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Background & Aims: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which there is an
unmet need to understand the cellular composition of the affected liver and how it underlies disease pathogenesis. We aimed to
generate a comprehensive atlas of the PSC liver using multi-omic modalities and protein-based functional validation.
Methods: We employed single-cell and single-nucleus RNA sequencing (47,156 cells and 23,000 nuclei) and spatial tran-
scriptomics (one sample by 10x Visium and five samples with Nanostring GeoMx DSP) to profile the cellular ecosystem in 10 PSC
livers. Transcriptomic profiles were compared to 24 neurologically deceased donor livers (107,542 cells) and spatial tran-
scriptomics controls, as well as 18,240 cells and 20,202 nuclei from three PBC livers. Flow cytometry was performed to validate
PSC-specific differences in immune cell phenotype and function.
Results: PSC explants with parenchymal cirrhosis and prominent periductal fibrosis contained a population of cholangiocyte-like
hepatocytes that were surrounded by diverse immune cell populations. PSC-associated biliary, mesenchymal, and endothelial
populations expressed chemokine and cytokine transcripts involved in immune cell recruitment. Additionally, expanded CD4+ T
cells and recruited myeloid populations in the PSC liver expressed the corresponding receptors to these chemokines and cy-
tokines, suggesting potential recruitment. Tissue-resident macrophages, by contrast, were reduced in number and exhibited a
dysfunctional and downregulated inflammatory response to lipopolysaccharide and interferon-c stimulation.
Conclusions: We present a comprehensive atlas of the PSC liver and demonstrate an exhaustion-like phenotype of myeloid cells
and markers of chronic cytokine expression in late-stage PSC lesions. This atlas expands our understanding of the cellular
complexity of PSC and has potential to guide the development of novel treatments.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Recent efforts to generate a single-cell atlas have revealed a
broad diversity of parenchymal, progenitor, tissue-resident and
transient circulating immune cells within the liver.1,2,4 Changes in
the frequency and characteristics of these populations have also
been observed in atlases of acute liver disease, chronic fibrosis,
and hepatic cancers.3,5,6 Understanding the healthy liver by
building a comprehensive referencemapwith an inventory of cel-
ls and their respective spatial localization is crucial in elucida-
ing the transcriptomic and phenotypic changes, rare cell types,
and cell-cell interactions that underlie disease development.7,8

Primary sclerosing cholangitis (PSC) is an immune-mediated
cholestatic liver disease that is characterized by the retention of
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bile, destruction of the biliary tree and development of fibrosis.9

Given the rarity of the disease and the timeline from diagnosis
to end-stage liver disease, few studies have attempted to map
the PSC liver and characterize its cellular landscape. Previous
transcriptomic maps of PSC have only considered sorted
populations of immune cells.10,11 These and other studies
assessing PSC and PSC-like murine models that have
employed bulk tissue expression have implicated CD4+ T
cells,10,12 neutrophils,13 dendritic cells,11 antibody-producing B
cells,14,15 and macrophages16–22 in the development of dis-
ease. However, the focused scope and low cellular resolution
of these studies leave many uncertainties in the pathogenesis
and outcome of PSC inflammation, preventing the develop-
ment of targeted treatments.
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We present the first single-cell transcriptomic atlas of PSC,
and a primary biliary cholangitis (PBC) comparator group, using
5’ single-cell, 3’ single-nucleus and spatial transcriptomics, as
well as a complementary 100,000 cell reference neurologically
deceased healthy donor (NDD) liver map. These maps revealed
seven disease-associated cell subtypes including T cell- and
natural killer (NK) cell-intermediate states, mast cells, dendritic
cells, and neutrophils, as well as extensive disease-specific
cell-cell interactions between immune and non-immune liver
cells. This includes a subpopulation of hepatocytes identified
surrounding fibrotic lesions that appeared to have lost their
zonated expression and co-expressed cholangiocyte-specific
markers, while TREM2+ and monocyte-like macrophages were
concentrated within fibrotic regions. In experimental valida-
tions, these macrophages exhibited suppressed inflammatory
potential, which could represent a pathway by which these
myeloid cells contribute to immune dysregulation in PSC.

Materials and methods

Human liver tissue

Healthy human liver tissue from the caudate lobe was obtained
from NDD livers which were acceptable for liver transplantation
and without evidence of histopathological liver disease. Sam-
ples were collected with institutional ethics approval from the
University Health Network, Toronto, Canada (REB# 14-7425-
AE). PSC and PBC samples were collected from explanted
tissue sections (�2 cm3) and/or perfusable caudate lobes at the
time of transplantation with institutional ethics approval from
the University Health Network (REB# 20-5142). All patient
clinical characteristics are shown in Table S1.

NDD, PSC and PBC sample collection and processing for
scRNA-seq & snRNA-seq

Samples from NDD (24), PSC (10) and PBC (3) livers were
collected and processed for single-cell RNA sequencing
(scRNA-seq) fresh or following cryopreservation (Table S1) with
a collagenase dissociation protocol1,23 (dx.doi.org/10.17504/
protocols.io.m9sc96e), in addition to being snap frozen for
single-cell RNA sequencing (snRNA-seq), as previously
described, by snap-freezing in liquid nitrogen24,25(dx.doi.org/
10.17504/protocols.io.261ge34qdl47/v1) (Fig. 1A,B, details in
the supplementary methods).

Preprocessing and quality control of 10x
chromium samples

Sequencing reads were quantified using cellranger mapping to
hg18 (for specific versions see Table S1). Droplets containing
viable cells were identified using EmptyDrops from the Dro-
pletUtils (v1.2.0) package26 (Fig. 1A). Each sample was scaled
individually, and the top 2,000 most highly variable genes were
identified in each sample using Seurat (v3.1.3).27 Cells were
initially annotated using a custom algorithm (see the
supplementary methods) using our previous scRNA-seq map.1

Data integration, clustering and annotation

Raw, normalized and scaled expression matrices for all samples
were merged and then integrated using Harmony (v1.0),28 with
default parameters. UMAP (uniformmanifold approximation and
Journal of Hepatology, Ma
projection) were recalculated using the integrated lower dimen-
sional space.

The integrated NDD liver map was clustered using Seurat
(v3.1.3)27 and refined with apcluster (v1.4.8)29,30 to identify the
optimal clustering (see the supplementary methods).

Liver map subclustering, pathway analysis, and cell-cell
communication analysis

The integrated NDD liver map clusters were classified into eight
general classes (Fig. S1). Cells in each of these classes were
subset and subclustered by repeating the entire clustering and
integration pipeline (Fig. S2-5). The subclusters were manually
annotated using genes significantly expressed in that cluster
compared to all other clusters (“marker genes’’) identified using
the Wilcoxon rank-sum test. We used scmap31 to determine the
specific identity of cells comprising doublets (Fig. S6, Table S2).
Potential ligand-receptor interactions were identified using
CellPhoneDB (v4.1.0)32 (see the supplementary methods). For
pathway analysis, genes were ranked by their estimated fold
changes and analyzed with the fgsea package (v1.8.0) with 5%
false discovery rate (FDR) and 100,000 permutations using the
MSigdb Hallmark pathways, MSigdb Immune pathways, and
Reactome pathways.

Cell type comparisons of PSC or PBC vs. NDD

To compare cell type-specific differential expression between
PSC, PBC and NDD single-cell and single-nucleus data, we
calculated pseudobulk gene expression for each cell type in
each sample and were compared between NDD and PSC/PBC
using edgeR’s exactTest33 (see the supplementary methods,
Tables S4 and S5).

10x Genomics Visium and Nanostring GeoMx DSP
experimental protocol

Tissue was prepared for Visium Spatial transcriptomics as pre-
viously described.2 PSC andNDD liver sectionswere sliced from
OCT-embedded sections and submitted to NanoString for
staining with selected morphological markers and sequencing
with the GeoMx Cancer Transcriptome Atlas (see the supple
mentary methods).

Visium computational analysis

Visium spatial transcriptomic data was collected for one sample
of NDD and one sample of PSC liver. Reads were mapped to the
Human genome (GRCh38-2020-A), demultiplexed and quanti-
fied according to uniquemolecular identifiers using spaceranger
(v1.1.0). Zonation scores were calculated by first rotating prin-
cipal components using the base R varimax function to improve
their interpretability (see the supplementary methods). Nano-
string GeoMx expression data were deconvolved into cell type
composition using Nanostring GeoMx DSP software (v3.0.
0.113)34 and themarker genes fromourNDD livermap (TableS2).
Protein validations for spatial transcriptomics were performed
via immunofluorescence (IF) (Fig. S8).

Flow cytometry and cytokine analysis

Cell suspensions from frozen TLH were stained as previously
described1,35,36 with fluorophore-conjugated monoclonal
y 2024. vol. 80 j 730–743 731
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Fig. 1. 100k single-cell map of NDD human liver reveals conserved cell types across donors. (A) Single-cell RNA-seq sample collection and analysis workflow (B)
Table of samples sequenced in this study. (C) Integrated UMAP, containing 20 clusters annotated to 15 major cell types. (D) Age and sex profiles of the 24 donor livers
pink = female, blue = male. (E) Proportion of cells from different technologies, sexes and ages contributing to each cell type of the integrated data. Black points indicate
significant enrichment/depletion (p <0.05) based on a hypergeometric test using compositional analysis. There were no significant associations between demographic
characteristics and the frequency of different cell types. (F) Proportion of cell types in each sample. The yellow diamond and number in brackets on the x-axis indicates
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antibodies detailed in the supplementary methods. Surface
markers included CD45, CD206, HLA-DR, and CD68. Intracel-
lular cytokine staining was performed to examine the functional
differences in CD68+ cells that were either CD206+ or CD206− in
PSC, PBC and NDD TLH (supplementary methods). Intracellular
secretion of TNFa was examined as previously described.1,35

Gating strategy is detailed in the supplementary methods and
Figs S19 and S20. Plots were generated and statistical tests
were performed in Prism (v10.1.0).

Histopathology, immunohistochemistry and IF of
FFPE samples

To validate in silico findings, FFPE tissue sections were
employed for histology, immunohistochemistry and IF staining.
Disease stage was defined by the Nakanuma score and stage37

by assessing fibrosis, and bile duct loss. Annotation of fibrotic
areas and chronic biliary disease within the liver parenchyma of
PSC explant livers were defined based on Masson’s trichrome
stain and Cytokeratin 7 (CK7) (Figs S11, S22 and S23).38 Details
andantibodies usedare available in the supplementarymethods.
Analysis of IF experiments and liver immune cell detection was
performed on QuPath (v0.4.3) and Prism (v10.1.0), as previously
described39,40 (dx.doi.org/10.17504/protocols.io.bs6gnhbw;
dx.doi.org/10.17504/protocols.io.e6nvwdmnwlmk/v1), and plo
ts were generated in Prism (v10.1.0).

Results

Global NDD liver map

To generate an expanded reference single-cell liver atlas
suitable for identifying PSC-aberrant transcriptomic patterns,
we collected single-cell transcriptomes from over 100,000
single cells from 24 different NDD livers with equal represen-
tation of males and females spanning a wide age range
(Fig. 1). ScRNA-seq was generated using the 10x Chromium
with both 3’ and 5’ chemistries (Table S1; Fig. 1C). Samples
were integrated into a single atlas, which was clustered into
20 coarse-level cell groups. We found that all samples merged
together and contributed to almost every cell cluster in our
map and that cellular phenotypes were remarkably consistent
across demographic factors (Pearson correlation between
donors >0.5 in 17/20 clusters) (Fig. 1G; Table S3). Using
compositional analysis (see Methods), we found significant
variations in cell type frequencies across samples (Fig. 1F).
However, this is likely due to dissociation and tissue sampling
effects rather than donor-specific differences, as significant
associations between cell type frequency and donor sex or
age were not identified (linear regression Benjamini-Hochberg
adjusted p value >0.3). These coarse-level cell types were
subclustered into a final total of 38 cell states (Figs S2-5).
These included tissue-resident and circulating NK cells, naive
and plasma B cells, and an ultra-rare population of mucus-
producing cholangiocytes.
the proportion of the entire map. Black points indicate significant enrichment / deple
There were no significant associations between demographic characteristics and th
between different donors. The cluster profile is the mean expression of cells withi
profiles of different clusters within the same donor. AntiB cell, antibody secreting B
deceased donor; NK cell, natural killer cell; PBC, primary biliary cholangitis; PSC, p
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Expanded NDD liver map elucidates human
macrophage diversity

Our original liver atlas, based on five NDD livers, was able to
distinguish two different macrophage populations characterized
by opposing relationships with inflammation.1 However, a larger
diversity of macrophages has been observed in disease data-
sets.3,4 To determine if these macrophage subtypes were pre-
sent in non-diseased NDD livers, we subclustered our
macrophage populations. Subclustering revealed additional
macrophage diversity among the 11,127 macrophages of our
expandedmap (Fig. 2A). We identified 15 subclusters among the
macrophages in our map, several of which exhibited simply
different expression in inflammatory (S100A8, S100A9, S100A6,
VCAN, LYZ) or known non-inflammatory (CD5L, MARCO,
VCAM1) markers. These clusters were merged together due to
their lack of uniquemarker genes, leaving 10 distinct phenotypes
of macrophages that were both conserved across donors and
consistent with the macrophage subtypes identified in Guilliams
et al.4 (Fig. S5). After merging, non-inflammatory Kupffer cells
and inflammatory monocyte-derived macrophages accounted
for 40% of all macrophages in the NDD liver.

The remaining 60% were spread across eight rarer pheno-
types, including LYVE1+ FOLR2+ TIMD4+ non-inflammatory
resident macrophages and VSIG4+ macrophages. The former
population was similar to the self-renewing resident cardiac
macrophages found in mice41,42 and was found in 23/24 NDD
livers, but was not distinguishable from Kupffer cells in diseased
livers. Meanwhile, MHCIIhigh VSIG4+ macrophages were similar
to those observed in many mouse tissues,43 and were found in
23/24 NDD livers and all PSC/PBC livers, as well as in published
data on non-alcoholic fatty liver disease (NAFLD)/alcohol-related
liver disease (ALD) livers (Fig. 2 and Fig. S10).

In addition, we identified a novel macrophage subtype
characterized by the expression of PLAC8, LST1, IFITM3, AIF1
and COTL1 genes, in addition to some inflammatory markers
(FCN1, LYZ, S100A4, S100A8). This population was found in
23/24 NDD livers but was not distinguishable in PSC/PBC
livers. COTL1 and LST1 are cytoskeleton-related proteins
involved in lamellipodia at immune synapses.44,45 CD52,
another top marker of this cluster, is involved in interactions
with T cells.46 Pathway enrichment analysis revealed an upre-
gulation of pathways relating to the interferon (IFN)-a response,
TCR signaling, immunological synapses and IL8-CXCR2
signaling (Fig. 2B). These results suggest that these inflam-
matory macrophages are specialized in interacting with T cells.

The rarest subtype of macrophages (5%) uniquely expressed
CD9,GPNMB, TREM2, FABP5, ACP5, PLD3 and LGMN, similar
to previously described lipid-associated macrophages (LAMs)
and cirrhosis scar-associated macrophages,3,4,47 and are
hereafter referred to as LAM-like macrophages. This population
was found in 22/24 NDD donor livers and all PSC/PBC livers
where scRNA-seq data were collected, and expression of CD9
proteinwas validated by IF (Fig. S6D). Pathway analysis revealed
tion based on a hypergeometric test using compositional analysis (see: Methods).
e frequency of different cell-types. (G) Average correlation of the cluster profiles

n that cluster. Dashed line indicates the average correlation between the cluster
cell; endo, endothelial; F, female; hep, hepatocyte; M, male; NDD, neurologically
rimary sclerosing cholangitis; single-cell RNA-seq, single-cell RNA sequencing.
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an enrichment of pathways related to the phagosome and
lysosome (Fig. 2B).

In addition to these subtypes of macrophages, we observed
a type-independent activation pathway in macrophages. This
signature was characterized by high expression of IL1B, CD83,
CXCL2, CXCL3, NAMPT, THBS1, and AREG, as well as genes
involved in pathways associated with in vitro lipopolysaccha-
ride (LPS) stimulation of macrophages and TNFa signaling
(Fig. 2B). This pathway was observed in both monocyte-like
macrophages and macrophages lacking any other phenotype
signature. This population was found in 20/24 NDD livers, as
well as all PSC/PBC livers (PBC samples having twice the
number of activated macrophages as PSC samples) but was
not observed in NAFLD/ALD livers.

Examination of cell-cell communication suggests
endothelial cells may be involved in the recruitment of
myeloid cells in PSC

Previous work has shown that liver sinusoidal endothelial cells
(LSECs) are important in recruiting monocytes to the liver after
injury. LSECs have been shown to contribute to inducing a
Kupffer cell-like phenotype in recruitedmonocytes upon artificial
depletion of native Kupffer cells in mouse models.48,49 Interest-
ingly, we found a significant number of doublets between mac-
rophages and LSECs in our NDD human liver that expressed
macrophage markers (CD163, CD68, TIMP1, and C1q) and
LSEC markers (DNASE1L3, ENG, SPARC, CLEC1B). These
doublet cells accounted for 282 cells (3% of all macrophages),
whichwas 10-fold higher thanweexpected basedon the loading
of our samples and frequency of macrophages and LSECs in our
map (expect: 0.3%, p <10-100). Using scmap,31 142/282 dou-
blets were reliably assigned to both a specific macrophage
subcluster and a specific endothelial subcluster (Fig. 2E). Of
these, the most common pairwise interaction was between
Kupffer cells and central venous LSECs. These doublets were
also observed in small numbers in PSC samples (Fig. 3A). IF
staining confirmed the colocalization of endothelial (CD36) and
Kupffer (C1QC) cells at the protein level in the NDD liver (Fig. 2F).

However, monocyte-like macrophages were specifically
enriched in doublets with central venous endothelial cells that
line the central vein. To confirm that these doublets represent
cell-cell interactions, we used CellPhoneDB.32 Results were
filtered to identify interacting proteins involved in cell-cell
adherence or close-contact cell-cell communication that were
specific to central venous endothelial cells and monocyte-like
macrophages (Fig. 2E and Fig. S6A,B). The 10 top in-
teractions after filtering included SELL-PODXL, which is
involved in immune cell rolling-adhesion,50 ITGAL/SPN-ICAM1,
which is important for tissue infiltration of immune cells,51 and
SELP-SELPG, a mediator of leukocyte recruitment52 (Fig. S6B).
These results indicate a potential recruitment pathway for
monocytes from the blood binding to endothelial cells in the
central vein and being recruited into the liver.

Spatial transcriptomics identifies spatial location of
macrophage populations

To add a spatial dimension to our single-cell atlas, we
sequenced four consecutive z-stack slices using 10x Geno-
mics Visium spatial transcriptomics (Fig. 2C,D and Fig. S7).
Hepatocyte zonation was captured as either the first or second
Journal of Hepatology, Ma
principal component in each slice. This score was used as a
weight to calculate the average zonation of individual genes,
which were summed across cell-type markers to determine the
average enrichment of specific cell types. These results
confirmed our endothelial cell annotations, and indicated that
NK, T and B cells were weakly periportal (Fig. S7E-F). Exam-
ining macrophage subsets, we found that MHCII+, LAM-like
macrophages and Kupffer cells were slightly pericentral, while
activated macrophages were periportal (Fig. 2D). IF validation
revealed a bimodal distribution of VCAM1+ cells, i.e. putative
Kupffer cells, with increased frequency in both the periportal
and pericentral region; however, only the increase in periportal
regions reached statistical significance (Fig. S8).

Cholangiocyte-like hepatocytes are enriched in
liver disease

We collected 5’ scRNA-seq (Fig. 3) and 3’ snRNA-seq (Fig. 4)
data from explanted livers from 10 patients with PSC and
three patients with PBC. To provide a NDD reference for our
3’ snRNA-seq data from PSC and PBC livers, we combined
24,511 single nuclei from four NDD livers from our previously
published NDD map2 with 53,284 nuclei from seven PSC
livers, and 20,202 nuclei from two PBC livers. As we observed
previously, immune cell populations were poorly captured with
snRNA-seq but large numbers of hepatocytes, chol-
angiocytes, and endothelial cells were observed (Fig. 3A). In
comparison to NDD livers, PBC and PSC samples contained
fewer periportal hepatocytes (P-Hepato2, 70% loss, p = 0.02),
a greater number of activated stellate cells (aStellate 3-fold
increase, p = 0.04), and a greater number of cholangiocytes
(2.5-fold increase, p = 0.3) (Fig. 3C). Interestingly, we found
that interzonal hepatocytes (I-Hepato), hepatocytes that lack
pericentral and perportal markers, were significantly increased
in PSC and PBC (2.3-fold increase, p = 0.04). These hepa-
tocytes upregulate many genes involved in immunological
pathways, such as TNFa signaling, IFNc response, and allo-
graft rejection, as well as pathways involved in dedifferentia-
tion, such as KRAS and epithelial-mesenchymal transition
signaling (Fig. S9). Many cholangiocyte-related genes,
including KRT7, BICC1, FGF13, and DCDC2, were upregu-
lated in both PBC and PSC in this hepatocyte population
compared to NDD controls (Fig. 3B). In contrast, classical
hepatocyte markers, including ALB, CYP3A4, and APOA1,
were downregulated. We identified a similar pattern in pub-
lished scRNA-seq datasets3 which compared livers affected
by ALD and NAFLD to uninjured livers (Fig. S10E). These
findings suggest that a shift towards a cholangiocyte-like
phenotype is a common feature of disease-associated hepa-
tocytes across many forms of cirrhosis. We directly observed
this phenomenon in our PSC livers using IF with HNF4A as a
marker of hepatocytes and CK7 as a marker of chol-
angiocytes. We observed a decrease in HNF4A, an increase in
CK7 and an increase in co-expression of the markers in PSC
compared to NDD livers (Fig. 3D,E and Fig. S11). This was
consistent with the hepatocyte metaplasia observed during
disease-scoring of these samples (Figs S22 and S23).

Immune expansion identified within scar regions

We created a combined 5’ scRNA-seq map from 24,007 cells
from six livers of our NDD map that were sequenced using 5’
y 2024. vol. 80 j 730–743 735
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technology, 44,150 cells from eight PSC livers, and 17,230 cells
from two PBC livers (Fig. 4A). We excluded 3’ scRNA-seq NDD
samples to avoid biasing comparisons with 5’ scRNA-seq
diseased livers. While hepatocytes, stellate cells and chol-
angiocytes are well represented in the single-nucleus map,
lymphocyte populations were difficult to distinguish. In
contrast, our single-cell map revealed the presence of both
plasmacytoid and conventional dendritic cells, and a large di-
versity of lymphocyte populations, including many that were
not present in our NDD map (Fig. 4A and Fig. S12B,D). Similar
to what has previously been described in fibrotic livers,53 we
observed increases in disease-specific lymphocyte populations
including two distinct populations of NKT-like cells (Fig. S12D),
one that expressed liver-resident NK cell (lrNK) markers
(EOMES, CMC1, KLRC1, KLRF1, XCL1)54 and CD3+ T cell
markers (CD3D, CD3E, TRAC, TRBC2), as well as another
population that expressed circulating NK cell (cNK) markers
(FCGR3A, GNLY, GZMK, TBX21, XCL2)55 and CD8+ T cell
markers (CD8A, CD8B, CD3D, CD3E). DoubletFinder2 deter-
mined that these populations are not doublets (estimated 3%
doublets for CD3T-lrNK, 10% for CD8T-cNK). These pop-
ulations were predominantly found in PBC (965 cells, 6%) and
PSC (2,879 cells, 6%) livers, but not in NDD livers (<100 cells,
0.2%) nor the published NAFLD/ALD data.3 Comparing these
populations to the most similar NK and T cells, we found that
pro-inflammatory CCL356 was downregulated in the CD8T-cNK
population (log2 fold-change [FC] -0.4, p <10-10), while anti-
inflammatory KLF257 was upregulated (log2FC 0.5, p <10-100).
In contrast, pro-inflammatory cytokines CCL5 (log2FC 0.75, p
<10-100) and IL23 (log2FC 0.39, p <10-50), as well as TRDV1 and
TRGV3, were upregulated in the CD3T-lrNK population, sug-
gesting these may be cdT cells.

Differential expression between PSC and NDD livers
revealed significant upregulation of many inflammatory path-
ways including: IL12, IL23, IL27, IFNc and TNFa pathways in
Kupffer cells, T and NK cells, and TNFa, IFNc, IL2, KRAS and
epithelial-mesenchymal transition pathways in hepatocytes,
cholangiocytes, and hepatic stellate cells (Fig. 4B). Most of
these pathways were also upregulated in PBC, but the upre-
gulation of IL12 signaling in Kupffer cells and NK cells was only
seen in PSC. Moreover, PSC-derived NK cells expressed more
genes involved in the IFNc response than PBC (Fig. S13).

To examine inflammation-related cell-cell signaling, we
examined the expression of gene pairs from the KEGG cytokine
pathway (hsa04060). We found evidence of interactions be-
tween CCR7+ CD4+ T cells and CCL19+ stellate or CCL21+

periportal LSECs in fibrotic regions in PSC and PBC (Fig. 4C).
The colocalization of CCL19, CCL21 and IL7R (CD4+ T cells)
was confirmed in our Visium spatial transcriptomics data
(Pearson correlation 0.2, p <10

ˇ

-30, Fig. 4D), and across mul-
tiple replicates of spatial transcriptomics using the Nanostring
GeoMx digital spatial profiling platform (Fig. 5C,D and Fig. S14).
Using Nanostring, we observed the colocalization of CD4+ T
cells, stellate cells, periportal LSECs and mature B cells in PSC.
However, this was only the case for the examined advanced
diseased regions. Large-scale heterogeneity was observed
between different regions of interest from the same original
liver samples.
738 Journal of Hepatology, Ma
Macrophage dysfunction in PSC livers

Unlike the lymphocyte populations, which upregulate inflam-
matory pathways in PSC, macrophages exhibit increased
expression of inhibitory signaling molecules in PSC, including
KLF2,57 OTULINL, and IL27RA. IL27RA has been shown to
suppress cytokine production in macrophages58,59 and is
upregulated in PSC Kupffer cells (log2FC 2.1, FDR 0.03), and in
both PSC and PBC LAM-like macrophages (log2FC 2.3, FDR
0.001). OTULINL is a potent negative regulator of macrophage
activation, and deficiency causes autoimmune disease that can
be rescued with anti-TNF therapy.60 We observed significant
upregulation of OTULINL in all macrophage populations in PSC
and PBC livers (log2FC 3.4-5.4, FDR <0.001). Monocyte-like
macrophages adopted a fibrosis-associated phenotype with
the upregulation of LGALS3, SPP13 and ADA2;61 of these, only
ADA2 was upregulated in PBC monocyte-like macrophages. In
addition, we observed that TGF-b, a potent suppressor of
macrophage function,62 colocalized with these cells within
those regions (Fig. S15). We confirmed this scar-associated
phenotype of monocyte-like macrophages using our spatial
transcriptomics data, which indicated an enrichment of these
cells around cholangiocytes in the center of fibrotic regions
containing concentric periductal fibrosis (Fig. 5A,B and Fig.
S14), whereas Kupffer cells were localized outside of the scar
regions (Fig. S15D).

Subclustering of our scRNA-seq map revealed greater
macrophage diversity among PSC macrophages (Fig. S16A)
with 25 clusters containing at least 50 cells derived from PSC
samples vs. 13 clusters from PBC and only seven clusters from
NDD macrophages. Furthermore, we consider nine of the
clusters as PSC-enriched, as >90% of the cells within the
cluster originated from PSC livers (Fig. S16B). In contrast, we
observed no PBC-specific cluster; all 13 clusters containing
significant numbers of PBC cells also included at least 30%
PSC cells. The PSC-specific clusters were predominantly
monocyte-like (5/9), whereas macrophages shared between
PBC and PSC included 4/13 clusters expressing Kupffer cell
markers (MARCO, CD5L, VCAM1) and 2/13 highly expressing
MHCII components. Using pathway analysis of the marker
genes of each of these subclusters (Fig. S16E), we identified
downregulation of ‘interferon signaling’ in 7/9 PSC-specific
clusters and 2/7 clusters shared between PSC and NDD, but
only 1/13 clusters containing PBC cells. Similarly, MHCII pre-
sentation was only downregulated in the PSC-specific clusters
(3/9) but upregulated in clusters shared with PBC (1/13) and
NDD clusters (2/7).

Flow cytometry of primary patient macrophages revealed a
significant depletion of CD68+ cells relative to CD45+ (PTPRC)
cells in PSC, which was confirmed with in silico gating of our
single-cell data (Fig. 6A-C and Fig. S17-20). Additionally, as
previously described in PSC,20 we observed increased per-
centages of CD206+ macrophages in PSC in comparison to
NDD (Fig. 6D-E). Intracellular cytokine staining stimulation as-
says indicated a significantly reduced capacity of PSC mac-
rophages to secrete TNFa in response to LPS and IFNc
stimulation, in comparison to NDD and PBC macrophages
(Fig. 6F,G). However, when we exposed NDD-derived myeloid
populations to recombinant TGF-b (Fig. S21), we did not
y 2024. vol. 80 j 730–743
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observe blunted LPS responsiveness in the CD206+ HLA-
DR+ population.
Discussion
A major challenge in understanding the cellular ecosystem of
PSC is the lack of comprehensive maps of the parenchymal
and non-parenchymal cells in the PSC liver at single-cell res-
olution. Previous transcriptomic studies of the cellular land-
scape of PSC have employed bulk RNA-seq on liver
Journal of Hepatology, Ma
tissue12,13,18,63 and/or scRNA-seq on sorted immune cell
populations10 and have uncovered important aspects of the
immunobiology of PSC. Namely, these studies have identified
the potential involvement of T helper 17 cells and B cells in PSC
pathogenesis,10,14,15,21 as well as uncovering distinct ductular
and fibrosis-associated signatures.18,63 Taken together, these
works imply that there is a complex cellular interplay driving
PSC, providing a rationale for our in-depth examination of
parenchymal and non-parenchymal cell populations in the
PSC liver.
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Mapping the healthy and diseased liver
Our multimodal study centered on linking transcriptomic
signatures to spatial positioning and functional validation.
Specifically, transitioning cholangiocyte-like hepatocytes were
identified in both sc- and snRNA-seq, as well as spatial
transcriptomics, wherein the transdifferentiating population
was shown to localize around the perimeter of PSC scars.
Through IF, we observed that this population is significantly
enriched in the PSC liver. Additionally, spatial transcriptomics
revealed the distinct and exclusive localization of inflamma-
tory and non-inflammatory myeloid populations in relation to
PSC scars, and demonstrated the presence of expanded
immune populations within these scars, corroborating the
increased immunological diversity shown by scRNA-seq. We
observed the enrichment of immunosuppressive transcripts in
PSC-specific monocytes but an expansion of activated
macrophages in PBC, which is reflected in functional valida-
tion experiments demonstrating dysfunction in PSC myeloid
populations. Beyond understanding the cellular identities in
740 Journal of Hepatology, Ma
the PSC niche, we also examined cellular locations to better
link cell states to the degree of histological damage in the
liver. Previously, Chung et al.53 found distinct fibrosis-
enriched immune populations, a finding that we further
refined with the deconvolution of 10x Visium data with our
PSC scRNA-seq map. This is supplemented by our exami-
nation of the linkage between the heterogeneity of disease
through the deconvolution of Nanostring GeoMx DSP data,
which revealed the enrichment of immune populations in
progressed fibrosis.

In the NDD liver, we uncovered 38 distinct cell types and cell
states including a pericentrally located myeloid population
similar to the previously described LAMs,4,47 as well as myeloid
subpopulations associated with immunological synapses and a
consistent activation signature (Fig. 2). In the PSC liver, we
identified a further seven disease-associated cellular states
including NKT-like cells, neutrophils, dendritic cells, and a
subpopulation of hepatocytes (Figs 3 and 4; Table S6). These
y 2024. vol. 80 j 730–743
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immune populations are likely a result of in situ expansion and
recruitment from the blood into the diseased liver tissue.11,13,15

As previously reported for healthy liver tissue, immune sub-
populations could only be identified in scRNA-seq (Table S7),
whereas the hepatocyte subtype was only detected in snRNA-
seq (Table S8).2 Many of the immune populations were colo-
calized within fibrotic ‘scar’ regions in PSC, including CD4+ T
cells and antibody-secreting B cells, which is consistent with
bulk RNA-seq findings of enrichment of B lymphocytes and
FOXP3+CD4+ T cells in the PSC liver.64

In contrast, we observed that disease-associated hepato-
cytes were specifically located in the border regions sur-
rounding the fibrotic ‘scar’ regions in PSC (Fig. 3 and Figs S22,
23). These hepatocytes expressed many markers associated
with cholangiocytes suggesting they may be transforming into
cholangiocytes. Previous studies have demonstrated hepato-
cytes undergo this transition in the absence of functional bile
ducts in a TGF-b-mediated manner.65,66 Consistent with these
results, TGF-b was expressed in the PSC fibrotic regions,
particularly in scars with transitioning hepatocyte edges
(Fig. S13).

We examined the functional capacity of CD206+ myeloid
cells in PSC and observed suppressed TNFa cytokine secretion
and reduced inflammatory potential by CD206+ Kupffer cell-like
myeloid cells following stimulation (Fig. 6). A similar cytokine
secretion dysfunction has been reported in inflammatory bowel
disease, a common comorbidity of PSC.67,68 This suggests a
possible mechanism by which macrophage dysfunction may
underlie PSC and inflammatory bowel disease pathogen-
esis.13,16,20 We examined the impact of TGF-b incubation on
Journal of Hepatology, Ma
NDD-derived myeloid populations (Fig. S21) and could not
recapitulate the hyporesponsiveness of CD206+ and HLA-DR+

macrophages in PSC. This further reinforces the complex
and multifactorial pathogenesis of PSC, given that spatial
transcriptomic signatures demonstrate significant immune
recruitment to the PSC scars, such as plasma B cells, inflam-
matory macrophages and T cells. This demonstrates the
importance of future work focusing on early-stage disease to
identify early actors in PSC development.

Like most studies on PSC,10,11,18 much of our data is limited
to a single region of each end-stage explanted liver, which was
compared to non-diseased livers. However, additional non-PSC
disease datasets will serve to further refine these findings. Given
the slow progressive nature of PSC development, it remains to
be determined whether the findings we report here are PSC-
specific and occur during disease pathogenesis, or whether
they represent general features of late-stage cholestatic liver
disease. In addition, our NanoString spatial transcriptomic data
revealed substantial heterogeneity in disease phenotype across
relatively small regions of these livers (Fig. 5). Thus, future work
will expand this map to cover the temporal and spatial hetero-
geneity of disease. Our results demonstrate the power of
combining multiple high-resolution gene expression platforms
including 3’ single-cell, 5’ single-cell, single-nucleus and spatial
transcriptomics to fully elucidate the interactions between the
tissue microenvironment, cellular identity, and immunological
function underlying a complex inflammatory disease. Taken
together, this effort provides a framework for investigating the
drivers of PSC and uncovering precision medicine targets for
immunomodulatory and cell-based therapies.
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in this study can be found at GSE1154691 andGSE185477,2 and incorporated data
from Ramachandran et al.3 can be found at GSE136103. The PSC spatial data is
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Supplementary methods 
 
Sample Collection and Processing for sc- and sn- RNA-seq 
Within 1 hour of caudate removal from the donor organ, intact caudate and explanted tissue 
sections were snap frozen, embedded in optimal cutting temperature (OCT) medium to be 
stored at -80°C.a and formalin-fixed and paraffin-embedded (FFPE) for histology, 
immunohistochemistry (IHC) and immunofluorescence (IF). Remaining total liver homogenate 
(TLH) was cryopreserved in 90% FBS and 10% DMSO in liquid nitrogen for further 
experimentation and scRNA-seq. Nuclei for snRNA-seq were extracted from snap frozen tissue, 
as described previously. 
 
Processing of each 10X sample 
 
We loaded each Chromium run to capture 10,000 single cells. We allowed generous margins for 
error due to damaged cells or unusually high capture rate and assumed this loading strategy 
would plausibly capture between 100 and 20,000 individual cells.  
 
To ensure consistent quality across all samples, scRNA-seq data were further filtered based on 
genes identified, unique molecular identifiers (UMIs) and mitochondrial RNA. Sequencing reads 
obtained from each Chromium run were quantified using cellranger and hg18 (for specific 
versions see Supplementary Table 1). Droplets containing viable cells were identified using 
EmptyDrops from the Droplet Utils (v1.2.0) package 1, using custom parameters.  
 
Since we did not perform any washing or sorting prior to loading cells into the 10X Chromium, it 
was necessary to computationally identify viable cells from cellular debris and ambient RNA. We 
used EmptyDrops with the following parameters: lower=20,000, niters=100,000, ignore=10, 
retain=100. Viable cells were defined using a 1% FDR threshold. We assumed cell barcodes 
with fewer than 10 unique molecular identifiers (UMIs) were likely the result of ambiently floating 
droplet-barcodes or poor-quality reads resulting in erroneous droplet-barcode readouts, and 
were thus discarded. 
 
To ensure consistent quality across all samples, cells were further filtered keeping only those 
cells with > 500 genes detected, > 875 total UMIs, and < 50% mt-RNA. The 50% mitochondrial 
RNA threshold was applied for the liver due to the presence of cells (i.e: hepatocytes) with 
naturally high mitochondrial counts3. Cells from all samples were library-size normalized to 1500 
UMIs/cell and log transformed using a pseudocount of 1. Each sample was scaled individually, 
and each cell was annotated using scmap-cluster 2 using our 5 liver map as a reference 3. In 
addition, the sample was clustered using Seurat’s Louvain algorithm using default parameters 
and clusters were automatically annotated by comparing the enrichment for our previously 
identified marker genes 3 among the top DE genes for each cluster (see below). Cells were 
assigned to cell-cycle stages using Seurat’s default parameters. The top 2,000 most highly 
variable genes (HVGs) were identified in each sample using Seurat (v3.1.3) 4, genes located in 
the mitochondrial genome were excluded from the set of HVGs and and cells in each sample 
were assigned to cell-cycle stages using Seurat’s default parameters. 

https://sciwheel.com/work/citation?ids=6713331&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5027065&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5923889&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5923889&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=112055&pre=&suf=&sa=0
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Custom Marker-based Automatic Annotation 
A cell-type specific marker for cluster i was defined as follows:  

1. The mean expression of across all clusters was ordered from highest to lowest 
2. The highest change between sequential clusters was calculated. 
3. If fewer than half the clusters fell above this threshold this gene was deemed a marker of 

those clusters 
4. Repeat 1-3 for mean detection rate 
5. Genes consistently defined as markers using mean expression and detection rate, and 

where either the change in mean expression exceeded 0.3, or the change in detection 
rate exceeded 0.1 were kept as marker genes of the cluster(s). 

 
This definition allows genes to be markers of multiple clusters and while prioritizing genes with 
the largest changes in expression. This was necessary to avoid issues with new liver samples 
being over clustered - i.e. the same cell-type being spread across multiple clusters - relative to 
the original liver map. 
 
The above definition was also used to define marker genes in our original 5 Liver map. 
Reference marker genes that were specific to a single cell-type were labeled as such, while 
genes shared across related clusters were assigned the high-order annotations: “Hepatocyte”, 
“LSEC”, “Macrophage”, “T cell”, “B cell”. 
 
The sets of marker genes for each cluster were tested for enrichment with each set of reference 
marker genes using a hypergeometric test. The set of reference marker genes with the lowest p-
value (highest significance) was used to annotate the cluster. 
 
Pseudobulk gene expression 
Pseudobulk gene expression for each cell type in each sample by summing the respective raw 
UMI counts. Pseudobulk expression was compared between NDD and PSC/PBC using edgeR’s 
exactTest using only genes passing QC thresholds in PSC, PBC and NDD data and cell types 
with at least 2 samples in each condition containing at least 10 cells of that type. Differentially 
expressed genes were identified using FDR < 0.05. 
 
Integration 
Raw, normalized and scaled expression matrices for all samples were merged. Consensus 
highly variable genes were defined as those genes determined to be highly variable in at least 
two samples and that were detected in all samples (leaving 3,204 highly variable genes). The 
samples were integrated using harmony 5, with default parameters, based on the expression of 
these highly variable genes, and a global integrated UMAP was calculated from the harmony 
integrated lower dimensional space using default parameters. 
 
Clustering 
The integrated liver map was clustered using Seurat’s Louvain clustering algorithm varying the 
resolution parameter from 0.3 to 2 and the k of the cell-cell graph from 40 to 80. To identify the 

https://sciwheel.com/work/citation?ids=7790202&pre=&suf=&sa=0
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most robust clustering solutions from these 30 clusterings, we used affinity propagation 6, as 
implemented in apcluster (v1.4.8), with variation of information 7 to measure distances between 
clusterings. The “p” parameter for apcluster was set at -2.5 as this resulted in the most stable 
number of clusters which was 3, the exemplar for each of these clusters was selected to define 
three levels of clustering: Fine, Coarse, and Core (see supplementary). Using the uniformity of 
automatic cell-type annotation within clusters as a metric, it was determined the Coarse 
clustering (res = 0.6, k = 50) to be the most consistent with the underlying biology. Clusters were 
annotated using a combination of the most common automatic annotation obtained at the 
sample level (see above), and manual curation using known DE genes 3. DE genes for these 
clusters were determined using the wilcoxon-rank-sum test method in Seurat comparing each 
cluster to all others.  
 
The resulting clusters were manually annotated by comparing markers of each cluster from the 
FindMarkers function in Seurat with known cell type specific genes (Supplementary Table 2 & 
3). The integrated PSC, PBC and NDD 5’ single-cell data were clustered using the top 30 
principal components, k=20, res=2 and the integrated PSC, PBC and NDD 3’ single-nucleus 
data were clustered using the top 30 PCs, k=20, res=2. The resolution was increased to 
separate neutrophils from other myeloid populations. Clusters that represented the same cell 
types were merged during manual annotation (Supplementary Table 6-7). 

 
Variability in cell-type frequency 
 
Since frequencies are a fixed-sum composition, we examine only relative abundance of cell-type 
relative each other in each sample and compare the relative proportion of each pair of cell-types 
to the median relative proportion of that pair of cell-types across all samples (See equation 1). A 
cell-type that has a significantly different relative abundance, as determined with a proportion 
test, to >75% of other cell-types in a particular sample is deemed significantly different in that 
sample. 
 
Pij = proportion of cells of type i in sample j = nij/Nj 
Relative proportion i vs k in sample j = Pij/(Pkj + Pij) 
 
A general linear model was used to test the association of each cell-type frequency with either 
donor age or donor sex, using a Benjamini-Hochberg FDR correction no association was 
significant (FDR > 0.3). 
 
Subclustering 
 
The merged data was subsetted into 7 groups based on the global UMAP and core clustering 
structure (Supplementary Table). The clustering pipeline was rerun on this subset, including: 
high variable gene detection, PCA, harmony integration, Seurat clustering, and apcluster. 
 
Subclusters were manually annotated using marker genes identified using the Wilcoxon-rank-
sum test. Those subclusters that were subclustered further followed the same procedure using 

https://sciwheel.com/work/citation?ids=138973&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2792945&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5923889&pre=&suf=&sa=0


 5 

1,000 HVGs, 20 PCs, and Seurat clustering with resolution of 0.5. Subtype markers were 
identified using the wilcox-rank-sum test, and pathway analysis was performed using fgsea with 
5% FDR and 20,000 permutations using the MSigdb Hallmark pathways, MSigdb Immune 
pathways, and Reactome pathways. The significant pathways were manually curated to identify 
the most significant and distinct pathways, as well as determine the most appropriate term 
descriptor when multiple highly overlapping pathways were among the top enriched pathways. 
Finally manual inspection of a DotPlot of the contributing genes was performed to confirm 
upregulation as specificity of the associated genes. 
 
Pathway Enrichment 
 
Differentially expressed genes in each subcluster were calculated using the wilcox-rank-sum test 
after filtering out undetectable genes (expressed in less than 0.1% of all cells of this cell-type), 
and log2 fold-changes were calculated. Pathway enrichments were calculated using fgsea on 
genes ranked by their log2 fold-changes after excluding ribosomal proteins and transcripts 
originating from the mitochondrial genome. Only terms with between 15 and 1000 annotated 
genes were considered and 100,000 permutations were used to calculate significance and 
ensure reproducibility of enrichments. Pathways significant at a 5% FDR were reported as 
significant. The top 20 significantly enriched pathways from each geneset source were manually 
curated to identify the most informative non-redundant pathway(s) from each source. Human 
pathway annotations were obtained from KEGG, Reactome, and MSigdb (Hallmark and Immune 
pathways). To ensure reliability of immune related pathways, results were further curated to 
ensure both up and down regulated gene lists were enriched among up and down regulated DE 
genes respectively.  
 
Pathway enrichments were calculated as above and cell-cell interactions were identified using 
ligand-receptor interactions obtained from the KEGG Cytokine pathway (hsa04060). Cell type 
frequencies were calculated for each sample, and differences between NDD and PSC were 
determined using the Wilcoxon rank-sum test. Of note, there were too few samples of PBC 
(N=2) to accurately estimate sample-sample heterogeneity in cell-type frequency. 
  
Note, we only consider Cytokine pathways to avoid these pathways being obfuscated by 
adhesion and complement cascade pathways that are very common between our hepatocyte 
and endothelial cells.  
 
 
Macrophage-Endothelial cell-cell communication 
 
We used scmap to determine the specific identity of macrophages and endothelial cells 
comprising the macrophage-endothelial doublets. Doublets were independently mapped to the 
macrophage subpopulations and endothelial subpopulations using the most specific marker 
genes for each cell population as identified during manual annotation. Only doublets that could 
be reliably assigned (similarity > 0.6 & consistent between pearson and spearman correlations) 
to both a macrophage and endothelial subpopulation were counted to determine the number of 
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doublets containing each possible pair of subtypes. Cellphonedb was used on each 
subclustered sample individually then results were summed across samples.  
 
 
In Silico Flow Sorting 
To compare our single-cell RNAseq data to our flow cytometry data, we performed in silico 
gating of our single-cell data using thresholds based on the non-immune fraction: PTPRC > 0.3, 
CD68 > 0.3. PSC scRNA-seq was enriched in immune expression overall compared to NDD, 
thus higher thresholds for “on” for each gene were determined based on maximum expression 
seen in non-immune cell types.  
 
10x Genomics Visium and Nanostring GeoMx DSP Experimental Protocol 
Tissue was prepared for Visium Spatial transcriptomics as previously described. Briefly, liver 
tissue was embedded in OCT media, frozen at -80ºC, and cryosectioned with 16-µm thickness 
at −10ºC (cryostar NX70 HOMP). Sections were placed on a chilled Visium Tissue Optimization 
Slide (10x Genomics) and processed following the Visium Spatial Gene Expression User Guide. 
Tissue was permeabilized for 12 minutes, based on an initial optimizations trial. Libraries were 
prepared according to the Visium Spatial Gene Expression User Guide and samples sequenced 
on a NovaSeq 6000. PSC and NDD liver sections were sliced from OCT-embedded sections 
and submitted to NanoString for staining with selected morphological markers: DAPI (nuclei), 
KRT (epithelial cells), CD45 (immune cells), and CD68 (macrophages). For this experiment, we 
employed the GeoMx Cancer Transcriptome Atlas that contains over 1800 immune- and cancer-
related targets. 
 
Spatial Transcriptomics 
 
Tissue was prepared for Visium Spatial transcriptomics as previously described. Briefly, liver 
tissue was embedded in OCT media, frozen at -80ºC, and cryosectioned with 16-µm thickness 
at −10ºC (cryostar NX70 HOMP). Sections were placed on a chilled Visium Tissue Optimization 
Slide (10x Genomics) and processed following the Visium Spatial Gene Expression User Guide. 
Tissue was permeabilized for 12 minutes, based on an initial optimizations trial. Libraries were 
prepared according to the Visium Spatial Gene Expression User Guide and samples sequenced 
on a NovaSeq 6000. 
 
Spatial transcriptomics was performed on four sequential slices from a single healthy human 
liver, using the 10X VISIUM platform according to the manufacturer's protocol. Raw data was 
processed using spaceranger, and downstream analysis was performed using Seurat (version 
4.0.4). Raw counts were normalized using SCTransform, and the proportion of mitochondrial 
and ribosomal content was calculated using standard methods. Mitochondrial genome 
transcripts and genes with no more than 2 UMIs in any spot in the entire tissue slice were 
removed. Gene expression was normalized using sctransform, and data visualized using Seurat 
(v4.0.2). Transcriptomic data were clustered using the standard Seurat pipeline: highly variable 
gene detection, PCA, k-nearest-neighbor detection, Louvain clustering, and wilcoxon-rank-sum 
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test for marker genes, using default parameters. Note, spatially variable genes largely 
overlapped with highly variable genes but excluded many B cell and red blood cell markers.  
 
Principal component analysis was performed on each slice using default parameters on the 
normalized data. The top 12 principal components were rotated using the inbuilt varimax method 
in R to improve the specificity of patterns captured. The gene loading matrix of each set of 
rotated components were correlated across slices and reciprocal best-matches were determined 
to identify sets of equivalent components. The set of matching components ranked either 1st or 
2nd by total variance explained across slices was determined through visual inspection and 
examination of gene loadings to represent the spatial zonation of hepatocytes across liver 
lobules. The highest quality slice, as determined by number of genes per spot and mitochondrial 
proportion per spot, was used for publication figures.   
 
The zonation score of individual genes was determined by scaling their normalized expression 
values to sum to 100, which were then used as weights to determine the average zonation of 
spots expressing the gene. Significance of zonation was determined using linear regression with 
zonation as the dependent variable and expression as the independent variable.   
 
Cell-type enrichments were calculated using the Hypergeometric method within Giotto8, using 
the marker genes in Supplementary Table 2. 
 
Significance of zonation was calculated using linear regression between zonation score and the 
normalized gene expression. Colocalization was determined using Pearson correlation. 
 
Integration of Publicly Available Cirrhosis scRNA-seq Data 
Published liver single-cell RNAseq cirrhosis data were obtained from the original authors9. Cell 
types were reannotated using marker genes and cell type names defined in this manuscript (Fig. 
S10). Differential expression and changes in cell type frequencies between cirrhotic and non-
cirrhotic (tumor adjacent) tissue was performed, as described above. 
 
 
Flow cytometry and Intracellular Cytokine Staining: 
 
Cell suspensions (2x106 cells) from the non-parenchymal cell (NPC) fraction were stimulated in 
12-well plates with 10 ng/ml LPS (L2880-10MG), 25ng/ml IFNɣ (Thermofisher, PHC4031) for 
6 hours in the presence of brefeldin (BD Biosciences, 555029) and monensin (BD Biosciences, 
554724).  
 
Live/dead Zombie Violet (Biolegend, 423114) or Zombie NIR (Biolegend, 423106) was employed 
to assess viable cells and fluorophore-conjugated monoclonal antibodies to the following human 
cell-surface markers: anti-CD45-BV650 (Biolegend, 304044), anti-CD206-AF647 (Biolegend, 
321116), anti-HLADR-AF700 (Biolegend, 307626), anti-CD68-R780 (Biolegend, 333816), and 
anti-CD68-PeCyp5.5 (Biolegend, 333814). Intracellular TNFα was detected with anti-TNFα-
PeCy7 (Biolegend, 502930) and anti-TNFα-PacBlue (Biolegend, 502920). Gating strategy for 

https://sciwheel.com/work/citation?ids=10642054&pre=&suf=&sa=0
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cell-surface markers was set based on background auto-fluorescence measured in unstained 
and fluorescence minus one (FMO) controls, and gating strategy for intracellular markers in 
stimulated samples was set based on unstimulated controls and FMOs. 
 
Immunohistochemistry and Immunofluorescence: 
 
Annotation of fibrotic areas and chronic biliary disease, referred to as ‘scars’ in this study, within 
the liver parenchyma of PSC explant livers were defined based on Masson’s trichrome stain 
highlighting fibrosis) and Cytokeratin 7 (CK7) immunohistochemical stain that highlighting biliary 
metaplasia in hepatocytes as a feature of chronic biliary disease. CK7 staining highlights the 
hepatocytes with biliary metaplasia near the edges of fibrotic areas (scars) in PSC explant 
samples (Fig. S11, 22-23). Antibodies included anti-VCAM1 (Thermofisher, MA5-11447), anti-
CD32 (Thermofisher, MA5-32601), anti-C1QC (Abcam, ab75756), anti-CK7 (Abcam, ab68459), 
anti-HNF4A (Abcam, ab41898), anti-CD9 (Abcam, ab236630), and anti-CD36 (ab17044).  
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Fig. S1 : Annotation of Coarse-level map. (A) Marker gene expression used to manually annotate 20 NDD liver 
clusters. (B) Pearson correlation between human hepatocyte clusters and zonation layers described in mouse 
(Halpern et al. 2017)). (C) Mouse hepatocyte zonation markers expressed in the annotated human map. (D & E) 
The map was divided into 8 major subgroups for subclustering. 
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Fig. S2: 38 cell-clusters defined in the healthy (NDD) 
liver. (A) top 5 markers for each cell-cluster, known lineage 
markers are highlighted on the right. (B) UMAP depicting all 
38 cell-types. 
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Extended Data Fig 3 : Subclustering of other populations of the NDD Map. (A) Endothelial cells. (B) Stellate / 
Mesenchymal cells (C) Cholangiocytes (D) Antibody secreting B cells. Left panels show UMAP of subclusters, 
Right panel shows top marker genes for each cluster. 
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Fig. S4: Subclustering of lymphocyte-like cells of the NDD Map. (A) UMAP of subclustered 
lymphocyte-like cells. (B) Marker genes of lymphocyte subtypes. (C i-iii) Subclustering of the 
proliferating cluster and annotation using the same markers as B. (D) Proportion of proliferating cells for 
each lymphocyte group based on C. (E) Differential pathway enrichments between cNK and lrNK cells 
from GSEA.
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Fig. S5: Subclustering of Macrophages (A) UMAP of integrated subclustered macrophages (B) Top 
marker genes for each cluster used to manually annotate the macrophage map. (C) Average expression of 
macrophage gene signatures from Guilliams et al 2022. 
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Fig. S6: Macrophage-LSEC interaction. (A) Expression of lineage specific genes in a random subset of doublet 
(grey), and singlet LSEC (orange) and macrophage (blue) cells confirms co-expression in the same droplet. (B) Most 
specific Monocyte-cvEndo interacting proteins as determined by CellPhoneDB. (C) Demonstrating colocalization of 
C1QC+ Kupffer cells and CD36+ LSECs, Central venous region in the healthy (NDD) liver by individual markers and 

(iii) 

(iv) 

(i) 

(ii) 
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fluorophores (DAPI, CD36-555 and C1QC-647), as well as merged. D) Demonstrating the presence of CD9+ cells in 
the healthy (NDD) liver. Central venous region in the healthy (NDD) liver by individual markers and fluorophores 
(DAPI, CD36-555 and CD9-647), as well as merged. 
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Fig. S7: Zonation of cell types in NDD liver. (A) First varimax principal component captures hepatocyte 
zonation in healthy liver spatial transcriptomics. (B) Topmost contributing genes to the zonation associated 
component. (C) Example gene expression of a pericentral (GLUL) and periportal (HAMP) gene. (D - H) zonation 
score of individual marker genes for each of the major cell-types identified in the healthy map. Red = pericentral, 
blue = periportal. *p < 0.01, **p < 10-10, ***p < 10-100.
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Extended Data Fig 8. Immunofluorescence identifies bimodal distribution of VCAM1+ cells across the 
liver sinusoid. Red= VCAM1, Green = CD32, Blue = DAPI. (A) Individual sinusoids were divided into 10 layers 
from periportal (Layer 1) to central venous (Layer 10) regions. (B) Example images of a periportal, and (C) 
pericentral layer. (D) Quantification across 10 replicates. Statistical significance was assessed a one-way 
analysis of variance (ANOVA) with a Bonferroni post-test, ∗∗∗ P < 0.001, ∗∗P < 0.01, ∗P < 0.05. (E) Periportal 
region in healthy (NDD) liver by individual markers and fluorophores (DAPI, VCAM1-555 and CD32-647), as well 
as merged. 
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Fig. S9: Disease-associated pathways in single-nucleus RNAseq. (A) Significantly enriched pathways among 
genes differentially expressed between PSC and NDD livers (B) Significantly enriched pathways among genes 
differentially expressed between PBC and NDD livers (C) Pathways from A filtered to remove those also found in B. 
(D) Pathways from B filtered to remove those also found in A. 
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Fig. S10: Integrated UMAP of cirrhosis liver data from Ramachandran et al. (2019). (A) Combined UMAP 
split by aetiology. (B) number of genes up (red) or down (blue) regulated in cirrhotic livers compared to 
uninjured livers in each cell-type. (C) frequency of each cell-type in each aetiology, due to small sample sizes, 
significance was tested comparing all cirrhotic to uninjured liver. (D) Cytokine expression in non-inflammatory 
cirrhotic liver. (E) Expression of hepatocyte and cholangiocyte marker genes from this study in the 
Ramachandran et al (2019) data. Note there was only 1 Hepatocyte captured in the PBC data thus it has been 
excluded. 
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Extended Data Fig 11. Immunofluorescence reveals increased CK7+HNF4A+ co-expressing cells in the PSC 
periportal area in comparison to the PBC and NDD liver. Periportal region by individual and merged protein 
markers: DAPI (blue), CK7 (red) and HNF4A (green) in (A) NDD, (B) PBC, and (C) PSC. 
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Fig. S12: Cholestatic disease immune diversity captured in scRNA-seq. (A) number of genes up (red) or down 
(blue) regulated in PSC livers compared to NDD in each cell-type. (B) frequency of each cell-type in each aetiology, 
(i) rare cell-types that accounted for <1% of all the cells, (ii) cell-types accounted for >=1%. 
Frequency of each cell-type among livers of each aetiology, significance obtained from wilcoxon rank sum test 
across sample: * p value < 0.05, ** p value < 0.01, ***p value < 0.001. (C) Proportion of doublets as estimated by 
Doublet Finder. (D) Expression of lymphocyte marker genes across T & NK cell populations. 
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Fig. S13: Disease-associated pathways in sc-RNAseq. (A) Significantly enriched pathways among genes 
differentially expressed between PSC and NDD livers (B) Significantly enriched pathways among genes differentially 
expressed between PBC and NDD livers (C) Pathways from A filtered to remove those also found in B. (D) 
Pathways from B filtered to remove those also found in A. 
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Fig. S14: 24 Nanostring Regions of Interest (ROIs). Images from the 24 regions of interest (ROIs) selected from the 
Nanostring GeoMx Digital Spatial Profiling platform. (A) PSC and NDD regions of interest in Slide 1 (PSC011_1-9, C71_1-4) 
and Slide 2 (PSC014_1-4, PSC018_1-6, C76_1-2). (B) Entire scanned Slide 1 (PSC011, C73) and Slide 2 (PSC014, 
PSC018, C76). White circles are 660 um in diameter. 
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Fig. S15. TGFβ is expressed in large scars where it co-localizes with Monocyte-like macrophages. (A) 
Expression of the Monocyte-like Macrophage marker S100A6 in VISIUM spatial transcriptomics of PSC liver. 
(B) Expression of TGFβ. (C) Annotated clusters in PSC. (D) Macrophage signature enrichments as calculated 
using Giotto, using gene signatures for Kupffer (i) and Monocytes (ii) from Supplementary Table 2 within spatial 
transcriptomics of PSC liver. (iii) H&E-stained tissue. Green arrows indicate scar areas. 
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Fig. S16: Subclustering reveals macrophage diversity in PSC. (A) Significantly enriched pathways among 
genes differentially expressed between PSC and NDD livers. (B) Significantly enriched pathways among genes 
differentially expressed between PBC and NDD livers. (C) Pathways from A filtered to remove those also found in B. 
(D) Pathways from B filtered to remove those also found in A. 
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Fig. S17: Expanded CD45/CD68 and HLA-DR/CD206 flow cytometry plots. A) Flow cytometry plots of CD68 
vs. CD45 for NDD (n=5), PSC (n=4) and PBC (n=2) depicted in Figure 6A-B. B) Flow cytometry plots of HLA-DR 
vs. CD206 for NDD (n=5), PSC (n=4) and PBC (n=2) depicted in Figure 6D-E. 
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Fig. S18: Expanded CD206/TNFa flow cytometry plots. A) Flow cytometry plots of CD206/TNFa for 
unstimulated NDD (n=5), PSC (n=4) and PBC (n=2) TLH. B) Flow cytometry plots of CD206/TNFa for LPS and 
IFNg stimulated NDD (n=5), PSC (n=4) and PBC (n=2) TLH depicted in Figure 6F-G. 
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Fig. S19: Gating Strategies and FMOs (fluorescence minus one) for flow cytometry immunophenotyping and 
intracellular cytokine staining of NDD (1-3) and PSC (1-3) TLH in Extended Data Dig. 17 and 18. A) Representative 
gating strategy of NDD sample. Gating on the immune fraction in a FSC-A vs SSC-A plot, followed by a gate include 
CD45+ cells in an FSC-A vs CD45 plot, followed by live cells based on a live/dead Zombie stain in an FSC-A vs Zombie 
stain, and then gating on CD45+CD68+ cells for macrophage analysis. B) CD45 and CD68 FMO plots used for the gating 
of CD68+CD45+ cells. C) CD206 and HLA-DR FMOs used to gate on CD206+ and HLA-DR+ cells. C) CD206 and TNFα 
FMOs used to gate on CD206+TNFα+ cells. 
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Fig. S20: Gating Strategies and FMOs (fluorescence minus one) for flow cytometry immunophenotyping and 
intracellular cytokine staining of NDD (4-5), PSC (4), and PBC (1-2) TLH in Extend Data Fig. 17 and 18. A) 
Representative gating strategy of NDD sample. Gating on the immune fraction in a FSC-A vs SSC-A plot, followed by a 
gate include CD45+ cells in an FSC-A vs CD45 plot, followed by live cells based on a live/dead Zombie stain in an FSC-
A vs Zombie stain, and then gating on CD45+CD68+ cells for macrophage analysis. B) CD45 and CD68 FMO plots used 
for the gating of CD68+CD45+ cells. C) CD206 and HLA-DR FMOs used to gate on CD206+ and HLA-DR+ cells. C) 
CD206 and TNFα FMOs used to gate on CD206+ TNFα+ cells.  
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Fig. S21: TGFβ incubation does not alter stimulation potential of NDD-derived myeloid populations. Flow 
cytometry plots of CD206/TNFα for NDD TLH incubated for 24 hours with 0 ng/ml TGFβ (n=3), 10 ng/ml TGFβ 
(n=3) and 20 ng/ml TGFβ (n=3) A) without LPS and IFNƔ stimulation, and B) with LPS and IFNƔstimulation. 
Flow cytometry plots of HLA-DR/TNFα for NDD TLH incubated for 24 hours with 0 ng/ml TGFβ(n=3), 10 ng/ml 
TGFβ (n=3) and 20 ng/ml TGFβ (n=3), C) without LPS and IFNƔ stimulation, and D) with LPS and IFNƔ 
stimulation. E) Percentage of double positive population CD206+TNFα+ across treatment conditions in B. F) 
Percentage of double positive population HLA-DR+TNFα+ across treatment conditions in D. Gating strategy 
employed is described in Extended Data Fig 19 and 20. 
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Fig. S22. Disease stage according to fibrosis was defined by the Nakanuma score and stage (see 
reference) assessing the following components: Fibrosis and Bile Duct Loss. A) PSC advanced disease: 
Masson Trichrome stain assessed the extent of fibrosis and identified areas of scarring (stained in green) 
throughout the liver parenchyma and around individual bile ducts (concentric periductal fibrosis). B) PSC early 
disease: Early disease PSC livers showed less areas of fibrosis and prominent mononuclear cell inflammation 
surrounding individual bile ducts. C) Annotation of fibrotic areas (scars) within the liver parenchyma of explanted 

2 

1 
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PSC tissue based on Masson Trichrome stain: The fibrotic areas (highlighted in green in Masson Trichrome 
Stain) are divided into a central and peripheral zone. The peripheral zone is defined as either the interphase 
between periportal and zone 1 hepatocytes (1) or the periseptal zone of regenerative nodules (2) in cirrhotic liver 
parenchyma. 
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Fig. S23. Cytokeratin 7 (CK7) immunohistochemical stain highlights hepatocytes with biliary metaplasia as 
a feature of chronic biliary disease within fibrotic areas (scars) in PSC explant livers. Bile duct epithelium is 
marked by a black arrow and metaplastic hepatocytes are marked by a yellow arrow, mainly at the periphery of 
fibrotic areas (scars). (A)PSC advanced disease: Low power view of Masson Trichrome Stain and 
immunohistochemical stain for CK7. B) PSC advanced disease: Intermediate power view of Masson Trichrome 
Stain and immunohistochemical stain for CK7. C) PSC advanced disease: High power view of Masson Trichrome 
Stain and immunohistochemical stain for CK7. D) PSC early disease: Low power view of Masson Trichrome Stain 
and immunohistochemical stain for CK7. E) PSC early disease: Intermediate power view of Masson Trichrome Stain 
and immunohistochemical stain for CK7. F) PSC early disease: High power view of Masson Trichrome Stain and 
immunohistochemical stain for CK7. 
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Supplementary table legends 
 
 
Table S1. Summary of Samples & Sequencing 
 
Table S2. Cell type specific markers identified in the NDD Liver map. These were determined through two-
layer hierarchical clustering, first by clustering data into major cell-types as depicted in Figure 1, then by 
subclustering each of these clusters as shown in Fig. S2-5. Marker genes for subclusters were determined in 
comparison to the other cells in the same coarse level cluster, not in comparison to the entire map. Log2 fold-
changes, P-values, and cluster information in this table presents the differential expression results for the most 
significant cluster when comparing the expression across all 38 cell-types in the entire map. Marker genes were 
selected based on specificity to each cell-type and expert knowledge in the field. 
 
Table S3. Summary of contributions of each sample to each cluster in the NDD Liver Map as well as 
PSC/PBC maps. 
 
Table S4. Cell-type specific differential expression between PSC or PBC and NDD using 5’ scRNAseq. DE 
was performed using pseudobulks and edgeR. Negative logFCs indicate genes upregulated in PSC/PBC and 
Positive logFCs indicate genes downregulated in PSC/PBC. Only genes passing 5% FDR multiple testing 
correction are included. 
 
Table S5. Cell-type specific differential expression between PSC and NDD using 3’ snRNAseq. DE was 
performed using pseudobulks and edgeR. Negative logFCs indicate genes upregulated in PSC and Positive 
logFCs indicate genes downregulated in PSC. Only genes passing 5% FDR multiple testing correction are 
included. 
 
Table S6. All cell-type markers from 5’ PSC/PBC/NDD scRNAseq. DE was performed using wilcox-rank-sum 
test. 
 
Table S7. All cell-type markers from 3’ PSC/PBC/NDD snRNAseq. DE was performed using wilcox-rank-sum 
test. 
 
 

https://docs.google.com/spreadsheets/d/1DLNtBzsKZQnd4QiKfg6wN7PM5lc_mzMDf45McSvhTIg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/18kTy6PLrRzSkmOE3w-C9vzt-3anyOeeQfy3DvReM77Y/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1PZAjJlgcIaIxImEjPbx7iCjmHDkBA0fK9iZXBty6ZcA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/13Jgl9w2U-F-JKin50JkF7bbNfTRVXap27GmwiELXPcw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1vJHvrP330_FwcFXDFQ8IdW4fhF-moNXsbR_vdLtbJk8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1V3jKBmJpm6Y2HO37CghtQeK5bVmGwL2tbm7RNMhQDdU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1UTCsBTSpKDOca4_VCaMj4FME6Anf_iGgV9hwWDlum9g/edit?usp=sharing
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