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The goal of the Human Liver Cell Atlas (HLiCA) isto create a Introduction
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This project fits within the goals of the Human Cell Atlas to create in adult liver biology
comprehensive reference maps of all human cells as a basis for both Liver-specific challenges in
understanding human health and diagnosing, monitoring and treating | single-cell atlas assembly
disease. Through collection of samples from diverse individuals, Influence and outlook

dataintegration across technologies and overcoming liver-specific of the HLICA

challenges for experimental methods, the HLiCA will map asmany cell | Conclusions
types and states as possible in healthy human livers from individuals
across all ages and many ancestries. Establishing this HLiCA of healthy
liversisacritical step to begin to understand perturbations in disease.
The HLiCA will be available on an open-access platform to facilitate data
sharing and dissemination. We expect that creation of the HLiCA will
help tolay the foundation for new researchinitiatives to advance our
understanding of liver disease, improve methods of tissue engineering,
and identify novel prognostic biomarkers and therapies toimprove
patient outcomes. We describe key experimental and computational
challenges to overcome in building the atlas and the potential impact
of the atlas on disease research.
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Key points

o Building the Human Liver Cell Atlas requires collaborative effort
within the liver single-cell genomics community.

e Characterization of the normal human liver must account for
sample-to-sample variability due to age, gender, ancestry, lifestyle,
microbiome, environmental factors and experimental approaches,
among other factors.

e Collecting standardized metadata and optimizing data integration
is critical to generate a useful and comprehensive cell atlas across
multiple laboratories and institutions.

e The Human Liver Cell Atlas will provide the foundation for
understanding disease-specific perturbations and hopefully identify
cell-type-specific therapeutic strategies to reduce the global burden
of liver disease.

Introduction

Approximately 1.5 billion people in the world have chronic liver
disease’, and cirrhosisis the 11th leading cause of death worldwide?’.
Areview of studies published from 1989 to 2015 found that -25% of
adults worldwide had metabolic dysfunction-associated steatotic
liver disease (MASLD), with a subsequent meta-analysis including
data through May 2021 showing a worldwide prevalence of ~32% in
adults*. Alcohol-related liver disease is also arising cause of mortality
in developed countries® and was the most common reason patients
were listed for liver transplantationin the USA between 2014 and 2019
(ref. 6). Furthermore, hepatitis B and C affect an estimated 350 mil-
lion people worldwide (most of whom live in developing countries)
and, collectively, are responsible for over 1 million deaths annually’.
Although there is a substantial burden from liver disease, the liver is
also highly resilient, with tremendous capacity for regeneration. Living
donor liver transplantation is possible because the donor’s remaining
liver and the lobe transferred to the recipient can both regenerate and
reachup to 90% of the original organ’s size and function®. In addition,
theliver performs numerous essential functions for health at baseline,
including coordinating metabolism, supporting digestion, synthesiz-
ing blood products, breaking down drugs and cellular by-products,
and interfacing with the immune system®'°. Understanding how the
liver performs these unique functions at single-cell resolution is neces-
sary to discover and interpret the importance of changes that occur
in disease.

Theliveris composed of four lobes (right, left, quadrate and cau-
date) that contain smaller, repeated structural units called lobules"
(Fig.1). Cellswithin theliver are organized into approximately 1 million
lobules, each about 0.5-1.0 mm in diameter™. Lobules are defined
anatomically by the sites where blood enters viabranches of the portal
vein and hepatic artery at intervals along the lobule circumference.
Blood empties into sinusoids that provide radially convergent blood
flow to the central vein. This structure creates a gradient whereby
there are relatively high levels of oxygen and nutrients in the periph-
ery of the lobule and lower levels towards the centre, a phenomenon
termed ‘liver zonation’. Zonation is responsible for specialization of
many hepatic cell types (Fig.1b), corresponding to their position along
this gradient™", Although we know much about liver physiology and

anatomy, there remains a lot to learn about how cells work together
to perform normal functions and how regeneration, inflammation,
fibrosis and liver failure are mediated by these interactions. The Human
Liver Cell Atlas (HLiCA) aims to fill this knowledge gap, ultimately
creating a next-generation reference map for the benefit of the liver
research community. In line with the Human Cell Atlas (HCA), critical
milestones to achieve this aim include profiling over 1 million total
healthy humanliver cells followed by obtaining over 1 million cells from
subpopulations of patients by age (for example, paediatric patients)
and ancestry. This Roadmap highlights current progress in develop-
ing the comprehensive HLiCA, ongoing areas of unmet need, and
liver-specific wet laboratory and computational challenges. We expect
that, when complete, the HLiCA willimprove our understanding of the
healthy human liver and enable translational studies to identify new
therapies for disease states.

Building the healthy liver atlas

Assembling the HLiCA requires the input of a diverse community of
basic scientists, computational biologists and clinicians with expertise
spanning cell biology, technology development, microscopy, pathol-
ogy, immunology, bioinformatics, machine learning, genomics, adult
and paediatric hepatology, and liver transplantation. The community
of experts participatingin single-cell analysis of the liver was originally
formed at the grassroots level by individuals who developed their
expertise at multiple centres worldwide %, These experts met at
HCA meetings, and collaborations grew, leading to large multicentre
projects supported by funding from the Chan Zuckerberg Initiative
and national funding agencies. The HLiCA community is committed
to the principles defined by the HCA, including diversity, inclusivity
and equity in terms of membership and liver samples analysed, and
welcomes opportunities to expand the community and the popula-
tions that will benefit from the HLiCA. We encourage all interested
researchers to join the HCA community and HLiCA bionetwork, to
share their single-cell studies of the human liver on open-access plat-
forms, and to contribute data to the HLiCA through publication and
dissemination. The geographical distribution of active HLICA mem-
bers mirrors that of the HCA as a whole, with an initial bias towards
North American and European researchers, highlighting the ongoing
need to increase member diversity as one strategy to improve sam-
ple diversity. Continuing growth of the HCA community, especially
viaregional networks in Latin America, Asia and the Middle East, is
addressing this issue.

The goal in creating HLiCA version 1.0 is to confidently map
as many cell types and states as possible from samples of healthy
human livers from individuals of all ages and multiple ances-
tries (Table 1 and Fig. 2). This step will incorporate single-cell RNA
sequencing (scRNA-seq), including droplet and plate-based methods,
single-nucleus RNA sequencing (snRNA-seq), cellularindexing, assess-
ment of the chromatin landscape and multimodal techniques from a
range of healthy human liver tissue sources (such as transplantation,
surgical resection and biopsy)™. As of 2024, RNA profiles from over
1million cells from more than150 male and female donors without liver
disease, ranging from 5 weeks after conception to >65 years of age have
been published or mapped (Supplementary Table 1). Most samples
arefromadults and were originally analysed in different laboratories;
these samplesare the focus of initial integration efforts. Samples from
healthy children are currently being profiled to develop a paediatric
reference atlas. Ongoing efforts will increase genetic ancestry diversity
among samples. Future atlas versions will integrate these data with
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Fig.1| Overview of human liver anatomy. a, The human liver is composed of
fourlobes. Blood flows into the liver through the portal vein and hepatic artery
and exits through the inferior vena cavafor transport back to the heart. Bile
produced by hepatocytes travels through the common bile duct and is stored
inthe gallbladder (left). Eachlobe is composed of lobules (0.5 mm to1.0 mm
diameter, centre). Blood from the portal vein (light blue) and hepatic artery
(red) flows through the sinusoids (darker blue) to the central vein (dark blue
circles) before exiting the liver through the inferior vena cava. Bile produced
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by hepatocytes travels through the bile ducts (yellow) to the common bile duct.
Eachlobuleis divided into zones (right). Blood from the hepatic artery mixes with
blood from the portal veinin sinusoids in zone 1. As the blood flows through the
sinusoids to the central vein, oxygen and nutrient levels decrease, and reach their
lowest levelsin zone 3. b, Multiple cell types are present within the liver lobule in
homeostasis and disease. Cell functionis specialized by the gradient of oxygen
and nutrients within the lobule.

spatial transcriptomics to place each cell type within the structure of
the liver lobule. Eventual integration with 3D imaging methods, such
as hierarchical phase-contrast tomography (microscale) and volume
electron microscopy (nanoscale) will provide a high-resolution and
multiscale visual map of cell interactions across the lobule and ulti-
mately the entire liver anatomy?° 2. Through these approaches, the
HLiCA will be a comprehensive representation of the liver across a
diverse, global population.

Scientific challenges in adult liver biology

The atlas as a healthy control in disease studies

Characterizing the healthy liver at the single-cell level will require
consideration of many factors (Table 1), including sample-to-sample
variability between donors with a normal liver, as a result of age, sex,
ancestry, lifestyle, microbiome and other environmental factors, as well
as the different technical approaches used to process individual sam-
ples.Inaddition, the spatial context of cells within the lobule influences
their phenotype”. Defining the diversity of the normal liver across these
variables will enable HLiCA to support amore complete understanding
of patient-specific perturbations that occur in disease (Fig. 2).

Sexual dimorphism is an important component in determining
inter-individual liver diversity, which also affects disease susceptibil-
ity. Forexample, growth hormoneregulates the expression of various
hepatic genes* and is secreted in a pulsatile manner in men, whereas
levels remain more constant in women®. Diseases influenced by sexual
dimorphism include immune-mediated disorders, such as primary
biliary cirrhosis, which occurs more frequently in women?, and liver
cancer, which occurs more frequently in men?.

Differencesin disease frequency by geographical region, ancestry
and environmental exposures suggest that there are diverse sus-
ceptibility factors in specific populations. The interaction between
genetics, dietand environment greatly influences the risk of MASLD
and its complications across diverse populations®. For example,
individuals from South Asian regions have a higher prevalence of
MASLD without obesity than individualsin high-income countries®,
and in South Asia MASLD without obesity remains an independent
risk factor for coronary artery disease similar to therisk inindividuals
with obesity and MASLD?°. Metabolites derived from the diet differ
between individuals, which in turn might influence the composi-
tion of upregulated immune metabolic inflammatory pathways that
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Table 1| Overview of the HLiCA: status and proposed strategies

Unmet need Current status Goals Proposed strategies
Technical
Establish a Multiple independent studies using Improve data integration strategies to account Expert consensus on optimal data

comprehensive
single-cell atlas of
normal liver

different experimental methods and
technologies that can affect cell
type frequencies

for different sources of variation during analyses

integration strategies and technologies
to benchmark

Limited spatial transcriptomic
data compared with single-cell
and single-nucleus data

Incorporate new technologies that enable
spatial transcriptomics to be performed at
single-cell resolution

Increase access to newer technologies
(lower cost)

Identification of new cell
types and cell states

Establish consistent nomenclature of cell types
based on single-cell data and actively update
as new datasets become available

Expert consensus on criteria for cell
nomenclature across organ systems

Integrate current and
emerging single-cell
technologies

scRNA-seq and snRNA-seq are being
integrated to generate HLICA v1.0

Share data and analysis pipelines developed
and adapted to analyse data for HLICA v1.0 and
continue to develop approaches to integrate
new single-cell modalities

Evaluate existing integration methods in

the context of human liver data to identify

those that work well to integrate across
modalities, including spatial, ATAC-seq
and metabolomics

Map cell perturbations
in disease to help
translate findings from
single-cell maps to
new medical therapies

Independent single-cell analyses
that vary by disease aetiology, model
and/or species, patient diversity,
collection of metadata

Increase sample size of single-cell datasets with
standardized metadata to determine if findings are
disease-specific or due to an unrelated covariate

Increase global access to technologies
and disseminate recommendations on
standardized metadata collection

Integrate findings across single-cell projects
into disease models for therapeutic testing and
future clinical trials

Perform cross-species single-cell comparisons
to help understand outcomes of mechanistic
studies in model systems of disease

Disseminate open-access liver atlas data
to enable integration into independent
basic and translational research studies

Wide use of the HLICA

First human liver atlas in preparation

Share integrated atlas of normal and diseased
liver widely available via multiple online platforms

Complete HLICA version 1.0 and
disseminate via open-access platforms

Diverse analyses
applied to generate
new hypotheses and
discoveries

Initial analysis to identify new cell
types and states, as well as covariate
effects, such as age and genetic
ancestry

Engage a wide community to share data analysis
effort, including understanding how different types
of cells work together to carry out liver functions,
what pathways are involved in liver regeneration,
and how the liver develops from fetal to adult stage

Increase access and member diversity
of the HLICA

Sample diversity

Broad sample diversity

The data currently available are
often enriched in adult donors
of northern European ancestry

Expand diversity of collection sites and
investigators involved in single-cell analysis

Increase access and member diversity
of the HLICA

Adult datasets are currently larger
than paediatric datasets

Overcome barriers of sample acquisition from
children to improve collection over the lifespan

Expert panel to establish age-specific
ethical guidelines

Metadata

Metadata linked
to single-cell data
from healthy and
diseased liver

Limited metadata are being included
in more datasets while balancing
what can be included in open-access
platforms; protected access platform
available to store sensitive metadata;
basic (tier 1) and more detailed (tier 2)
metadata are under development by
HCA and HLiCA

Establish guidelines for the types of metadata
that should be collected

Establish guidelines for metadata that can be
linked to sequence data in open-access platforms
and those that should have restricted access

Establish platforms to share metadata linked to
single-cell sequencing data that can be released
as open access or restricted access

Global expert panel to establish and
disseminate recommendations for
metadata collection and data sharing,
and ethical guidelines

ATAC-seq, assay for transposase-accessible chromatin using sequencing; HCA, Human Cell Atlas; HLICA, Human Liver Cell Atlas; scRNA-seq, single-cell RNA sequencing; snRNA-seq,
single-nucleus RNA sequencing.

have been identified in human studies and are linked to disease®-*.

Ancestry and geography alsoinfluence susceptibility to specific liver
diseases as shown by the higherincidence of biliary atresiainindividu-
als of East Asian descent (1in 5,000-10,000 live births) thanin those
from Europe and North America (1in 15,000-20,000 live births)*.
The role of ancestral epigenetic imprinting of specific hepatic cell

populationsandits contributiontointer-patientheterogeneity remains
poorly defined*.

Various dynamic factors also affect the hepatic transcriptome.
Changes in liver function and gene expression occur in response to
circadian rhythms and gut-derived and diet-derived factors®. For
example, bile acid synthesis exhibits a diurnal rhythmin humans®, and
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invitro cultures ofhuman hepatocytes can develop circadian cycles that
impact drug toxicity”. Although the populations of some immune cell
types, such as T cells and neutrophils, are present in low number in
homeostasis, their spatially driven transcriptional polarization is
important to prime an effector response in disease®.

Eachof these factors, and others, are likely to influence measure-
ment of single-cell and spatial transcriptomes. It will be important to
collect information about these factors with each sample to better
understand the effects of these covariates on liver cellular function.
Initial data collection will enable us to evaluate readily collected vari-
ables, including age, sex, genetic ancestry and anatomical sampling
location in HLiCA version 1.0, whereas other variables will need to be
addressed with expanded data collection strategies. The HCA effortis
working to standardize metadata formats and naming conventions to
ease collection and sharing of this information (Fig. 3). For example,
basic (tier 1) metadata are defined across all HCA projects, and more

CITE-seq
Define cell-surface markers
for novel liver cell types

scRNA-seq

Influence of donor factors
on hepatic cellular heterogeneity

Data integration
Establish a
comprehensive atlas

<@ @
oee O«

Fig.2|Methods for single-cell analyses to build an atlas for healthy human
liver cells. The Human Liver Cell Atlas (HLiCA) for healthy liver will include data
from arange of experimental types, measuring multiple types of molecular
information, including transcript (single-cell RNA sequencing (scRNA-seq) and
single-nucleus RNA sequencing (snRNA-seq)) and protein (cellularindexing

of transcriptomes and epitomes by sequencing (CITE-seq)) expression levels,

Identify unique hepatic cell types

Healthy HLIiCA

detailed (tier 2) metadata are under development by the HCA, along
with those specialized for liver studies by the HLiCA.

Paediatric and developingliver

The liver changes greatly over the course of development. The liver
is the site of haematopoiesis during fetal development, and it then
progressively matures from infancy through adolescence to take on
adult functions®. Single-cell analysis of fetal liver has highlighted
stage-specific transcriptional differences that occur during human
liver development in utero*’. Although the magnitude of these changes
decreases after birth, an infant’s liver remains less mature in terms of
metabolism and detoxification than the liver in older children and
adults*2, For example, jaundice commonly affects newborns, as their
liver does not have the same capacity to process bilirubin as that in
older children and adults*. Asingle-cell map derived from liver samples
from healthy donors aged 2-17 years showed differences in myeloid

ATAC-seq
Epigenetic regulation of
hepatic gene expression

-~

TCR-seq and BCR-seq
Clonal expansion of hepatic

| lymphocytes
Spatial transcriptomics TCR-seq BCR-seq

Patterns of liver zonation

chromatin state (assay for transposase-accessible chromatin using sequencing
(ATAC-seq), and immune cell activity (T cell receptor sequencing (TCR-seq) and
B cell receptor sequencing (BCR-seq) of dissociated cells and cells in situ (for
example, spatial transcriptomics). Computational tools will be applied and
developed for integration of all datainto acomprehensive human liver cell atlas.
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Study information

Donor ID
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Number of samples

Age o Years if >2 years
e Months if <2 years

Sex

Donor primary language

Ethnicity

Genetic ancestry

Country of residence

Medical condition(s)

Medication(s)

BMI

Diet

Fasting (Y/N; hours)

Alcohol or other substance use

Smoking status

o ALT

Labs closest to sample collection

o AST

o Platelet count

Sample information

Sample collection time of day
Sample type o Normal

» Disease (type)
Sampling strategy » Needle biopsy

* Wedge biopsy

* Resection

» Explant

o Transplant donor
Sample location o L lobe

* R lobe

» Caudate
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Sample processing

Starting material o Fresh
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Sample storage e 4°C
«-80°C
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e OCT-embedded
Storage solution
Tissue dissociation e Mechanical (Y/N)
e Enzymatic (Y/N)
e Cell enrichment (Y/N)
o Cell viability (%)

Data generation

Technology * scRNA-seq

* snRNA-seq

* ATAC-seq
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* TCR-seq or BCR-seq

© Spatial transcriptomics

© Spatial metabolomics
Library preparation
Sequencing platform

Additional information (free text)

Fig.3|Proposed metadata to generate acomprehensive liver cell atlas.

Our team will follow Human Cell Atlas recommendations for collection of
metadatato capture donor diversity. Based on the study design and age of the
donor population, additional specific fields on patient medical conditions and
comorbidities, and laboratory data may be added. ALT, alanine aminotransferase;
AST, aspartate aminotransferase; ATAC-seq, assay for transposase-accessible

chromatin using sequencing; BCR-seq, B cell receptor sequencing; CITE-seq,
cellular indexing of transcriptomes and epitomes by sequencing; L, left; N, no;
OCT, optimal cutting temperature compound; R, right; scRNA-seq, single-cell
RNA sequencing; snRNA-seq, single-nucleus RNA sequencing; TCR-seq, T cell
receptor sequencing; Y, yes.

populations compared with liver samples from adults**. Spatial gene
expression patterns also vary with age as demonstrated by the higher
incidence of portal steatosis and fibrosisin children with MASLD thanin

adults, who tend to present with pericentral and pericellular localized
disease™*°. Furthermore, environmental exposures, such as diet, differ
between age groups. Ininfants, breastfeeding modulates the gut-liver
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axisand might protect against future MASLD***%, Nutritional diversity,
including geographically distinct diets, affects liver metabolic and
immune cell programming, as described in MASLD*#*, Lastly, certain
liver diseases, such as biliary atresia, are more prevalent in children
than in adults™, whereas common disease processes might exhibit
age-specific phenotypic differences. In particular, recent research
has helped to characterize the single-cell transcriptome in paediatric
cholestatic liver disease®>*. Including fetal and paediatric samplesin
theliver map will help us to better understand the cell-type-specific dif-
ferences between children and adults, identify pathways and chromatin
accessibilities critical for liver regeneration, and provide a healthy liver
reference for paediatric liver disease studies.

Mapping liver cell types

Liver zonation is responsible for much of the spatial heterogeneity
within the lobule” and has been extensively studied in mice, using spa-
tially resolved scRNA-seq technologies'**°. Hepatocytes, the primary
liver parenchymal cell type, exhibit strongly zonated gene expression
patterns'*¢, Venous and arterial blood mix as they enter the liver, result-
ingingreater oxygen availability in periportal regions thanin pericen-
tral regions®*>. Energy-demanding tasks, such as gluconeogenesis,
lipid metabolism and protein secretion, are allocated to the relatively
oxygen-rich periportal regions where hepatocytes can obtain more
ATP through respiration, whereas pericentral hepatocytes special-
ize in xenobiotic metabolism, glycolysis and glutamine synthesis**.
Some biological pathways exhibit ‘production-line patterns’ whereby
enzymes in a metabolic cascade are expressed in sequential lobule
layers. Hepatocytes also allow recycling of metabolites between dis-
tinct zones. For example, glutamate and glucose are produced in peri-
portallayers and reused in pericentral layers”. In addition to gradients
in oxygen and nutrients, approximately 75% of afferent lobule blood
flowis venous, withonly 25% perfusion from highly oxygenated arterial
blood, imposing limits in oxygen-dependent hepatocyte functions*.

Extrinsic signals influencing hepatocyte zonation include
blood-borne molecules such as oxygen®® and glucagon®®, as well as
morphogens produced by non-parenchymal cells. About one-third of
zonated hepatocyte genes are regulated by canonical Wnt signalling®®.
Broad zonation programmes specifically define endothelial cell*’ and
hepatic stellate cells (HSC) subtypes®. Studies in mice have shown
that endothelial cells and HSCs residing around the central vein con-
stitute a localized WNT signalling niche, and pericentral endothe-
lial cells produce WNT2, WNT9B and RSPO3 to jointly shape hepatocyte
zonation®"®,

Liver-resident macrophages are the dominant immune cell type
present in homeostasis, and are another non-parenchymal cell type
influenced by zonation. Kupffer cells (KCs) constitute amajor compo-
nent of this macrophage population that is exposed to distinct levels
of oxygen, hormones and morphogens based on their location within
the hepaticlobule. KCs are present in high numbersin periportal lobule
layers, presumably to provide a first line of defence against bacteria
that have infiltrated from the gut, as this preferential localization is
lostin germ-free animals®*. Moreover, KC identity is tightly regulated
by signals, including DLL4-Notch and BMP9-ALK1 signalling®>°,
provided by other liver cells in close proximity, namely hepatocytes,
sinusoidal endothelial cells and HSCs® . Disruption of these signals
is thought to result in a loss of KCs in diseased states such as MASLD
and, inmouse models, inthe recruitment of other non-KC macrophage
populations; however, the precise function of KCs remains unclear®®,
Gaining insights into the transcriptional programmes of healthy KCs

andthe cell-cell communication axes governing these cells willenable
abetter understanding of alterations in disease.

Although patterns of liver zonation have beenidentified inmouse
models, especially for hepatocytes, such patterns remain to be resolved
in the healthy human liver. Moreover, less is known about how macro-
scopicdifferencesinliver anatomy affect cell-subset-specific transcrip-
tional programmes. In particular, portal blood flow s critical in hepatic
clearance of gut-derived toxins and microbiota that have entered
the systemic circulation’. However, the distribution of portal blood
flow is not uniform across the liver and might differentially influence
hepatic,immune and parenchymal cell transcriptional programmes at
homeostasis. Through adequate tissue sampling across the liver, the
HLiCA effort will better define the effects of anatomical differences at
the single-cell level.

Liver regeneration: from repair to disease

Insights into the plasticity of liver cell types will advance our under-
standing of liver injury, repair, regeneration and disease. Single-cell
genomic approaches have markedly expanded our understanding of
howintrahepatic cell lineagesinteract to regulate these processes. Stud-
iesof humanliver regeneration have identified mesenchymal cells and
anovel migratory hepatocyte subpopulation critical in mediating suc-
cessfulregeneration and reconstitution of normal hepatic architecture
following liver injury””% In addition, plasticity between hepatocytes
and cholangiocytes has been observed in MASLD in snRNA-seq studies
in humans, which seemstobeindependent of bipotent progenitors’.

Fibrosis develops asaresult of chronicliverinjury whenliver regen-
eration failstorestore normal liver morphology. Single-cell approaches
in humans and mouse models have defined distinct populations of
macrophages, endothelial cells and mesenchymal cells that reside
within the spatially distinct fibrotic niche and interact to promote
scar formation'®®°, For example, a population of monocyte-derived
macrophages is present during early stages of MASLD and expands
during fibrosis progression to promote mesenchymal cell activation
and extracellular matrix (ECM) deposition'®. Expansion of distinct
endothelial and mesenchymal cell populations also occurs within
the human fibrotic niche during repair, with subsequentinteractome
remodelling of ligand-receptor pairs occurring between subpopu-
lations of macrophages, endothelial cells and mesenchymal cells™.
Single-cell studies have further demonstrated impaired macrophage
differentiation during late stages of fibrosis”.

Aberrations in regenerative pathways are also linked to cancer
and have been further elucidated by single-cell studies. Changes
observed in hepatocellular carcinoma (HCC) result in an immuno-
suppressive ecosystem that shares features with the fetal liver's.
Non-parenchymal cells involved in the injury response also influence
the development of cancer, as hepatocyte growth factor produced by
subpopulations of HSCs can inhibit the development of HCC inmouse
models of hepatocarcinogenesis’, and the desmoplastic reaction
characteristic of intrahepatic cholangiocarcinoma produces distinct
populations of cancer-associated fibroblasts that further support the
tumour environment”” ",

Thefeatures of injury and disease that are common across organs
arenot yet fully understood but willbecome clearer as more single-cell
datasets are generated across healthy and injured organs. Many
immune cell types share transcriptional features across human organs,
such as CD9'TREM2* macrophages associated with the fibrotic niche
in both the liver and the lung®. Immune cell populations with shared
signatures have also been identified across organs with disease. For
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example, in the setting of HCC, LAMP3"* dendritic cells are present in
tumour and draininglymph nodes aswellasin breast and lung cancer,
and tumour-associated macrophages identified in HCC share gene
expression signatures with those in lung cancer®. Additionally, popu-
lations of human fibroblasts have been defined that emerge across
multiple organs with injury®. Although transcriptional signatures are
also shared by fibroblasts across healthy organs®?, murine studies that
include the liver have also highlighted the fibroblast heterogeneity
driven by ECM gene expression®. Ultimately, expanding single-cell
maps unified across tissues will continue toimprove our understanding
ofthe spectrum of cell states as well as the shared and unique features
of injury and repair responsesin theliver.

Liver-specific challenges in single-cell

atlas assembly

Wet laboratory challenges

Amajorexperimental challenge in generating the HLiCA is tissue access,
astheinvasive nature of liver biopsy and surgical resection limits tissue
availability for research. As a result, multiple approaches have been
applied to collect tissue samples, including excess healthy donor tis-
suecollected at the time of liver transplantation (Fig. 1), excess healthy
tissue adjacent to liver lesions removed during surgical resection,
core-needle liver biopsies, fine-needle aspirates® and, occasionally,
whole organs from deceased individuals. Not all sample types are com-
prehensive, highlighting the need for complementary tissue sampling
strategies. For example, fine-needle aspiration can efficiently capture
most immune cells, but hepatocytes, KCs and mesenchymal cells are
under-represented in samples obtained by this technique®*.

Distinct hepatic cell populations possess varying sensitivity to cell
stress caused by tissue dissociation, and a combination of single-cell
experimental strategies is required for a robust atlas representing
the greatest diversity of hepatic cell types. For example, hepato-
cytes are very sensitive to dissociation-related damage™", and mes-
enchymal cells are particularly difficult to dissociate from tissues®’.
snRNA-seq minimizes dissociation bias and captures amore accurate
snapshot of the frequency of certain cell types in tissues®”*. Side-by-
side comparisons of hepatic scRNA-seq and snRNA-seq studies have
shownthatsnRNA-seq leads to better capture of hepatocytes, cholangi-
ocytes and mesenchymal cells”*’. By contrast, enzymatic digestion fol-
lowed by scRNA-seq yields an enrichment of immune cells***, and using
the seqWell platform captures neutrophils, whereas droplet-based plat-
forms such as Chromium (10x Genomics) do not®!. A main advantage
of scRNA-seq over snRNA-seq is that it can be combined with cellular
indexing of transcriptomes and epitomes by sequencing (CITE-seq)
to simultaneously detect hundreds of cell-surface proteins using bar-
coded antibodies that might not be well represented at the RNA level
and are well-established for identification ofimmune cell subsets®*". In
additionto differencesin the abundance of cell populations captured
by scRNA-seq versus snRNA-seq, these methods also lead to enrichment
of different genes®.

Spatial transcriptomics bypasses the need for enzymatic disso-
ciation while also mapping cell localizations within tissues, leading to
less biased cellular representation'"*’, CITE-seq-barcoded antibodies
canalso be used on tissue sections to identify cells by surface protein
expression and to define suitable antibodies for histologic studies®’.
However, there is currently a trade-off among the multiple spatial
transcriptomic technologies between transcriptome coverage and
spatial resolution, and the number of tissue slices that can be analysed
atonce®,

To help overcome these challenges, the HLiCA coordinates the
activity across multiple sites to increase the number of samples col-
lected using complementary methods. Many factors contribute to
differencesinsample processing protocols worldwide, such as differ-
entclinical procedures used to collect data. Although these factors pre-
vent uniform sample processing across sites, common guidelines for
timely sharing of data and sample processing details help in enabling
the development of improved computational approaches to address
batch effects during data analysis.

Computational challenges

To comprehensively define the distribution of normal liver gene expres-
sionacross diverse human populations, itis necessary to integrate large
datasets across multiple institutions. Computational integration of
single-cell datasets remains a challenge despite the large number of
algorithms available®., The experimental challenges discussed above
introduce systematic differences in amplification rates and cell type
frequencies that can confound datascaling and normalization. Ambient
RNA released during tissue handling is also captured non-uniformly
acrossindividual cellsin asample, thereby violating the assumptions
underlying most integration algorithms®. Although current state-of-
the-art tools enable integration of datasets in reduced dimensions,
accounting for different sources of variation during differential analy-
ses remains an open challenge” . Integration of single-cell and spa-
tial transcriptomic technologies promises to enable comprehensive
identification of cells and their transcriptomic signatures.

Inferring accurate cell-cell interactions in primary liver tissue
fromsingle-cell transcriptomics will enable the study of how liver cells
work together to coordinate processes such as regeneration, and how
these processes fail in disease. However, these methods only measure
mRNA, whereas cell-cell communication relies on protein-protein
interactions, and RNA abundance does not always correlate with
proteinabundance®. Integration of scRNA-seq and spatial transcrip-
tomic datawith the addition of protein expression data (forexample,
CITE-seq) can provide a starting point for more accurate cell-cell
communication inferences®. However, this approach can result in
reduced sensitivity for detecting both transcriptome and protein
levels, compared withindependent measurements. Alternatively, inte-
gration followed by imputation might be used to infer protein-level
information from complementary protein measurements from, for
example, multiplexed imaging technologies or cytometry by time
of flight”**”. Despite these challenges, integration of single-cell data
with spatial transcriptomics and protein expression will better enable
validation and interpretation of scRNA-seq findings. Finally, integra-
tion of data from multiple modalities to build a dynamic, 3D view of
theliver at molecular resolution will require newer machine learning
methods’™.

Datainterpretation challenges

Although some of the interpretation challenges are common across
organs, othersare uniqueto liver single-cell data. The classic view of cell
types hasbeenone of strict, fixed classes with distinct functions. How-
ever, both scRNA-seq and stem cell research have revolutionized this
view by demonstrating greater continuity and plasticity between cell
types, and more overlap in cell type-specific functions than previ-
ously known’>?7%! This shift in understanding has been especially
pronouncedintheliver,asalarge portion of functional specializationis
driven by smooth spatial gradients across liver lobules'*’. Interpreting
more subtle changes related to cell plasticity and spatial gradients must
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be disentangled from non-biological factors including ambient RNA
contamination and the presence of doublets. Doublets can also give
rise to false clusters that can be misinterpreted as novel cell types'®,
and about one-third of hepatocytes are multinucleated'®, which could
affectinterpretation of snRNA-seqin whicheach nucleus s considered
asingle cell. Ambient RNA and doublets are particularly difficult fac-
tors to control for and distinguish from true biological signals, owing
totheir prevalence. Careful datainterpretationis therefore critical to
accurately identify new cell types and spatially distinct transcriptional
patterns.

Historically, cells have been characterized by their location,
function and structure based on expression of canonical cell-specific
proteins. Single-cell technologies have increased our understand-
ing of cellular heterogeneity, but these new technologies have also
introduced new challenges associated with data interpretation and
accurate cellannotation. Thereis alack of uniform standards to define
new celltypes, and thereis no generally accepted approach tochoosea
clustering resolution or validate computationally identified clusters'®.
Although identification of differentially expressed genes is the most
common approach, current single-cell analysis algorithms may intro-
ducebiases and prevent the definition of arigorous standard'*. Alter-
native approaches have sought confirmation of cell type identity using
spatial transcriptomics or proteomics that enables insitu visualization
of transcriptional signatures to confirm cell identity independently
of potential processing artefacts. Epigenetic changes, such as DNA
methylation, are typically more stable than transcriptomic shifts'”’,
whereas proteomic information is more directly relevant to cellular
function than mRNA expression'®®, Other potential complementary
methods to confirm novel cellular functions include secretome and
exosome analyses, and metabolic modelling. Innovative computational
approaches willbe necessary tointegrate these diverse datatypes with
current and future human cell atlases.

Onceagroup of cells has been determined to representacell type
or cellstate, it is critical to establish rigorous and unambiguous naming
ofthatcelltype or cell state. Frequently, different researchers will anno-
tate their data using different names for the same cell type (for example,
liver monocyte-derived macrophages versus pro-inflammatory mac-
rophages) or use different sets of marker genes to define the same cell
type. Centralized databases such as CELLXGENE, Cell Annotation Plat-
formor CellMarker'®’, combined with standardized terminology such
as Cell Ontology™®, can help to address these issues, although these
approacheswillneed to be extended to capture the complete multidi-
mensional and dynamic nature of cell function. Historically, however,
such nomenclature challenges have been addressed by international
scientific meetings and large-scale data integration. We anticipate
that, as the amount of human liver and human cell atlas data grows,
collaborative efforts withinand across organ systems will help toreach
a consensus to establish new cell-subset-specific nomenclature for
future studies.

Lastly, a major challenge for all tissue application studies is to
identify information specific to the studied context unrelated to covari-
ates, such as age, sex or ancestry. Liver samples are diverse among
individuals, especially in relation to hepatocyte populations®, which
emphasizes the value of alarge, diverse, comprehensive healthy refer-
ence atlas to help to reduce false-positive and false-negative results
when comparing disease samples with healthy control samples. Fur-
thermore, atemporal healthy liver atlas that includes fetal, neonatal,
paediatric and adult liver will need to be useful to the widest range of
individuals and diseases.

Influence and outlook of the HLiCA

Clinical and researchinfluences

Establishing the HLiCA is essential to identify perturbations from
homeostasis and to define disease-specific cell states that might serve
as therapeutic targets. To test the utility of this approach, HLiCA will
include a disease map integrated with the healthy map, but it will be left
opentothe community to continue this effort as more datafromhuman
liver diseases become available. We expect that over time, this effort will
help to address many unanswered questions on disease pathogenesis.
Forexample, there are no effective anti-fibrotic therapies to reverse cir-
rhosis, many major liver diseases have no targeted therapy, and many
rareliver diseases have noidentified mechanism, leavingliver transplan-
tationas the only option for many patients with end-stage liver disease.
Unravelling how hepatocytes and non-parenchymal cells work together
atthe molecular, cellular and tissue levelsin healthand to promote liver
regeneration will help to identify treatments for chronicliver diseases
and liver failure as alternatives to liver transplantation (Fig. 4).

Single-cell studies of liver disease have identified diverse dys-
regulated transcriptomic signatures. For example, HSCs expressing
myofibroblast markers and matrix remodelling factors are present
in MASLD and in fibrosis and cirrhosis of other aetiologies, whereas
HSCs in healthy liver or non-fibrotic liver injury have greater expres-
sion of genes encoding cytokines and growth factors’™. Distinct
immune and mesenchymal cell subsets are associated with specific dis-
ease states such as MASLD'?, primary sclerosing cholangitis', biliary
atresia', intrahepatic cholangiocarcinoma' and hepatoblastoma™®.
Data obtained from the HLiCA could help to explain some of the most
fundamental questionsin the pathogenesis of liver diseases, including
how hepatitis B evadesimmune surveillance®, how alcohol causes chol-
estasisinalcohol-induced hepatitis, what are the drivers of autoimmun-
ity inautoimmune hepatitis and primary biliary cholangitis, and what
is the precise mechanism of biliary atresia. Findings from single-cell
studies could lead to new cell-subset-specific therapeutics to prevent
or slow disease progression or reduce the burden of complications
fromend-stage liver disease.

Areference atlas of the healthy liver will also establish a basis for
assessing the physiological relevance of human liver disease models.
Cross-species comparisons using the HLiCA will be critical to identify
transcriptional explanations for the failure of novel therapeutic agents
developed using animal models. For example, human fetal hepatocytes
demonstrate greater heterogeneity in the expression of genesinvolved
in metabolism than mouse fetal hepatocytes'. Furthermore, lipogen-
esisgenes are enriched in periportal hepatocytes in adult mice butin
pericentral hepatocytes in humans"®, a difference that could explain
species-specific patterns of lipid accumulation, and might influence
translation of findings from mouse models to human disease'*'*°.
The liver atlas will also provide an excellent benchmark for refining
organoids and other engineered human tissues. Many similarities
and differences exist in single-cell transcriptomes comparing human
liver organoids derived from pluripotent stem cells, patient-derived
xenograft mouse models, and cells directly isolated from liver tissue".
Arobust healthy liver cell atlas will help toimprove tissue engineering
strategies to more closely model human disease, provide the basis for
preclinical therapeutic studies, and ultimately provide engineered
liver tissue for whole-organ transplantation.

Future directions
Optimization of current techniques as well as development of new
assays will continue to increase access to single-cell technologies and
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Fig. 4 |Single-cell technology can help toimprove outcomes in human liver
disease. Incorporating diverse approaches to the analysis of single-cell data and
integrating these data with information about donors and disease states (top)

will hopefully lead to new understanding of biology and pathology, identify cell

Develop therapies across
diverse ancestries

Tissue engineering and organoids
to advance transplant outcomes
types most responsible for disease, determine how cell types are influenced by
ancestry and help to direct targeted therapies for individual patients (bottom).
Analysis of single-cell data from healthy individuals might also help to guide
more efficient approaches in engineering liver tissue for therapeutic purposes.

lead to even greater sample and data acquisition to build the globally
diverse HLiCA (Table 1). Although disease states might increase wet
laboratory challenges in achieving uniform cell isolation, we expect
that ongoing improvements in technologies, acquisition of large
numbers of samples and data integration across multiple modalities
will help to overcome the limitations currently faced when analysing
diseased tissue. We further anticipate that future integration of tran-
scriptomics into the multiomics data framework, including genetics,
epigenetics, metabolomics, lipidomics and proteomics will deepen our
understanding of the complex networks governing the physiology of
healthy liver and diseased liver (Fig. 4). For example, spatial assay for
transposase-accessible chromatin using sequencing (ATAC-seq) and
spatial metabolomic technologies have recently emerged??*but still
face technical limitations, including how to perform multiple analyses
onthe same tissue slice or cells. Although the evaluation of these data-
setsin parallel with spatial transcriptomics and scRNA-seq is currently
limited, the integration of large datasets across these modalities will
lead to maps thatincorporate the metabolic and proteomic networks
that contribute to cellidentity and cell fate at the single-cell level. Ongo-
ingeffortsare also needed to evaluate the ability of deep-learning-based
3Dreconstruction algorithms to integrate currentand future datainto
single-cell maps'>'%,

State-of-the-art machinelearning techniques, such as deep neural
networks, will also facilitate cell type annotation of disease datasets
and identify cell-subset-specific transitional states between nor-
mal and disease states'”'?. Through acquisition of this knowledge,
single-cell and multiomics technologies will help to drive precision
medicine to predict patients’ responses to targeted therapies across
liver diseases of different aetiologies. For example, understanding the
immune-tumour cellular landscapein liver cancer can help to predict
chemotherapy sensitivity, an effort already underway in the treatment
of paediatric hepatoblastoma'®.

The primary focus of the HLiCA version 1.0 is to confidently
identify as many cell types and cell states as possible across the
human lifespan and diverse ancestry, define gene expression signa-
tures that separate these cell types and states, and present these data
on an open-access platform for interactive visualization and analysis
(including the HCA data portal and CELLXGENE)'?. HLiCA is not meant
to beastaticreference, but aconsensus from which these metrics can
continue to evolve. Over time, we also hope to develop standardized
guidelines and recommended wet bench protocols for tissue prepara-
tionandisolation tailored to specific questionsin the liver (forexample,
scRNA-seq rather than snRNA-seq forimmune cell profiling). Our goal
isalso to share computational approaches developed and refined for
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human liver data integration to create the HLiCA version 1.0 and con-
tinue to apply computational advances to improve both integration
of new datasets and further refine the dataincorporated into HLiCA.

Conclusions

Insummary, we review the status of the HLiCA and describe the ongoing
impact that this comprehensive liver cell atlas will have on deepening
our understanding of healthy human liver heterogeneity across the
human lifespan. We highlight specific challenges and propose solutions
including improvementsin the standardization of metadata collection,
expanding sample collection across geographically diverse sites, and
optimizing dataintegration techniques to limit theimpact of technical
variables. Accomplishing these goals for the healthy liver will enable
researchers to more precisely define perturbations in disease states
and ultimately lessen the burden of liver disease through improved

preventative and treatment strategies.

Published online: 13 October 2025
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