score on left 
and methylCIBERSORT in middle) and somatic DNA alterations (right, 
ABSOLUTE score). c, Scatterplots comparing normalized enrichment scores 
between molecular groups using Gene Set Variation Analysis (GSVA). Each dot 

is a pathway. Shown at the top of each panel are Pearson correlations and 
associated 95%CI. MG2 tumors were divided into tumors that are driven by CNA 
(MG2-CNA) and tumors that are driven by mutations (MG2-Mut). Correlations 
were highest when comparing MG2 tumors driven by CNA to MG2 tumors 
driven but mutations (red box). d, Hierarchical clustering of normalized 
enrichment scores from (c) identifies MG2-CNA and MG2-Mut tumors as one 
coherent group. e, Boxplots comparing the activation of molecular signatures 
of proliferation between MGs. Statistical significance is denoted by asterisks.



Extended Data Fig. 6 | Molecular characterization of patient derived cell 
lines. a, t-distributed Stochastic Neighbor Embedding (tSNE) plot of 
genome-wide DNA methylation profiles of patient derived cell lines (red), to 
meningiomas (blue), and 2798 previously published tumors from 40 other 
brain tumor types58. b, Heatmap showing results of single-sample Gene-Set 
Enrichment Analysis (ssGSEA) using mRNA data from cell lines. Each cell line 
was assigned a score for molecular groups 1, 2, 3 and 4 using gene-expression 
based signatures from the discovery cohort. Molecular group designation was 

determined by highest scores from ssGSEA assignments. c, Gross 
morphological images of a representative MG4-xenografted mice. Extra axial 
tumor is outlined in dashed yellow lines. Compression on adjacent neural 
structures is evident after partial (middle panel) and complete (right panel) 
separation of meningioma from brain. d, Serial sections and immunostaining 
for MCM2 in representative MG4-xenograted mice. Scale bar is 2mm. Small 
areas of tumor that have invaded the brain can be seen staining for  
MCM2.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Proteomic and gene expression data converge to 
similar biology driving each molecular group. a, Hierarchical clustering of 
normalized enrichment scores obtained by Gene-Set Variation Analysis (GSVA) 
using proteomic data (rows) and mRNA data (columns). b, Distribution of 
correlation of mRNA expression to protein abundance in all samples (grey), 
MG1 meningiomas (red), MG2 meningiomas (blue), MG3 meningiomas (green) 
and MG4 meningiomas (orange). Vertical line indicates overall median 
correlation across all samples (Spearman’s r = 0.279, 95%CI 0.273-0.284).  
c, Scatterplots comparing normalized enrichment scores by GSVA using gene 
expression (x-axis) and protein abundance (y-axis) stratified by MG 
classifications. Each dot represents a pathway. Pathways that are statistically 

significant and concordant by protein and mRNA data are colored green while 
those that are discordant are colored green. Pearson correlations and 95% 
confidence intervals are indicated at the top of each panel. d, Network of 
activated gene circuits by proteome data in N = 96 samples. Protein groups 
were ranked for each subtype by degree of differential expression. Gene-set 
enrichment analysis was performed on the ranked gene lists and enriched 
pathways are visualized using the EnrichmentMap plugin in Cytoscape App. 
Nodes represent pathways and edges represent shared genes between 
pathways. Pathways above horizontal line are up-regulated (red nodes) in each 
molecular group while pathways below horizontal line are down-regulated 
(blue nodes) in each molecular group.
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Extended Data Fig. 8 | Differences in genome-wide methylation across 
meningioma groups. a, Hierarchical clustering of highly differentially 
methylated CpGs (absolute ∆β > 0.35, FDR < 0.05) between all meningiomas 
and healthy meninges. Annotations of molecular groups are on the right side of 
heatmap. b, Boxplots showing the distribution of β values for probes in (a) that 
are hypomethylated in healthy meninges (left) and hypermethylated in healthy 
meninges (right). Pairwise comparisons in each boxplot are statistically 
significant (p < 0.05), unless explicitly stated otherwise (ns, not significant).  
c, Boxplots showing the distribution of using epigenetic mitotic clocks with 
epiTOC model (left), epiTOC2 model (middle), and HypoClock model (right). 
Pairwise comparisons in each boxplot are statistically significant (p < 0.05), 
unless explicitly stated otherwise (ns, not significant). d, Number of unique and 
overlapping probes that are differentially methylated (absolute ∆β > 0.1, 

FDR < 0.05) when comparing each molecular group to healthy meninges.  
e, Scatterplots comparing master regulator transcription factor expression 
with average β values at sites enriched for the motif of that transcription factor. 
Samples are colored according to molecular group. Pearson correlation with 
95% confidence intervals are reported. Hypomethylation at motifs of 
immunological-lineage-specific transcription factors such as PU.1, RUNX1/2 
and IRF5/8 were enriched in immunogenic (MG1) tumors (P = 1.05 × 10−8, 
hypergeometric test) and associated with enhancer hypomethylation. 
Similarly, master regulators of cell proliferation such as MYBL2, LHX4, and 
FOXM1 were hypomethylated in proliferative (MG4) tumors and associated 
with increased abundance of these transcription factors (P = 1.24 × 10−3, 
hypergeometric test).



Extended Data Fig. 9 | Meningiomas show low within patient variation of 
expression and copy number profile. a, Pairwise correlations of expression 
profiles of all cells ordered by hierarchical clustering. Each cell is annotated to 
tumor of origin from Fig. 4a and cluster assignments from Fig. 4b at top and 
side bars. b, Inferred genome-wide copy number variations of single nuclei of 
healthy meninges (reference, top panel), immune cells (middle panel), and 
neoplastic cells (bottom panel). Sample and cluster annotation are shown on 

the left. The copy number plot of these tumors are homogenous and subclones 
of cells within tumors with distinct copy number profiles are not common. 
Annotation to patient of origin and cluster on the left of each heatmap.  
c, Scatterplots showing the relationship between arm-level CNA inferred by 
snRNA-seq (x-axis) to matched CNA by bulk whole exome sequencing (y-axis). 
Two representative samples are shown.
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Extended Data Fig. 10 | The transcriptome of MGs is shaped by the 
expression profiles from both neoplastic and non-neoplastic cells.  
a, Bubble plot showing the expression of lineage specific markers for distinct 
cell types. b, Stacked barplot showing the relationship of samples to clusters. 
Samples are colored by patient of origin as in Fig. 4a. Barplot to the right shows 
the number of cells within each cluster. c, The top heatmap shows hierarchical 
clustering results of single cells by molecular group scores. Each cell was 
scored for the bulk signature of each molecular group and scores were 
compared to a permuted random gene set. Shown are cells with at least one 
score with FDR < 0.2. Scores were scaled such that the sum of all scores for each 
cell is equal to one. Below is a matched heatmap showing the number of genes 
detected for each MG signature in each cell. In a subset of cells, low scores are 
associated with low detection rate of genes (yellow and pink boxes). d, Stacked 
barplot showing the distribution of immune versus non-immune cells across 

molecular groups (left) and cycling versus non-cycling neoplastic cells across 
molecular groups (right) to clusters. Samples are colored by molecular group 
of tumor as in Fig. 4d. e, Barplot showing the total number of cells that are 
immune versus non-immune (left) and cycling versus non-cycling (right) by MG 
status of tumor of origin. f, Boxplots comparing the cell type composition of 
bulk RNA seq samples after deconvolution using single cell RNA-seq 
signatures. Pairwise comparisons in each boxplot are statistically significant 
(p < 0.05), unless explicitly stated otherwise (ns, not significant). g. Heatmap 
showing the expression of marker genes for single cell clusters (determined by 
CIBERSORTx) in bulk RNA seq data. Each column represents one tumor. Rows 
are designated marker genes for each cluster. Tumors were partitioned into  
4 partitions by consensus k-means clustering with samples and gene sets 
clustered by hierarchical clustering using Pearson distance metric.



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Discrete and continuous patterns of variability can 
be identified in meningioma. a, Hierarchical clustering of similarities 
between NMF programs. Top panel indicates Pearson correlations between 
number of mitochondrial and ribosomal genes detected with NMF scores for 
each program. A cluster of programs (dashed lines) showed positive 
correlation with the expression of mitochondrial and ribosomal genes 
(confirmed by manual inspection). These programs were considered to be 
reflective of technical artifacts and not included in subsequent analyses.  
b, Violin plots showing the distribution of activation scores for NMF programs 
across MGs. c, Side-by-side tSNEs showing the relationship of discrete 

clustering results with activation scores of each NMF program. Shown are four 
representative samples. Activation scores of cell cycle program are closely 
associated with discrete clusters, whereas scores of metabolism, 
inflammatory, and mesenchymal program are not associated with discrete 
clusters. d, Heatmap showing the average expression of genes defining NMF 
programs (annotated to left) in representative sample CAM_0071. Cells are 
ranked and ordered according to the activation score of the metabolism 
program. There is a continuous pattern of gene expression variability in these 
programs.



Extended Data Fig. 12 | Graphical summary of findings. Shown is a schematic 
representation that summarizes the major molecular findings and conclusions 
of our study: unsupervised consensus clustering combining DNA copy number, 

DNA methylation, and mRNA sequencing data revealed four robust groups of 
tumors with prototypical biology and distinct clinical outcomes.
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Illumina Infinium MethylationEPIC BeadChip array (Illumina, San Diego, USA) was used to obtain genome-wide DNA methylation profiles. 
Exome libraries were prepared using 100ng DNA of tumor tissue or matched normal DNA. Exome capture was performed using Agilent 
SureSelect Human Exome Library Preparation V5 or V6 COSIMC + kits and sequenced (pair-ended) on a HiSeq 2500 platform to a median of 
191X. 
mRNA libraries were generated using NEB Ultra II directional mRNA library prep kit according to manufacturer’s protocol. Libraries were 
sequenced on the Illumina HiSeq 2500 high output flow cell (2x126bp), sequenced with 3 samples per lane to obtain approximately 70 million 
reads per sample. 
Shotgun proteomics was quantified using Orbitrap Fusion (Thermo Scientific) tribrid mass spectrometer. 
For single cell analyses, single viable nuclei were isolated and counted and approximately 6000-8000 nuclei were loaded onto a 10x Chromium 
controller using the Chromium Single Cell 3’ Library & Gel Bead Kit v3 (10x Genomics) for each sample. Single nuclei were partitioned into 
barcoded Gel Beads in Emulsion (GEMs) in the Chromium instrument, followed by cell lysis and reverse transcription of RNA in the droplets. 
Breaking of the emulsion was followed by by cDNA amplification and library construction as per manufacturer’s recommendations. Samples 
were sequenced Illumina NovaSeq (10x specific protocol) with a median target sequencing depth of 60,000 reads/nuclei.
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Data analysis All data analyses were performed in R. The following publicly available tools  were used for analyses: minfi v3.1, Picard v1.72 and GATK v3.6.0, 
Mutect V1.1.7, Strelka v1.0.13,  Mutect2 V1.1, Variant Effect Predictor v.92.0, Sequenza v2.1.2, CNVkit v0.9.6, STAR v2.6.0a, SamTools (v1.3 
and v1.9), Rsubread v1.5.0, edgeR v3.22.3, EnrichmentMap App v1.2.0, Cytoscape v3.7.2, Bowtie v1.2, Bowtie2 (v2.3 and v2.3.5.1), STAR v2.7 
and BLAT v0.35, Maxquant v1.6.2.3, Seurat v2, SingleR v1.0.1, of inferCNV v1.1.0, CIBERTSORTx v1.0.0, AUCell v1.8.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw sequencing data has been deposited to public repositories. Processed data has been deposited to cBioportal. 
During peer review, the reviewer token has been provided to the Editor. 
 
Raw sequencing data for all datatypes have been deposited into public repositories. Proteomic data has been deposited to Mass Spectrometry Interactive Virtual 
Environment (MassIVE ID MSV000086901). DNA methylation idat files have been deposited to Gene Expression Omnibus (GEO, GSE180061). Whole exome-
sequencing (fastq), bulk mRNA (fastq) and single nuclear RNA (fastq) datasets have been deposited to European Genome Archive under study ID EGAS00001004982 
and dataset IDs EGAD00001007051, EGAD00001007494 and EGAS00001004982.  
The processed genomic data has been submitted to cBioportal at https://www.cbioportal.org/study/summary?id=mng_utoronto_2021
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Sample size Sample selection was performed retrospectively and determined based on availability of tissue and clinical data. Sample sizes 
were sufficient for clustering analyses used in this report.

Data exclusions Two samples were excluded from single cell RNA sequencing analyses due to sparse coverage of known SNP regions precluding validation of 
assignment of cells to patient.

Replication Sequencing and molecular profiling was performed once per human sample because of the limited amount of tissue that is available per 
patient.

Randomization N/A

Blinding Samples were blinded (to WHO grade of tumor and patient outcomes) during the sample preparation and sequencing
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Antibodies
Antibodies used anti-S100B (ThermoFisher, #701340, dilution 1:100), anti-SCGN (Sigma, HPA006641, dilution 1:500) anti-ACADL (Sigma, 

HPA011990-100UL, dilution 1:200) or anti-MCM2 (Cell Signalling, #12079S, dilution 1:200). 

Validation #701340  - https://www.thermofisher.com/antibody/product/S100B-Antibody-clone-16H24L21-Recombinant-Monoclonal/701340 
HPA006641 - https://www.sigmaaldrich.com/catalog/product/sigma/hpa006641?lang=en&region=CA 
HPA011990 - https://www.sigmaaldrich.com/catalog/product/sigma/hpa011990?lang=en&region=CA 
#12079S - https://media.cellsignal.com/pdf/12079.pdf

Human research participants
Policy information about studies involving human research participants

Population characteristics Baseline population characteristics of patients with meningioma (age, sex, history of radiation, WHO grade, extent of surgical 
resection, adjuvant radiotherapy, tumor recurrence, median follow-up, anatomical location) are detailed in Supplementary 
Tables 1. 
The mean age of the discovery cohort was 57.5 years and mean age of validation cohort was  59.9 years.

Recruitment In this retrospective cohort, eligible cases were patients with pathologically confirmed meningioma,  confirmed by 
institutional neuropathologist with samples available from institutional biobanks and all clinical data above available. 
Participants were consented for institutional biobanking of blood and tissue samples for research at the time of surgery

Ethics oversight All samples were obtained upon approval of the institutional ethics committees (University Health Network).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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