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Abstract

The goal of the Human Liver Cell Atlas (HLiCA) is to create a 
comprehensive map that defines the normal functions of diverse 
liver cell types and their spatial relationships over the human lifespan. 
This project fits within the goals of the Human Cell Atlas to create 
comprehensive reference maps of all human cells as a basis for both 
understanding human health and diagnosing, monitoring and treating 
disease. Through collection of samples from diverse individuals, 
data integration across technologies and overcoming liver-specific 
challenges for experimental methods, the HLiCA will map as many cell 
types and states as possible in healthy human livers from individuals 
across all ages and many ancestries. Establishing this HLiCA of healthy 
livers is a critical step to begin to understand perturbations in disease. 
The HLiCA will be available on an open-access platform to facilitate data 
sharing and dissemination. We expect that creation of the HLiCA will 
help to lay the foundation for new research initiatives to advance our 
understanding of liver disease, improve methods of tissue engineering, 
and identify novel prognostic biomarkers and therapies to improve 
patient outcomes. We describe key experimental and computational 
challenges to overcome in building the atlas and the potential impact  
of the atlas on disease research.
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anatomy, there remains a lot to learn about how cells work together 
to perform normal functions and how regeneration, inflammation, 
fibrosis and liver failure are mediated by these interactions. The Human 
Liver Cell Atlas (HLiCA) aims to fill this knowledge gap, ultimately 
creating a next-generation reference map for the benefit of the liver 
research community. In line with the Human Cell Atlas (HCA), critical 
milestones to achieve this aim include profiling over 1 million total 
healthy human liver cells followed by obtaining over 1 million cells from 
subpopulations of patients by age (for example, paediatric patients) 
and ancestry. This Roadmap highlights current progress in develop-
ing the comprehensive HLiCA, ongoing areas of unmet need, and 
liver-specific wet laboratory and computational challenges. We expect 
that, when complete, the HLiCA will improve our understanding of the 
healthy human liver and enable translational studies to identify new 
therapies for disease states.

Building the healthy liver atlas
Assembling the HLiCA requires the input of a diverse community of 
basic scientists, computational biologists and clinicians with expertise 
spanning cell biology, technology development, microscopy, pathol-
ogy, immunology, bioinformatics, machine learning, genomics, adult 
and paediatric hepatology, and liver transplantation. The community 
of experts participating in single-cell analysis of the liver was originally 
formed at the grassroots level by individuals who developed their 
expertise at multiple centres worldwide15–18. These experts met at 
HCA meetings, and collaborations grew, leading to large multicentre 
projects supported by funding from the Chan Zuckerberg Initiative 
and national funding agencies. The HLiCA community is committed 
to the principles defined by the HCA, including diversity, inclusivity 
and equity in terms of membership and liver samples analysed, and 
welcomes opportunities to expand the community and the popula-
tions that will benefit from the HLiCA. We encourage all interested 
researchers to join the HCA community and HLiCA bionetwork, to 
share their single-cell studies of the human liver on open-access plat-
forms, and to contribute data to the HLiCA through publication and 
dissemination. The geographical distribution of active HLiCA mem-
bers mirrors that of the HCA as a whole, with an initial bias towards 
North American and European researchers, highlighting the ongoing 
need to increase member diversity as one strategy to improve sam-
ple diversity. Continuing growth of the HCA community, especially 
via regional networks in Latin America, Asia and the Middle East, is 
addressing this issue.

The goal in creating HLiCA version 1.0 is to confidently map 
as many cell types and states as possible from samples of healthy 
human livers from individuals of all ages and multiple ances-
tries (Table 1 and Fig. 2). This step will incorporate single-cell RNA 
sequencing (scRNA-seq), including droplet and plate-based methods, 
single-nucleus RNA sequencing (snRNA-seq), cellular indexing, assess-
ment of the chromatin landscape and multimodal techniques from a 
range of healthy human liver tissue sources (such as transplantation, 
surgical resection and biopsy)19. As of 2024, RNA profiles from over  
1 million cells from more than 150 male and female donors without liver 
disease, ranging from 5 weeks after conception to >65 years of age have 
been published or mapped (Supplementary Table 1). Most samples 
are from adults and were originally analysed in different laboratories; 
these samples are the focus of initial integration efforts. Samples from 
healthy children are currently being profiled to develop a paediatric 
reference atlas. Ongoing efforts will increase genetic ancestry diversity 
among samples. Future atlas versions will integrate these data with 

Key points

	• Building the Human Liver Cell Atlas requires collaborative effort 
within the liver single-cell genomics community.

	• Characterization of the normal human liver must account for 
sample-to-sample variability due to age, gender, ancestry, lifestyle, 
microbiome, environmental factors and experimental approaches, 
among other factors.

	• Collecting standardized metadata and optimizing data integration 
is critical to generate a useful and comprehensive cell atlas across 
multiple laboratories and institutions.

	• The Human Liver Cell Atlas will provide the foundation for 
understanding disease-specific perturbations and hopefully identify  
cell-type-specific therapeutic strategies to reduce the global burden 
of liver disease.

Introduction
Approximately 1.5 billion people in the world have chronic liver 
disease1, and cirrhosis is the 11th leading cause of death worldwide2,3. 
A review of studies published from 1989 to 2015 found that ~25% of 
adults worldwide had metabolic dysfunction-associated steatotic 
liver disease (MASLD), with a subsequent meta-analysis including 
data through May 2021 showing a worldwide prevalence of ~32% in 
adults4. Alcohol-related liver disease is also a rising cause of mortality 
in developed countries5 and was the most common reason patients 
were listed for liver transplantation in the USA between 2014 and 2019 
(ref. 6). Furthermore, hepatitis B and C affect an estimated 350 mil-
lion people worldwide (most of whom live in developing countries) 
and, collectively, are responsible for over 1 million deaths annually7. 
Although there is a substantial burden from liver disease, the liver is 
also highly resilient, with tremendous capacity for regeneration. Living 
donor liver transplantation is possible because the donor’s remaining 
liver and the lobe transferred to the recipient can both regenerate and 
reach up to 90% of the original organ’s size and function8. In addition, 
the liver performs numerous essential functions for health at baseline, 
including coordinating metabolism, supporting digestion, synthesiz-
ing blood products, breaking down drugs and cellular by-products, 
and interfacing with the immune system9,10. Understanding how the 
liver performs these unique functions at single-cell resolution is neces-
sary to discover and interpret the importance of changes that occur 
in disease.

The liver is composed of four lobes (right, left, quadrate and cau-
date) that contain smaller, repeated structural units called lobules11 
(Fig. 1). Cells within the liver are organized into approximately 1 million 
lobules, each about 0.5–1.0 mm in diameter12. Lobules are defined 
anatomically by the sites where blood enters via branches of the portal 
vein and hepatic artery at intervals along the lobule circumference. 
Blood empties into sinusoids that provide radially convergent blood 
flow to the central vein. This structure creates a gradient whereby 
there are relatively high levels of oxygen and nutrients in the periph-
ery of the lobule and lower levels towards the centre, a phenomenon 
termed ‘liver zonation’. Zonation is responsible for specialization of 
many hepatic cell types (Fig. 1b), corresponding to their position along 
this gradient13,14. Although we know much about liver physiology and 
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spatial transcriptomics to place each cell type within the structure of 
the liver lobule. Eventual integration with 3D imaging methods, such 
as hierarchical phase-contrast tomography (microscale) and volume 
electron microscopy (nanoscale) will provide a high-resolution and 
multiscale visual map of cell interactions across the lobule and ulti-
mately the entire liver anatomy20–22. Through these approaches, the 
HLiCA will be a comprehensive representation of the liver across a 
diverse, global population.

Scientific challenges in adult liver biology
The atlas as a healthy control in disease studies
Characterizing the healthy liver at the single-cell level will require 
consideration of many factors (Table 1), including sample-to-sample 
variability between donors with a normal liver, as a result of age, sex, 
ancestry, lifestyle, microbiome and other environmental factors, as well 
as the different technical approaches used to process individual sam-
ples. In addition, the spatial context of cells within the lobule influences 
their phenotype23. Defining the diversity of the normal liver across these 
variables will enable HLiCA to support a more complete understanding 
of patient-specific perturbations that occur in disease (Fig. 2).

Sexual dimorphism is an important component in determining 
inter-individual liver diversity, which also affects disease susceptibil-
ity. For example, growth hormone regulates the expression of various 
hepatic genes24 and is secreted in a pulsatile manner in men, whereas 
levels remain more constant in women25. Diseases influenced by sexual 
dimorphism include immune-mediated disorders, such as primary 
biliary cirrhosis, which occurs more frequently in women26, and liver 
cancer, which occurs more frequently in men27.

Differences in disease frequency by geographical region, ancestry 
and environmental exposures suggest that there are diverse sus-
ceptibility factors in specific populations. The interaction between 
genetics, diet and environment greatly influences the risk of MASLD 
and its complications across diverse populations28. For example, 
individuals from South Asian regions have a higher prevalence of 
MASLD without obesity than individuals in high-income countries29, 
and in South Asia MASLD without obesity remains an independent 
risk factor for coronary artery disease similar to the risk in individuals 
with obesity and MASLD30. Metabolites derived from the diet differ 
between individuals, which in turn might influence the composi-
tion of upregulated immune metabolic inflammatory pathways that 
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Hepatic cell type
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Fig. 1 | Overview of human liver anatomy. a, The human liver is composed of 
four lobes. Blood flows into the liver through the portal vein and hepatic artery 
and exits through the inferior vena cava for transport back to the heart. Bile 
produced by hepatocytes travels through the common bile duct and is stored 
in the gallbladder (left). Each lobe is composed of lobules (0.5 mm to 1.0 mm 
diameter, centre). Blood from the portal vein (light blue) and hepatic artery  
(red) flows through the sinusoids (darker blue) to the central vein (dark blue 
circles) before exiting the liver through the inferior vena cava. Bile produced  

by hepatocytes travels through the bile ducts (yellow) to the common bile duct. 
Each lobule is divided into zones (right). Blood from the hepatic artery mixes with 
blood from the portal vein in sinusoids in zone 1. As the blood flows through the 
sinusoids to the central vein, oxygen and nutrient levels decrease, and reach their 
lowest levels in zone 3. b, Multiple cell types are present within the liver lobule in 
homeostasis and disease. Cell function is specialized by the gradient of oxygen 
and nutrients within the lobule.
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have been identified in human studies and are linked to disease31,32. 
Ancestry and geography also influence susceptibility to specific liver 
diseases as shown by the higher incidence of biliary atresia in individu-
als of East Asian descent (1 in 5,000–10,000 live births) than in those 
from Europe and North America (1 in 15,000–20,000 live births)33. 
The role of ancestral epigenetic imprinting of specific hepatic cell 

populations and its contribution to inter-patient heterogeneity remains  
poorly defined34.

Various dynamic factors also affect the hepatic transcriptome. 
Changes in liver function and gene expression occur in response to 
circadian rhythms and gut-derived and diet-derived factors35. For 
example, bile acid synthesis exhibits a diurnal rhythm in humans36, and  

Table 1 | Overview of the HLiCA: status and proposed strategies

Unmet need Current status Goals Proposed strategies

Technical

Establish a 
comprehensive 
single-cell atlas of 
normal liver

Multiple independent studies using 
different experimental methods and 
technologies that can affect cell  
type frequencies

Improve data integration strategies to account  
for different sources of variation during analyses

Expert consensus on optimal data 
integration strategies and technologies  
to benchmark

Limited spatial transcriptomic  
data compared with single-cell  
and single-nucleus data

Incorporate new technologies that enable  
spatial transcriptomics to be performed at 
single-cell resolution

Increase access to newer technologies 
(lower cost)

Identification of new cell  
types and cell states

Establish consistent nomenclature of cell types 
based on single-cell data and actively update  
as new datasets become available

Expert consensus on criteria for cell 
nomenclature across organ systems

Integrate current and 
emerging single-cell 
technologies

scRNA-seq and snRNA-seq are being 
integrated to generate HLiCA v1.0

Share data and analysis pipelines developed  
and adapted to analyse data for HLiCA v1.0 and 
continue to develop approaches to integrate  
new single-cell modalities

Evaluate existing integration methods in 
the context of human liver data to identify 
those that work well to integrate across 
modalities, including spatial, ATAC-seq 
and metabolomics

Map cell perturbations 
in disease to help 
translate findings from 
single-cell maps to 
new medical therapies

Independent single-cell analyses 
that vary by disease aetiology, model 
and/or species, patient diversity, 
collection of metadata

Increase sample size of single-cell datasets with 
standardized metadata to determine if findings are 
disease-specific or due to an unrelated covariate

Increase global access to technologies 
and disseminate recommendations on 
standardized metadata collection

Integrate findings across single-cell projects  
into disease models for therapeutic testing and 
future clinical trials

Disseminate open-access liver atlas data 
to enable integration into independent 
basic and translational research studies

Perform cross-species single-cell comparisons  
to help understand outcomes of mechanistic 
studies in model systems of disease

Wide use of the HLiCA First human liver atlas in preparation Share integrated atlas of normal and diseased  
liver widely available via multiple online platforms

Complete HLiCA version 1.0 and 
disseminate via open-access platforms

Diverse analyses 
applied to generate 
new hypotheses and 
discoveries

Initial analysis to identify new cell 
types and states, as well as covariate 
effects, such as age and genetic 
ancestry

Engage a wide community to share data analysis 
effort, including understanding how different types 
of cells work together to carry out liver functions, 
what pathways are involved in liver regeneration, 
and how the liver develops from fetal to adult stage

Increase access and member diversity  
of the HLiCA

Sample diversity

Broad sample diversity The data currently available are  
often enriched in adult donors  
of northern European ancestry

Expand diversity of collection sites and 
investigators involved in single-cell analysis

Increase access and member diversity  
of the HLiCA

Adult datasets are currently larger 
than paediatric datasets

Overcome barriers of sample acquisition from 
children to improve collection over the lifespan

Expert panel to establish age-specific 
ethical guidelines

Metadata

Metadata linked  
to single-cell data 
from healthy and 
diseased liver

Limited metadata are being included 
in more datasets while balancing 
what can be included in open-access 
platforms; protected access platform 
available to store sensitive metadata; 
basic (tier 1) and more detailed (tier 2) 
metadata are under development by 
HCA and HLiCA

Establish guidelines for the types of metadata  
that should be collected

Global expert panel to establish and 
disseminate recommendations for 
metadata collection and data sharing,  
and ethical guidelinesEstablish guidelines for metadata that can be  

linked to sequence data in open-access platforms 
and those that should have restricted access

Establish platforms to share metadata linked to 
single-cell sequencing data that can be released  
as open access or restricted access

ATAC-seq, assay for transposase-accessible chromatin using sequencing; HCA, Human Cell Atlas; HLiCA, Human Liver Cell Atlas; scRNA-seq, single-cell RNA sequencing; snRNA-seq, 
single-nucleus RNA sequencing.
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in vitro cultures of human hepatocytes can develop circadian cycles that 
impact drug toxicity37. Although the populations of some immune cell 
types, such as T cells and neutrophils, are present in low number in 
homeostasis, their spatially driven transcriptional polarization is 
important to prime an effector response in disease38.

Each of these factors, and others, are likely to influence measure-
ment of single-cell and spatial transcriptomes. It will be important to 
collect information about these factors with each sample to better 
understand the effects of these covariates on liver cellular function. 
Initial data collection will enable us to evaluate readily collected vari-
ables, including age, sex, genetic ancestry and anatomical sampling 
location in HLiCA version 1.0, whereas other variables will need to be 
addressed with expanded data collection strategies. The HCA effort is 
working to standardize metadata formats and naming conventions to 
ease collection and sharing of this information (Fig. 3). For example, 
basic (tier 1) metadata are defined across all HCA projects, and more 

detailed (tier 2) metadata are under development by the HCA, along 
with those specialized for liver studies by the HLiCA.

Paediatric and developing liver
The liver changes greatly over the course of development. The liver 
is the site of haematopoiesis during fetal development, and it then 
progressively matures from infancy through adolescence to take on 
adult functions39. Single-cell analysis of fetal liver has highlighted 
stage-specific transcriptional differences that occur during human 
liver development in utero40. Although the magnitude of these changes 
decreases after birth, an infant’s liver remains less mature in terms of 
metabolism and detoxification than the liver in older children and 
adults41,42. For example, jaundice commonly affects newborns, as their 
liver does not have the same capacity to process bilirubin as that in 
older children and adults43. A single-cell map derived from liver samples 
from healthy donors aged 2–17 years showed differences in myeloid 

CITE-seq
Define cell-surface markers 
for novel liver cell types

Influence of donor factors
on hepatic cellular heterogeneity

Data integration
Establish a
comprehensive atlas

Spatial transcriptomics
Patterns of liver zonation

TCR-seq and BCR-seq
Clonal expansion of hepatic 
lymphocytes

scRNA-seq
Identify unique hepatic cell types

ATAC-seq
Epigenetic regulation of
hepatic gene expression

TCR-seq BCR-seq

scRNA-seq snRNA-seq

Healthy HLiCA

Fig. 2 | Methods for single-cell analyses to build an atlas for healthy human 
liver cells. The Human Liver Cell Atlas (HLiCA) for healthy liver will include data 
from a range of experimental types, measuring multiple types of molecular 
information, including transcript (single-cell RNA sequencing (scRNA-seq) and 
single-nucleus RNA sequencing (snRNA-seq)) and protein (cellular indexing 
of transcriptomes and epitomes by sequencing (CITE-seq)) expression levels, 

chromatin state (assay for transposase-accessible chromatin using sequencing 
(ATAC-seq), and immune cell activity (T cell receptor sequencing (TCR-seq) and 
B cell receptor sequencing (BCR-seq) of dissociated cells and cells in situ (for 
example, spatial transcriptomics). Computational tools will be applied and 
developed for integration of all data into a comprehensive human liver cell atlas.
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populations compared with liver samples from adults44. Spatial gene 
expression patterns also vary with age as demonstrated by the higher 
incidence of portal steatosis and fibrosis in children with MASLD than in 

adults, who tend to present with pericentral and pericellular localized 
disease45,46. Furthermore, environmental exposures, such as diet, differ 
between age groups. In infants, breastfeeding modulates the gut–liver 

Donor ID
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Number of samples

Study information

Starting material

Sample processing

Sample collection time of day

Sample information

Sex

Donor primary language

Ethnicity

Genetic ancestry

Country of residence

Medical condition(s)
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Alcohol or other substance use
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Data generation

• scRNA-seq

• snRNA-seq

• ATAC-seq
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• Caudate
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• Unknown

• Transplant donor
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Donor information

Fig. 3 | Proposed metadata to generate a comprehensive liver cell atlas. 
Our team will follow Human Cell Atlas recommendations for collection of 
metadata to capture donor diversity. Based on the study design and age of the 
donor population, additional specific fields on patient medical conditions and 
comorbidities, and laboratory data may be added. ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; ATAC-seq, assay for transposase-accessible 

chromatin using sequencing; BCR-seq, B cell receptor sequencing; CITE-seq, 
cellular indexing of transcriptomes and epitomes by sequencing; L, left; N, no; 
OCT, optimal cutting temperature compound; R, right; scRNA-seq, single-cell 
RNA sequencing; snRNA-seq, single-nucleus RNA sequencing; TCR-seq, T cell 
receptor sequencing; Y, yes.
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axis and might protect against future MASLD47,48. Nutritional diversity, 
including geographically distinct diets, affects liver metabolic and 
immune cell programming, as described in MASLD31,49,50. Lastly, certain 
liver diseases, such as biliary atresia, are more prevalent in children 
than in adults51, whereas common disease processes might exhibit 
age-specific phenotypic differences. In particular, recent research 
has helped to characterize the single-cell transcriptome in paediatric 
cholestatic liver disease52,53. Including fetal and paediatric samples in 
the liver map will help us to better understand the cell-type-specific dif-
ferences between children and adults, identify pathways and chromatin 
accessibilities critical for liver regeneration, and provide a healthy liver 
reference for paediatric liver disease studies.

Mapping liver cell types
Liver zonation is responsible for much of the spatial heterogeneity 
within the lobule13 and has been extensively studied in mice, using spa-
tially resolved scRNA-seq technologies14,46. Hepatocytes, the primary 
liver parenchymal cell type, exhibit strongly zonated gene expression 
patterns14,46. Venous and arterial blood mix as they enter the liver, result-
ing in greater oxygen availability in periportal regions than in pericen-
tral regions54,55. Energy-demanding tasks, such as gluconeogenesis, 
lipid metabolism and protein secretion, are allocated to the relatively 
oxygen-rich periportal regions where hepatocytes can obtain more 
ATP through respiration, whereas pericentral hepatocytes special-
ize in xenobiotic metabolism, glycolysis and glutamine synthesis54. 
Some biological pathways exhibit ‘production-line patterns’ whereby 
enzymes in a metabolic cascade are expressed in sequential lobule 
layers56. Hepatocytes also allow recycling of metabolites between dis-
tinct zones. For example, glutamate and glucose are produced in peri-
portal layers and reused in pericentral layers57. In addition to gradients 
in oxygen and nutrients, approximately 75% of afferent lobule blood 
flow is venous, with only 25% perfusion from highly oxygenated arterial 
blood, imposing limits in oxygen-dependent hepatocyte functions46.

Extrinsic signals influencing hepatocyte zonation include 
blood-borne molecules such as oxygen56 and glucagon58, as well as 
morphogens produced by non-parenchymal cells. About one-third of 
zonated hepatocyte genes are regulated by canonical Wnt signalling56. 
Broad zonation programmes specifically define endothelial cell59 and 
hepatic stellate cells (HSC) subtypes60. Studies in mice have shown 
that endothelial cells and HSCs residing around the central vein con-
stitute a localized WNT signalling niche, and pericentral endothe-
lial cells produce WNT2, WNT9B and RSPO3 to jointly shape hepatocyte 
zonation61–63.

Liver-resident macrophages are the dominant immune cell type 
present in homeostasis, and are another non-parenchymal cell type 
influenced by zonation. Kupffer cells (KCs) constitute a major compo-
nent of this macrophage population that is exposed to distinct levels 
of oxygen, hormones and morphogens based on their location within 
the hepatic lobule. KCs are present in high numbers in periportal lobule 
layers, presumably to provide a first line of defence against bacteria 
that have infiltrated from the gut, as this preferential localization is 
lost in germ-free animals64. Moreover, KC identity is tightly regulated 
by signals, including DLL4–Notch and BMP9–ALK1 signalling65,66, 
provided by other liver cells in close proximity, namely hepatocytes, 
sinusoidal endothelial cells and HSCs65–67. Disruption of these signals 
is thought to result in a loss of KCs in diseased states such as MASLD 
and, in mouse models, in the recruitment of other non-KC macrophage 
populations; however, the precise function of KCs remains unclear68,69. 
Gaining insights into the transcriptional programmes of healthy KCs 

and the cell–cell communication axes governing these cells will enable 
a better understanding of alterations in disease.

Although patterns of liver zonation have been identified in mouse 
models, especially for hepatocytes, such patterns remain to be resolved 
in the healthy human liver. Moreover, less is known about how macro-
scopic differences in liver anatomy affect cell-subset-specific transcrip-
tional programmes. In particular, portal blood flow is critical in hepatic 
clearance of gut-derived toxins and microbiota that have entered 
the systemic circulation70. However, the distribution of portal blood 
flow is not uniform across the liver and might differentially influence 
hepatic, immune and parenchymal cell transcriptional programmes at 
homeostasis. Through adequate tissue sampling across the liver, the 
HLiCA effort will better define the effects of anatomical differences at 
the single-cell level.

Liver regeneration: from repair to disease
Insights into the plasticity of liver cell types will advance our under-
standing of liver injury, repair, regeneration and disease. Single-cell 
genomic approaches have markedly expanded our understanding of 
how intrahepatic cell lineages interact to regulate these processes. Stud-
ies of human liver regeneration have identified mesenchymal cells and 
a novel migratory hepatocyte subpopulation critical in mediating suc-
cessful regeneration and reconstitution of normal hepatic architecture 
following liver injury71,72. In addition, plasticity between hepatocytes 
and cholangiocytes has been observed in MASLD in snRNA-seq studies 
in humans, which seems to be independent of bipotent progenitors73.

Fibrosis develops as a result of chronic liver injury when liver regen-
eration fails to restore normal liver morphology. Single-cell approaches 
in humans and mouse models have defined distinct populations of 
macrophages, endothelial cells and mesenchymal cells that reside 
within the spatially distinct fibrotic niche and interact to promote 
scar formation16,60. For example, a population of monocyte-derived 
macrophages is present during early stages of MASLD and expands 
during fibrosis progression to promote mesenchymal cell activation 
and extracellular matrix (ECM) deposition16. Expansion of distinct 
endothelial and mesenchymal cell populations also occurs within 
the human fibrotic niche during repair, with subsequent interactome 
remodelling of ligand–receptor pairs occurring between subpopu-
lations of macrophages, endothelial cells and mesenchymal cells74. 
Single-cell studies have further demonstrated impaired macrophage 
differentiation during late stages of fibrosis75.

Aberrations in regenerative pathways are also linked to cancer 
and have been further elucidated by single-cell studies. Changes 
observed in hepatocellular carcinoma (HCC) result in an immuno-
suppressive ecosystem that shares features with the fetal liver18. 
Non-parenchymal cells involved in the injury response also influence 
the development of cancer, as hepatocyte growth factor produced by 
subpopulations of HSCs can inhibit the development of HCC in mouse 
models of hepatocarcinogenesis76, and the desmoplastic reaction 
characteristic of intrahepatic cholangiocarcinoma produces distinct 
populations of cancer-associated fibroblasts that further support the 
tumour environment77–79.

The features of injury and disease that are common across organs 
are not yet fully understood but will become clearer as more single-cell 
datasets are generated across healthy and injured organs. Many 
immune cell types share transcriptional features across human organs, 
such as CD9+TREM2+ macrophages associated with the fibrotic niche 
in both the liver and the lung80. Immune cell populations with shared 
signatures have also been identified across organs with disease. For 
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example, in the setting of HCC, LAMP3+ dendritic cells are present in 
tumour and draining lymph nodes as well as in breast and lung cancer, 
and tumour-associated macrophages identified in HCC share gene 
expression signatures with those in lung cancer81. Additionally, popu-
lations of human fibroblasts have been defined that emerge across 
multiple organs with injury82. Although transcriptional signatures are 
also shared by fibroblasts across healthy organs82, murine studies that 
include the liver have also highlighted the fibroblast heterogeneity 
driven by ECM gene expression83. Ultimately, expanding single-cell 
maps unified across tissues will continue to improve our understanding 
of the spectrum of cell states as well as the shared and unique features 
of injury and repair responses in the liver.

Liver-specific challenges in single-cell  
atlas assembly
Wet laboratory challenges
A major experimental challenge in generating the HLiCA is tissue access, 
as the invasive nature of liver biopsy and surgical resection limits tissue 
availability for research. As a result, multiple approaches have been 
applied to collect tissue samples, including excess healthy donor tis-
sue collected at the time of liver transplantation (Fig. 1), excess healthy 
tissue adjacent to liver lesions removed during surgical resection, 
core-needle liver biopsies, fine-needle aspirates84 and, occasionally, 
whole organs from deceased individuals. Not all sample types are com-
prehensive, highlighting the need for complementary tissue sampling 
strategies. For example, fine-needle aspiration can efficiently capture 
most immune cells, but hepatocytes, KCs and mesenchymal cells are 
under-represented in samples obtained by this technique84.

Distinct hepatic cell populations possess varying sensitivity to cell 
stress caused by tissue dissociation, and a combination of single-cell 
experimental strategies is required for a robust atlas representing 
the greatest diversity of hepatic cell types. For example, hepato-
cytes are very sensitive to dissociation-related damage15,17, and mes-
enchymal cells are particularly difficult to dissociate from tissues67. 
snRNA-seq minimizes dissociation bias and captures a more accurate 
snapshot of the frequency of certain cell types in tissues67,85. Side-by-
side comparisons of hepatic scRNA-seq and snRNA-seq studies have 
shown that snRNA-seq leads to better capture of hepatocytes, cholangi-
ocytes and mesenchymal cells19,67. By contrast, enzymatic digestion fol-
lowed by scRNA-seq yields an enrichment of immune cells19,67, and using 
the seqWell platform captures neutrophils, whereas droplet-based plat-
forms such as Chromium (10× Genomics) do not84. A main advantage 
of scRNA-seq over snRNA-seq is that it can be combined with cellular 
indexing of transcriptomes and epitomes by sequencing (CITE-seq) 
to simultaneously detect hundreds of cell-surface proteins using bar-
coded antibodies that might not be well represented at the RNA level 
and are well-established for identification of immune cell subsets86,87. In 
addition to differences in the abundance of cell populations captured 
by scRNA-seq versus snRNA-seq, these methods also lead to enrichment 
of different genes67.

Spatial transcriptomics bypasses the need for enzymatic disso-
ciation while also mapping cell localizations within tissues, leading to 
less biased cellular representation18,19,67. CITE-seq-barcoded antibodies 
can also be used on tissue sections to identify cells by surface protein 
expression and to define suitable antibodies for histologic studies67. 
However, there is currently a trade-off among the multiple spatial 
transcriptomic technologies between transcriptome coverage and 
spatial resolution, and the number of tissue slices that can be analysed 
at once88.

To help overcome these challenges, the HLiCA coordinates the 
activity across multiple sites to increase the number of samples col-
lected using complementary methods. Many factors contribute to 
differences in sample processing protocols worldwide, such as differ-
ent clinical procedures used to collect data. Although these factors pre-
vent uniform sample processing across sites, common guidelines for 
timely sharing of data and sample processing details help in enabling 
the development of improved computational approaches to address 
batch effects during data analysis.

Computational challenges
To comprehensively define the distribution of normal liver gene expres-
sion across diverse human populations, it is necessary to integrate large 
datasets across multiple institutions. Computational integration of 
single-cell datasets remains a challenge despite the large number of 
algorithms available89. The experimental challenges discussed above 
introduce systematic differences in amplification rates and cell type 
frequencies that can confound data scaling and normalization. Ambient 
RNA released during tissue handling is also captured non-uniformly 
across individual cells in a sample, thereby violating the assumptions 
underlying most integration algorithms90. Although current state-of-
the-art tools enable integration of datasets in reduced dimensions, 
accounting for different sources of variation during differential analy-
ses remains an open challenge91,92. Integration of single-cell and spa-
tial transcriptomic technologies promises to enable comprehensive 
identification of cells and their transcriptomic signatures.

Inferring accurate cell–cell interactions in primary liver tissue 
from single-cell transcriptomics will enable the study of how liver cells 
work together to coordinate processes such as regeneration, and how 
these processes fail in disease. However, these methods only measure 
mRNA, whereas cell–cell communication relies on protein–protein 
interactions, and RNA abundance does not always correlate with 
protein abundance93. Integration of scRNA-seq and spatial transcrip-
tomic data with the addition of protein expression data (for example, 
CITE-seq) can provide a starting point for more accurate cell–cell 
communication inferences67. However, this approach can result in 
reduced sensitivity for detecting both transcriptome and protein 
levels, compared with independent measurements. Alternatively, inte-
gration followed by imputation might be used to infer protein-level 
information from complementary protein measurements from, for 
example, multiplexed imaging technologies or cytometry by time 
of flight94–97. Despite these challenges, integration of single-cell data 
with spatial transcriptomics and protein expression will better enable 
validation and interpretation of scRNA-seq findings. Finally, integra-
tion of data from multiple modalities to build a dynamic, 3D view of 
the liver at molecular resolution will require newer machine learning 
methods98.

Data interpretation challenges
Although some of the interpretation challenges are common across 
organs, others are unique to liver single-cell data. The classic view of cell 
types has been one of strict, fixed classes with distinct functions. How-
ever, both scRNA-seq and stem cell research have revolutionized this 
view by demonstrating greater continuity and plasticity between cell 
types, and more overlap in cell type-specific functions than previ-
ously known73,99–101. This shift in understanding has been especially 
pronounced in the liver, as a large portion of functional specialization is 
driven by smooth spatial gradients across liver lobules102. Interpreting 
more subtle changes related to cell plasticity and spatial gradients must 
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be disentangled from non-biological factors including ambient RNA 
contamination and the presence of doublets. Doublets can also give 
rise to false clusters that can be misinterpreted as novel cell types103, 
and about one-third of hepatocytes are multinucleated104, which could 
affect interpretation of snRNA-seq in which each nucleus is considered 
a single cell. Ambient RNA and doublets are particularly difficult fac-
tors to control for and distinguish from true biological signals, owing 
to their prevalence. Careful data interpretation is therefore critical to 
accurately identify new cell types and spatially distinct transcriptional 
patterns.

Historically, cells have been characterized by their location, 
function and structure based on expression of canonical cell-specific 
proteins. Single-cell technologies have increased our understand-
ing of cellular heterogeneity, but these new technologies have also 
introduced new challenges associated with data interpretation and 
accurate cell annotation. There is a lack of uniform standards to define 
new cell types, and there is no generally accepted approach to choose a 
clustering resolution or validate computationally identified clusters105. 
Although identification of differentially expressed genes is the most 
common approach, current single-cell analysis algorithms may intro-
duce biases and prevent the definition of a rigorous standard106. Alter-
native approaches have sought confirmation of cell type identity using 
spatial transcriptomics or proteomics that enables in situ visualization 
of transcriptional signatures to confirm cell identity independently 
of potential processing artefacts. Epigenetic changes, such as DNA 
methylation, are typically more stable than transcriptomic shifts107, 
whereas proteomic information is more directly relevant to cellular 
function than mRNA expression108. Other potential complementary 
methods to confirm novel cellular functions include secretome and 
exosome analyses, and metabolic modelling. Innovative computational 
approaches will be necessary to integrate these diverse data types with 
current and future human cell atlases.

Once a group of cells has been determined to represent a cell type 
or cell state, it is critical to establish rigorous and unambiguous naming 
of that cell type or cell state. Frequently, different researchers will anno-
tate their data using different names for the same cell type (for example, 
liver monocyte-derived macrophages versus pro-inflammatory mac-
rophages) or use different sets of marker genes to define the same cell 
type. Centralized databases such as CELL×GENE, Cell Annotation Plat-
form or CellMarker109, combined with standardized terminology such 
as Cell Ontology110, can help to address these issues, although these 
approaches will need to be extended to capture the complete multidi-
mensional and dynamic nature of cell function. Historically, however, 
such nomenclature challenges have been addressed by international 
scientific meetings and large-scale data integration. We anticipate 
that, as the amount of human liver and human cell atlas data grows, 
collaborative efforts within and across organ systems will help to reach 
a consensus to establish new cell-subset-specific nomenclature for 
future studies.

Lastly, a major challenge for all tissue application studies is to 
identify information specific to the studied context unrelated to covari-
ates, such as age, sex or ancestry. Liver samples are diverse among 
individuals, especially in relation to hepatocyte populations15, which 
emphasizes the value of a large, diverse, comprehensive healthy refer-
ence atlas to help to reduce false-positive and false-negative results 
when comparing disease samples with healthy control samples. Fur-
thermore, a temporal healthy liver atlas that includes fetal, neonatal, 
paediatric and adult liver will need to be useful to the widest range of 
individuals and diseases.

Influence and outlook of the HLiCA
Clinical and research influences
Establishing the HLiCA is essential to identify perturbations from 
homeostasis and to define disease-specific cell states that might serve 
as therapeutic targets. To test the utility of this approach, HLiCA will 
include a disease map integrated with the healthy map, but it will be left 
open to the community to continue this effort as more data from human 
liver diseases become available. We expect that over time, this effort will 
help to address many unanswered questions on disease pathogenesis. 
For example, there are no effective anti-fibrotic therapies to reverse cir-
rhosis, many major liver diseases have no targeted therapy, and many 
rare liver diseases have no identified mechanism, leaving liver transplan-
tation as the only option for many patients with end-stage liver disease. 
Unravelling how hepatocytes and non-parenchymal cells work together 
at the molecular, cellular and tissue levels in health and to promote liver 
regeneration will help to identify treatments for chronic liver diseases 
and liver failure as alternatives to liver transplantation (Fig. 4).

Single-cell studies of liver disease have identified diverse dys-
regulated transcriptomic signatures. For example, HSCs expressing 
myofibroblast markers and matrix remodelling factors are present 
in MASLD and in fibrosis and cirrhosis of other aetiologies, whereas 
HSCs in healthy liver or non-fibrotic liver injury have greater expres-
sion of genes encoding cytokines and growth factors76,111. Distinct 
immune and mesenchymal cell subsets are associated with specific dis-
ease states such as MASLD112, primary sclerosing cholangitis113, biliary 
atresia114, intrahepatic cholangiocarcinoma115 and hepatoblastoma116. 
Data obtained from the HLiCA could help to explain some of the most 
fundamental questions in the pathogenesis of liver diseases, including 
how hepatitis B evades immune surveillance38, how alcohol causes chol-
estasis in alcohol-induced hepatitis, what are the drivers of autoimmun-
ity in autoimmune hepatitis and primary biliary cholangitis, and what 
is the precise mechanism of biliary atresia. Findings from single-cell 
studies could lead to new cell-subset-specific therapeutics to prevent 
or slow disease progression or reduce the burden of complications 
from end-stage liver disease.

A reference atlas of the healthy liver will also establish a basis for 
assessing the physiological relevance of human liver disease models. 
Cross-species comparisons using the HLiCA will be critical to identify 
transcriptional explanations for the failure of novel therapeutic agents 
developed using animal models. For example, human fetal hepatocytes 
demonstrate greater heterogeneity in the expression of genes involved 
in metabolism than mouse fetal hepatocytes117. Furthermore, lipogen-
esis genes are enriched in periportal hepatocytes in adult mice but in 
pericentral hepatocytes in humans118, a difference that could explain 
species-specific patterns of lipid accumulation, and might influence 
translation of findings from mouse models to human disease119,120. 
The liver atlas will also provide an excellent benchmark for refining 
organoids and other engineered human tissues. Many similarities 
and differences exist in single-cell transcriptomes comparing human 
liver organoids derived from pluripotent stem cells, patient-derived 
xenograft mouse models, and cells directly isolated from liver tissue17. 
A robust healthy liver cell atlas will help to improve tissue engineering 
strategies to more closely model human disease, provide the basis for 
preclinical therapeutic studies, and ultimately provide engineered 
liver tissue for whole-organ transplantation.

Future directions
Optimization of current techniques as well as development of new 
assays will continue to increase access to single-cell technologies and 
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lead to even greater sample and data acquisition to build the globally 
diverse HLiCA (Table 1). Although disease states might increase wet 
laboratory challenges in achieving uniform cell isolation, we expect 
that ongoing improvements in technologies, acquisition of large 
numbers of samples and data integration across multiple modalities 
will help to overcome the limitations currently faced when analysing 
diseased tissue. We further anticipate that future integration of tran-
scriptomics into the multiomics data framework, including genetics, 
epigenetics, metabolomics, lipidomics and proteomics will deepen our 
understanding of the complex networks governing the physiology of 
healthy liver and diseased liver (Fig. 4). For example, spatial assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) and 
spatial metabolomic technologies have recently emerged121,122 but still 
face technical limitations, including how to perform multiple analyses 
on the same tissue slice or cells. Although the evaluation of these data-
sets in parallel with spatial transcriptomics and scRNA-seq is currently 
limited, the integration of large datasets across these modalities will 
lead to maps that incorporate the metabolic and proteomic networks 
that contribute to cell identity and cell fate at the single-cell level. Ongo-
ing efforts are also needed to evaluate the ability of deep-learning-based 
3D reconstruction algorithms to integrate current and future data into 
single-cell maps123,124.

State-of-the-art machine learning techniques, such as deep neural 
networks, will also facilitate cell type annotation of disease datasets 
and identify cell-subset-specific transitional states between nor-
mal and disease states125–127. Through acquisition of this knowledge, 
single-cell and multiomics technologies will help to drive precision 
medicine to predict patients’ responses to targeted therapies across 
liver diseases of different aetiologies. For example, understanding the 
immune–tumour cellular landscape in liver cancer can help to predict 
chemotherapy sensitivity, an effort already underway in the treatment 
of paediatric hepatoblastoma128.

The primary focus of the HLiCA version 1.0 is to confidently 
identify as many cell types and cell states as possible across the 
human lifespan and diverse ancestry, define gene expression signa-
tures that separate these cell types and states, and present these data 
on an open-access platform for interactive visualization and analysis 
(including the HCA data portal and CELL×GENE)129. HLiCA is not meant 
to be a static reference, but a consensus from which these metrics can 
continue to evolve. Over time, we also hope to develop standardized 
guidelines and recommended wet bench protocols for tissue prepara-
tion and isolation tailored to specific questions in the liver (for example, 
scRNA-seq rather than snRNA-seq for immune cell profiling). Our goal 
is also to share computational approaches developed and refined for 

Methods of single-cell analysis

Develop therapies across
diverse ancestries

Identify cell subset-specific targets
in paediatric and adult liver disease

Deepen our understanding of liver 
biology, disease pathways and 
parallels between mechanistic models

Tissue engineering and organoids
to advance transplant outcomes

Cell–cell trajectories Cell–cell interactions Influence of donor data on cell states Cell interaction with the 
environment in disease

Outlook for improving outcomes in liver disease

Fig. 4 | Single-cell technology can help to improve outcomes in human liver 
disease. Incorporating diverse approaches to the analysis of single-cell data and 
integrating these data with information about donors and disease states (top) 
will hopefully lead to new understanding of biology and pathology, identify cell 

types most responsible for disease, determine how cell types are influenced by 
ancestry and help to direct targeted therapies for individual patients (bottom). 
Analysis of single-cell data from healthy individuals might also help to guide 
more efficient approaches in engineering liver tissue for therapeutic purposes.
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human liver data integration to create the HLiCA version 1.0 and con-
tinue to apply computational advances to improve both integration 
of new datasets and further refine the data incorporated into HLiCA.

Conclusions
In summary, we review the status of the HLiCA and describe the ongoing 
impact that this comprehensive liver cell atlas will have on deepening 
our understanding of healthy human liver heterogeneity across the 
human lifespan. We highlight specific challenges and propose solutions 
including improvements in the standardization of metadata collection, 
expanding sample collection across geographically diverse sites, and 
optimizing data integration techniques to limit the impact of technical 
variables. Accomplishing these goals for the healthy liver will enable 
researchers to more precisely define perturbations in disease states 
and ultimately lessen the burden of liver disease through improved 
preventative and treatment strategies.

Published online: xx xx xxxx
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