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Peptide recognition module (PRM) mediated protein-protein interactions (PPIs) are critical

for better understanding the relationship between genomes and networks. High-throughput ex-

perimental screens, such as phage display, can be used to identify their binding motifs for use in

computationally predicting high confidence PPIs with binding site information. Computational ap-

proaches for predicting protein interactions are either limited by their inability to predict peptide

recognition module mediated interactions or do not consider many known constraints governing

these interactions. A novel ensemble method for predicting in vivo SH3 domain-peptide mediated

PPIs in S. cerevisae and H. sapiens using phage display data is presented. As with similar methods,

this method uses position weight matrix models of protein linear motif preference in combination

with a range of evidence sources related to binding site and cellular constraints on protein interac-

tions. The novelty of this approach is the large number of evidence sources used and the method

of combination of peptide based and protein pair based evidence sources. A novel semi-supervised

training framework is used to train peptide and protein Gaussian naïve Bayes models using both

labeled and unlabeled datasets.

Research into the different evidence sources led to the development of state-of-the-art algorithms

for predicting PPIs using semantic similarity in the Gene Ontology (GO), gene or protein expression,

and network topology. A novel method to compute semantic similarity between GO terms annotated

to proteins in interaction datasets which considers the unequal depths of the ontology is developed

(TCSS). Most PPI prediction methods rely on observations from a single gene expression profile

(GEP) to predict novel interactions. Correlation coefficients from multiple GEPs are combined

into a single model to improve PPI prediction. Protein expression is proposed as a new evidence

source for predicting PPIs. A machine learning model is developed for predicting high confidence
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PPIs using graph descriptors, such as edge density, transitivity, and mutual clustering coefficient of

known interaction networks (NTOP). All the algorithms developed during this research are open

source and freely available for community use.
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Chapter 1

Introduction

Some sections in this chapter were published in FEBS Letters, 14;586(17):2751-63: Reimand J.,

Hui S., Jain S., Law B., Bader GD. (2012), Domain-mediated protein interaction prediction: From

genome to network.

Author contributions: I contributed to the introduction and physiologically relevant protein-protein

interactions section. Other authors contributed to different sections of this paper. Gary D. Bader

supervised and advised this work.

1.1 Background1

Almost all cellular processes are controlled by specific protein-protein interactions (PPIs) that are

ultimately encoded in the genome. Understanding this relationship between interaction networks

and genome will not only help us in predicting biologically relevant protein interactions directly

from the genome but will also help us in understanding how genomic changes impact interaction

networks both over evolution and within a population or an individual organism. Advances in

experimental technologies have led to the availability of large datasets of genomes and protein

interaction networks, but still it is difficult to accurately relate the two. Computational methods

can play an important role in bridging this gap. Ideally, methods should be developed to predict

PPIs along with their binding sites directly from the genome. Once binding sites are known, we

can identify how changes at the DNA level affect those sites and thus the interactions. However,

accurately predicting PPIs along with their binding sites directly from genome is difficult. But
1This section is derived from our published work (Reimand et al., 2012).

1



Chapter 1. Introduction 2

methods can be developed to predict important subclasses of interactions more accurately. One

such subclass is that of peptide recognition module (PRM) mediated interactions. PRMs are protein

domains which recognize short, linear amino acid sequences in other proteins. Interactions mediated

by them are essential for a normal cellular life and any deviations often result in abnormal cellular

behavior and disease (Pawson and Nash, 2003). They are widespread in eukaryotic genomes and

their binding preferences can be determined using high-throughput experimental techniques. Once

the binding preferences of PRMs are known, computational methods can be developed to predict

physiologically relevant (true positives) PRM mediated PPIs, that is, interactions which are more

likely to take place in vivo (Tong et al., 2002; Reimand et al., 2012).

1.2 Protein-protein interactions

Proteins are essential macromolecules which are involved in almost all cellular processes such as

transport, signaling, regulation, respiration, metabolism, development, repair and control of genes.

Proteins do not usually work alone but interact with other proteins, forming complexes and net-

works. PPIs are physical associations between protein pairs in a specific biological context. Their

knowledge provide important insights into the functioning of a cell. PPIs can be divided into two

major groups: permanent and transient. Permanent interactions, as the suggests, are strong and

irreversible. On the other hand, transient interactions are usually reversible and take place in a cel-

lular context (Perkins et al., 2010). Transient interactions are involved in many biological processes

such as regulation of biochemical pathways and signaling cascades. Because of their crucial role in

many disease related pathways transient PPIs are also important drug targets (Ozbabacan et al.,

2011). Previously, experimental detection of PPIs was limited to labor intensive techniques such as

co-immunoprecipitation or affinity chromatography (Skrabanek et al., 2008). Though the detected

PPIs are largely accurate, these techniques are difficult to apply to whole proteome analysis. This led

to the development of various high-throughput PPI detection protocols such as mass-spectrometry

combined with affinity-purification, yeast two-hybrid and next-generation sequencing to detect PPIs

at whole genome level (Davy et al., 2001; Ito et al., 2001; McCraith et al., 2000; Rain et al., 2001;

Uetz et al., 2000; Yu et al., 2011; Braun et al., 2013). However, genome-scale methods are also

highly resource intensive and single projects and techniques do not cover all known protein interac-

tions. Further, they only cover interactions in one organism at a time. Computational approaches

designed to predict reliable and novel PPIs based on experimental interaction data sets have the
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advantages that they are inexpensive to apply to genomes, including those that are infeasible to

tackle experimentally and this motivates their further development (Skrabanek et al., 2008).

1.3 PRM mediated PPIs

Multiple kinds of transient PPIs exist. Our focus is on those involving PRMs, such as SH3, PDZ,

and WW domains. These domains bind to small, linear sequence motifs (peptides) within proteins.

They are involved in important biological processes including signaling systems and human diseases

(Reimand et al., 2012). Their binding preferences can be identified using high-throughput experi-

mental techniques such as phage display, peptide chips, and yeast two-hybrid (Tonikian et al., 2008,

2009; Tong et al., 2002; Landgraf et al., 2004; Hu et al., 2004).

1.3.1 Src homology 3 (SH3) domains

SH3 domains are approximately 60 amino acids long and and fold into a beta-barrel structure

composed of five to six anti-parallel beta strands. SH3 domain has a flat, hydrophobic surface which

consists of three shallow pockets with conserved armatic residues. They often bind to proline-rich

regions containing a core PxxP motif flanked by positively charged residues (where x is any amino

acid). Class I domains bind to ligands conforming to the consensus sequence [R/K]xxPxxP and

class II domains recognize PxxPx[R/K] sequence(Mayer, 2001; Teyra et al., 2012). Though, more

recently it has been found that SH3 domains have much wider binding specificity. In some cases

they can even bind to proline-free regions (Tong et al., 2002; Tian et al., 2006; Kim et al., 2008;

Pires et al., 2003). SH3 domains are involved in many regulatory or signaling processes, including

endocytosis, actin cytoskeleton regulation, and tyrosine kinase pathways (Tonikian et al., 2009;

Schlessinger, 1994).

1.3.2 WW domains

WW domains are 30−40 amino acid in length and fold into a triple stranded beta sheet and contain

two tryptophan residues spaced approximately 20 residues apart from each other. They have a flat

and hydrophobic binding surface (Wintjens et al., 2001). Like SH3 domains, they also recognize

proline-rich motifs such as xPPxY (Dalby et al., 2000). Proteins with WW domains are involved in

many regulatory and signaling processes, including growth control, ubiquitin-mediated proteolysis,

transcription, and control of cytoskeleton (Reimand et al., 2012; Salah et al., 2012).
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1.3.3 PSD95/DlgA/Zo-1 (PDZ) domains

PDZ domains are one of the simplest PRMs, since they mostly bind to C-terminal tails of other

proteins. PDZ domains are 80 − 90 amino acids in length and folds into a globular structure

consisting of six β strands and two α helices. PDZ domains prefer hydrophobic residues. Their

binding specificities can be divided into two classes, where class I domains prefer to bind x[T/S]xΦ

motif and class II domains prefer motif xΦxΦ (where Φ is a hydrophobic amino acid) (Songyang

et al., 1997). Though, more recently it has been found that PDZ domains can recognize more than

these two classes (Tonikian et al., 2008). PDZ domains regulate many signaling and regulatory

processes including ion channels, localize signaling components to the membrane, participate in

cell polarity, and are involved in neural development (Tonikian et al., 2008; Lee and Zheng, 2010;

Reimand et al., 2012).

1.4 Experimental detection

Experimental PPI detection techniques can be broadly classified into three major categories: phys-

ical methods, library-based methods, and genetic methods (Phizicky and Fields, 1995). Some of

the widely used experimental techniques are summarized in Table 1.1. In yeast-two-hybrid (Y2H)

assays, pairs of proteins to be tested for interaction are expressed as fusion proteins (bait & prey)

in yeast. The bait protein is fused to a transcription factor DNA binding domain, the prey protein,

is fused to a transcription factor activation domain. When expressed in a yeast cell containing the

appropriate reporter gene, interaction of the bait with the prey brings the DNA binding domain

and the activation domain into close proximity thus creating a functional transcription factor. This

triggers transcription of the reporter gene. The interaction can then be detected by expression of

the linked reporter genes (Phizicky and Fields, 1995; Chien et al., 1991; Fields and Song, 1989; von

Mering et al., 2002).

Another widely used PPI detection technique is affinity-purification mass spectrometry (AP-

MS). The principle behind AP-MS based protein interaction detection experiments is using a pro-

tein as an affinity reagent to isolate its binding partners and indentifying them using MS. AP-MS

methods have three essential components: bait presentation, affinity purification of the complex,

and analysis of the bound proteins (Aebersold and Mann, 2003). In a generic strategy based on

tandem affinity purification (TAP) the protein of interest is tagged by a TAP tag containing se-

quence recognizable by an antibody. The tagged proteins are introduced into the host cells or
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Type Method Description
Affinity chromatography Separation of protein mixtures based on specific interactions

Physical Affinity blotting Fractionating protein mixtures using PAGE
Immunoprecipitation Precipitating a protein antigen with antibody

Cross-linking Detect proteins that interact with a given test protein ligand by probing
Protein probing Labeled protein as a probe to screen an expression library

Library-based Phage display Sequences expressed in phage library bind to target protein
Two-hybrid system Uses transcriptional activity as a measure of PPI

Genetic Synthetic lethal effects Mutations in two genes can cause death while mutation in either alone does not
Overproduction phenotypes Overproduction of mutant or wild-type proteins

Table 1.1: Experimental PPI detection methods based on classification scheme proposed by Phizicky
and Fields (1995).

organism and expressed to optimal levels. Cell extracts are prepared and the fusion protein as

well as associated partners are recovered by passing the extract through a tag specific antibody

column and a calmodulin binding column. The elution consisting of the protein of interest and its

interacting protein partners are analyzed by sodium dodecyl sulfate polyacrylamide gel electrophore-

sis (SDS-PAGE) and identified by MS using electrospray ionization (ESI) or matrix-assisted laser

desorption/ionization (MALDI) techniques (Puig et al., 2001; Aebersold and Mann, 2003)

As discussed earlier, many intracellular signalling processes are mediated by interactions be-

tween peptide recognition modules (or domains) and small, continuous sequence motifs (peptides)

within proteins. Phage display technology has been especially useful in studying such PRM inter-

actions. Phage technology permits the display of extremely diverse libraries of peptides or proteins

on the surface of phage particles. Once created these libraries can then be selected by binding to

immobilized proteins (Sidhu et al., 2003). In the past few years, there have been numerous devel-

opments in this technology to make it applicable to a variety of protein-protein, protein-peptide,

and domain-peptide interactions (Phizicky and Fields, 1995; Smith, 1985; Tonikian et al., 2007).

Peptide chip technology is another way of detecting peptides binding to PRMs. Potential binding

peptides are immobilized on a glass chip and selected by a domain (Carducci et al., 2012). Peptide

chip technology is limited in its ability to identify novel motifs as only a small number of peptides

can be immobilized.

1.5 Computational prediction

Computational methods provide a complementary approach to detecting PPIs experimentally. In

general, all computational approaches make use of accurate experimental PPIs to predict novel PPIs

or assess PPIs reported by high-through experiments (Pitre et al., 2008). The computational PPI
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prediction can be formulated both as a prediction and validation problem with similar solutions:

1. Prediction: Given two proteins predict whether they will interact with each other.

2. Validation: Given a protein-protein interaction detected by an experiment (high-throughput)

assign a confidence score to it.

Different PPI detection methods can be broadly classified into four different categories based

on the type of information used by them either structure based, sequence based, contextual, or

ensemble of these information.

1.5.1 Structure based approaches

Structural approaches for predicting PPIs in general make use of three-dimensional protein struc-

tures or protein complex structures available through protein structure database. The prediction

process generally starts with identifying homologous protein or protein complex structures for the

query sequences and then using interface information to model the interaction. Hue et al. used a

support vector machine (SVM) to predict domain-domain interactions using a kernel derived from

protein structure information at a large scale(Hue et al., 2010). MULTIPROSPECTOR uses thread-

ing and protein-protein interfacial energy for PPI predctions (Lu et al., 2002). InterPreTS assess the

fit of any possible interacting pair on the homologous three-dimensional complex by using empirical

potentials (Aloy and Russell, 2003). PRISM uses structure and evolutionary conserved residue sim-

ilarity of query sequences to structurally known protein interfaces formed between dimers, trimers,

or higher protein complexes for PPI prediction (Aytuna et al., 2005). HOMCOS predicts interacting

protein pairs and their interaction sites by homology modeling of complex structures (Fukuhara and

Kawabata, 2008).

Structural features within the binding pocket of a PRM play an important role in determining

its binding specificity (Reimand et al., 2012). Therefore, structural information play an important

role in accurately predicting PRM mediated PPIs. Sanchez et al. used an empirical force field to

calculate structure-based energy functions for human SH2 domain mediated interactions (Sanchez

et al., 2008). Fernandez-Ballester et al. used SH3 structural features to homology model most SH3

domains in yeast and then constructed positional matrices of all possible SH3-ligand complexes to

predict SH3 domain mediated interactions (Fernandez-Ballester et al., 2009). Hui et al. used a

SVM trained on PDZ domain structure and peptide sequences for predicting PPIs (Hui and Bader,

2010). Smith et al. used protein backbone sampling using independent Monte Carlo simulations
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to predict binding specificity for human PDZ domains (Smith and Kortemme, 2010). Kaufmann et

al. developed an optimized energy function using PDZ domain-peptide interfaces to improve the

binding specificity of PDZ domains (Kaufmann et al., 2011). Structural approaches are usually

limited by the small number of protein sequences with accurate structural information. However,

they allow for more accurate prediction along with the identification of binding residues (Skrabanek

et al., 2008).

1.5.2 Sequence based approaches

Sequence based methods for interaction prediction utilizes the information about genes or protein

sequences to predict PPIs. Completely sequenced genomes provide genomic information such as

gene order, evolutionary conservation, co-localization, and fusion to be used in PPI prediction

(Pitre et al., 2008; Skrabanek et al., 2008). Co-localization based PPI prediction methods make use

of the notion that the gene which interact with each other are kept in close physical proximity to

each other on the genomes (Dandekar et al., 1998; Overbeek et al., 1999; Skrabanek et al., 2008;

Tamames et al., 1997). Phylogenetic evolution based methods takes into account co-occurrence of

gene pairs across different genomes (Pellegrini et al., 1999). Gene fusion is complementary to both

co-localization and phylogenetic analysis. Gene fusion represents the physical fusion of two separate

parent genes into a single multi-functional gene (Skrabanek et al., 2008).

Sequence signature 2

Protein interactions can also be predicted based on correlated sequence motifs. These motifs are

learned from existing PPIs using only sequence data and characterize direct binding, but also could

be related to protein function, which is in turn predictive of PPIs (Shen et al., 2007). Methods

based on information content analyze co-occurring subsequences of proteins with experimentally

verified interactions, and use these patterns for predicting new interactions. Pitre et al. (2006)

developed Protein-protein Interaction Prediction Engine (PIPE), which looks for the co-occurrences

of subsequences of a protein pair in known interactions. Najafabadi and Salavati (2008) introduced

a codon usage based method as a predictor for PPIs. Sprinzak and Margalit (2001) attempted

to identify over-represented sequence signatures in known PPIs and then used this information for

predicting novel interactions.

Machine learning methods use sequence information regarding a gold standard set of positive
2This section is reproduced from our published work (Reimand et al., 2012)
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and negative PPIs to classify new pairs of potentially interacting proteins. Various approaches

mainly differ in their encoding of sequence features and choice of learning functions. For instance,

Martin and co-workers (Martin et al., 2005) encoded the sequence information for a protein pair

by a product of signatures, which is then used by a support vector classifier (SVC). Shen et al.

(2008) proposed a SVC based classifier in which protein sequences are encoded by conjoint triads

i.e. frequencies of 3 continuous amino acid long subsequences. Guo et al. (2008) used a feature vec-

tor comprising of auto-correlation values of 7 different physicochemical scales for protein sequences.

Nanni and Lumini (2006) proposed a new method based on an ensemble of K-Local Hyperplane

Distance Nearest Neighbor (HKNN) classifiers, where each HKNN is trained using a different physic-

ochemical property of the amino-acids. Roy et al. (2009) explored the contribution of pure amino

acid composition for protein interaction prediction using naïve Bayes (NB), SVM, and maximum

entropy classifier.

A major limitation of sequence signatures for predicting protein interactions is the generally

weak correlation between sequence and functional similarity. Limitations of these machine learning

methods are the lack of well-defined true negative examples. For instance, Yu et al. evaluated the

impact of positive-to-negative ratio in training and test sets for SVM based methods and found that

it had considerable effect on classifier accuracy (Yu et al., 2010). Lastly, use of sequence signatures

to refine high-resolution PRM-mediated interaction networks must avoid duplicate counting of the

domain-motif interaction knowledge already used to generate the original network.

Position weight matrix

As discussed earlier, experimental methods such as phage display and peptide microarray have

been used to identify the peptides binding to PRMs. A straightforward computational approach

for predicting PRM mediated PPIs is to construct a position weight matrix (PWM) using these

peptides and scan the whole proteome for potential binding sites in target proteins using some

threshold score (Obenauer et al., 2003). Position weight matrices (PWMs) are statistical models

for representing sequence motifs. They are real valued m × n matrices, where m is the size of

alphabet (20 amino acids for protein sequences) and n is the motif length. PWMs contain a weight

for each alphabet symbol i at each position j in the motif. They are used to scan the proteome and

compute a score using alphabet weights indicating the binding preference of a domain containing

protein for a peptide in another protein. Stiffler et al. (2007) constructed a single PWM model for

many PDZ domains and used weights describing the preference of individual domains for amino
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acids at different positions in the peptide. Tonikian et al. (2008) used experimental phage display

data to derive PWMs for PDZ domain binding peptides and predicted PPIs using PWM scanning.

Tonikian and co-workers again used PWMs from phage display experiment, peptide array screeining,

and Y2H assays for generating a yeast SH3 domain specificity map. A major issue with the PWM

approach is the lack of contextual information, for example, the predicted binding site might not

be accessible or it might lie within a structured part of protein (e.g. domain). Also, the assumption

of independence between residue positions might affect its performance. PWMs may also perform

poorly when too few experimentally determined peptides are available for a given protein (Reimand

et al., 2012; Teyra et al., 2012).

Disordered region

PRMs bind to small peptide stretches containing a specific motif. Specifically interactions between

proteins having SH3 domains and their targets are often mediated by proline rich peptide sequences

containing PXXP, [R/K]xxPxxP, PxxPx[R/K] motifs. Proline disrupts the secondary structure of

a protein by inhibiting the formation of helices and sheets (Morgan and Rubenstein, 2013). Also,

small linear motifs tend to accumulate in disordered regions of protein (Linding et al., 2003; Beltrao

and Serrano, 2005; Davey et al., 2010). Beltrao and Serrano showed that the binding sites of SH3

domains in S. cerevisiae often lie within the disordered regions of a protein (Beltrao and Serrano,

2005).

Surface accessibility

Sequences present on a protein’s surface are more accessible to binding by SH3 domains than those

that are buried inside a protein structure. The degree of solvent-accessible surface area of amino

acid residues in a sequence indicates its level of exposure and is measured in terms of relative solvent

accessibility (RSA) (Lam et al., 2010; Adamczak et al., 2004). Surface accessibility can be predicted

computationally from protein structures using tools such as the Eukaryotic Linear Motif (ELM)

structure filter [101]. Amino acid sequence-based predictors such as PHDacc or SABLE are useful

when no known protein structure is available [102].



Chapter 1. Introduction 10

1.5.3 Context based approaches 3

Proteins will only interact if they recognize each other, and are temporally and spatially co-located

in the cell. Domain-peptide interaction predictors described above allow us to discover protein pairs

that recognize each other. Additional sources of evidence must be considered to accurately score

domain-peptide interactions by their physiological relevance, such as the correlation of the expression

profiles of the corresponding genes, their involvement in related biological processes, and their

presence in the same cellular compartment. Gene expression profiles, cellular location of proteins,

functional annotation (molecular function and biological process), sequence signatures, literature

references, and known experimental interactions can be obtained from diverse biological data sources

and combined for predicting physiologically relevant protein interactions. Consequently, a number

of computational methods have been developed for evaluating protein interactions using single

sources of evidence, while others combine multiple types of knowledge in ensemble approaches. As

domain-mediated networks are only now emerging, few methods have been developed specifically

for these data. However, the collection of methods developed for analysing traditional protein-

protein interaction networks can be combined with sequence- and structure-based domain-peptide

interaction prediction methods discussed above to define high-resolution PRM-mediated interaction

networks.

Cellular location, biological process, molecular function

Proteins are more likely to interact with each other when they are co-localised in the same cellular

compartment or part of the same biological processes. Gene Ontology (GO) is a useful and popular

taxonomy that contains a hierarchy of controlled terms regarding cellular location, biological process

and molecular function (The Gene Ontology Consortium, 2000). GO terms are used to annotate

genes and proteins based on experimental and computational evidence as well as literature curation.

This resource can be used to quantify the functional relationship between different proteins using a

straightforward comparison of associated annotations, that is, two proteins are related if they have

many annotations in common. More elaborate semantic similarity measures consider the entire GO

hierarchy in comparing two interacting proteins, that is, two proteins are related if they have many

similar annotations in common.

Semantic similarity provides a quantitative measurement of the likeness of concepts belonging to

an ontology. In the context of PPIs, higher semantic similarity scores between GO terms annotated
3This section is reproduced from our published work (Reimand et al., 2012)
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to a protein pair indicate a higher likelihood of these proteins interacting in vivo. Guo et al.

compared a number of graph-based and information content-based semantic similarity methods in

distinguishing true and false human PPIs, and concluded that the average (AVG) method by Resnik

performed best in AUROC analysis (Resnik, 1995; Lin, 1998; Jiang and Conrath, 1997; Guo et al.,

2006). Xu et al. compared the AVG and maximum (MAX) methods by Resnik to a number of

semantic similarity methods specifically developed for GO, and concluded that the MAX method

by Resnik outperforms others when considering the three ontologies of GO either individually or

together (Resnik, 1995; Tao et al., 2007; Schlicker et al., 2006; Wang et al., 2007; Xu et al., 2008).

Prediction of protein-protein interactions using GO has several limitations. Notably, GO annota-

tions are often noisy, as more than one third of all annotations and 75% of human gene annotations

are assigned using automated methods (Reimand et al., 2007). Such low-confidence annotations,

labelled as ’Inferred from Electronic Annotation’ (IEA), should be excluded from predictions when

higher quality annotations are available. Additionally, the structure of GO is often unbalanced

since some biological processes are studied more extensively than others, leading to ascertainment

biases in predicting protein interactions. As semantic similarity measures use knowledge structured

in the form of ontologies, other ontologies could be substituted for GO. Some describe highly struc-

tured biological pathway mechanisms, such as the BioPAX pathway representation standard (Demir

et al., 2010). Large amounts of curated pathway data are available in this format, such as from the

Reactome pathway database (Matthews et al., 2009). Further development of semantic similarity

methods that consider such ontologies could improve PPI prediction.

Gene and protein expression

Gene expression is a popular measure for assessing the confidence and biological relevance of predic-

tions from high-throughput PPI experiments. As proteins must be expressed in order to interact,

interacting proteins should be co-expressed at the same time and have similar gene expression pro-

files. The association between protein interactions and correlated gene expression profiles has been

demonstrated in several studies. Co-expressed genes in yeast and bacteriophage T7 were shown

to be enriched in protein interactions, and clusters of gene expression profiles frequently contained

interacting proteins in yeast (Ge et al., 2001). Jansen et al. demonstrated a strong correlation

between the gene expression profiles of yeast proteins involved in the same complex (Jansen et al.,

2002). Bhardwaj et al. compared the gene expression profiles of interacting and random gene pairs

in E. coli, and concluded that genes encoding for interacting proteins have a stronger expression
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pattern correlation that is also more conserved than for random protein pairs (Bhardwaj and Lu,

2005). Consequently, PPI prediction methods frequently use strong co-expression of genes as an

evidence source for protein interactions (Li et al., 2008; Rhodes et al., 2005).

While gene expression data is a useful source of evidence, it has a number of inherent limitations.

Adler et al. studied curated Reactome pathways in the context of the human gene expression atlas,

and concluded that co-expression is sufficient for reconstructing pathways such as metabolism and

translation, while dynamic signalling processes are captured to a lesser extent (Adler et al., 2009a).

Liu et al. noted that six large protein complexes, including the ribosome, provided the majority of

the signal between expression correlation and protein interactions in several gene expression datasets

in yeast, while many other protein complexes did not show the association (Adler et al., 2009a).

Further, complex tissue-specific and developmental programs regulate gene expression in multi-

cellular organisms, meaning that the global co-expression of potentially interacting proteins is not

necessarily informative of their co-expression in a given cellular state. Future work to improve the

confidence of co-expression data for high-resolution PRM-mediated interaction networks will involve

novel methods for determining global co-expression of genes using multiple expression datasets

(Adler et al., 2009b).

Emerging experimental technologies have now made it possible to move from the human genome

map to the proteome map with direct measurements of proteins and peptides. Kim and co-workers

used high-resolution Fourier-transform mass spectrometry to produce a draft map of human pro-

teome. They did in-depth proteomic profiling of 30 histologically normal human samples, including

17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, which resulted in

identification of proteins encoded by 17, 294 genes. As described earlier, gene expression profiles

across various experimental conditions or tissues have been utilized to investigate the likelihood

of co-expressed genes to physically interact at the protein level. With the availability of protein

expression data, we showed that protein expression patterns should be a better predictor of PPIs

than gene expression measured at the mRNA level (Kim et al., 2014).

Network topology

Much work has been done in defining the relationship between PPI network topology and biological

function, with the conclusion that two proteins that have many shared neighbours in a PPI network

are more likely to interact (Sharan et al., 2007). The property of highly connected components, i.e.,

network cohesiveness, in small-world networks is often used to assess the confidence of predicted
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protein-protein interactions. Goldberg and Roth showed that true interactions have higher neigh-

bourhood cohesiveness as compared to false interactions (Goldberg and Roth, 2003). Conversely,

a predicted PPI is more likely to be true if it shows a higher degree of neighbourhood cohesive-

ness. Bader et al. proposed that interacting proteins with shared interactors are more likely to be

biologically relevant (Bader et al., 2004). Yu et al. predicted interactions in protein networks by

completing their partially connected components, applying the assumption that proteins within the

same protein cluster are likely to interact with each other (Yu et al., 2006).

An important challenge for network-based protein interaction predictors is the identification

of appropriate topological clusters in networks. Larger cluster sizes lead to an increased rate of

false positives, while overly small clusters have few positive predictions. Clustering and cohesive-

ness analysis of PRM-mediated protein interaction networks may require additional research, as

their topological properties may differ from traditional PPI networks. Finally, prediction of PRM-

mediated protein interactions based on known interactions will require careful filtering of data to

avoid duplicate counting of evidence.

1.5.4 Ensemble approaches

Each of the structure, sequence or context based approaches have the ability to classify protein pairs

as ”interacting” or ”non-interacting” independently. Ensemble approaches for PPI prediction goes a

step further and combine these individual approaches into a single model for improved predictions.

By transforming multiple direct (protein-protein interaction databases) and indirect biological data

sources (or evidence) into a feature vector representing every pair of proteins, the task of predicting

pairwise protein interactions can be formalized as a binary classification problem. Many different

research groups have independently suggested using supervised learning methods for predicting

protein interactions (Patil and Nakamura, 2005; Rhodes et al., 2005; Stelzl et al., 2005; Li et al.,

2008; Chen and Liu, 2005; Qi et al., 2005; Mohamed et al., 2010; Scott and Barton, 2007; Eom

and Zhang, 2006; Bader et al., 2004; Gilchrist et al., 2004; Jansen et al., 2003; Lee et al., 2004;

Jaimovich et al., 2006; Zhang et al., 2004; Ben-Hur and Noble, 2005; Yamanishi et al., 2004; Lin

et al., 2004). However, choice of biological evidence and strategy to combine them into a single

model varies greatly.
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Bayesian integration

Bayesian integration is the most widely used ensemble technique for PPI prediction. Although

other machine learning approaches have been used for this task, such as logistic regression, random

forests, decision trees, and support vector machines, Bayesian integration remains the method of

choice due to its simple probabilistic framework and ability to handle missing data (Reimand et al.,

2012). Jansen et al. proposed the use of Bayesian networks on a feature set of experimental PPI

data (direct evidence) and genomic features such as, mRNA co-expression, biological function, and

essentiality (indirect evidence) in Saccharomyces cerevisiae. They fed the results of naïve Bayes

model of indirect evidence and fully connected Bayesian network of direct evidence to another

naïve Bayes classifier for predicting PPIs (Jansen et al., 2003) . Rhodes et al. employed a similar

strategy using a semi-naïve (partially connected) Bayes classifier to combine homologous PPI, gene

expression, GO Process and domain based sequence evidence (Rhodes et al., 2005). Scott and Barton

extended the probabilistic framework for the prediction of human PPIs with more features, which

include local network topology, co-expression, orthology to known interacting proteins and the full-

Bayesian combination of subcellular localization, co-occurrence of domains and post-translational

modifications (Scott and Barton, 2007). Patil and Nakamura used a naïve Bayes classifier as a

means to assign reliability to the PPIs in Saccharomyces cerevisiae determined by high-throughput

experiments (Patil and Nakamura, 2005) . Li et al. closely followed the work of Rhodes et al.

(Rhodes et al., 2005) and used a naïve Bayes classifier to combine different types of indirect biological

features (Li et al., 2008). More recently, Zhang et al. combined structural, functional, evolutionary

and expression information using Bayesian framework for predicting PPIs (Zhang et al., 2012a,b).

The objective of a Bayesian PPI prediction model is to estimate the probability that a given

protein pair interacts conditioned on the biological evidence in support of that interaction. A naïve

Bayes model simplifies this problem by assuming complete independence between different types of

biological evidence. For a protein pair described by a set of features (X1, X2, ....Xn) a naïve Bayes

PPI prediction model is defined as,

argmax
Y

P (Y |X1, X2, ....Xn) = argmax
Y

P (X1, X2, ....Xn|C)P (Y )
P (X1, X2, ....Xn)

= argmax
Y

P (Y )
∏
i

P (Xi|Y ) (1.1)

argmax
Y

log (P (Y |X1, X2, ....Xn)) = argmax
Y

log (P (Y )) +
∑
i

log(P (Xi|Y ))
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where P (Y ) is the class prior probability and P (Xi|Y ) is the class-conditional probability. If the

number of classes Y are small (”interacting” or ”non-interacting” for PPI prediction problem) then

usually class priors are estimated by treating P (Y ) as a multinomial distribution (or categorical

distribution) P (Y ) = ΠY . Biological features (X1, X2, ....Xn) could be continuous or discrete. If

the features are continuous then they are usually discretized and modeled using a multinomial

probability distribution P (Xi|Y ) = Mult (Xi; θiY ) ∝ ΘXi
iY . Putting it altogether, the naïve Bayes

model for PPI predictions is defined as,

argmax
Y

log (P (Y |X1, X2, ....Xn)) = argmax
Y

log (ΠY ) +
∑
i

log
(
ΘXi
iY

)
(1.2)

the parameters ΠY and ΘXi
iY are learned from the training dataset. More complex Bayesian models

(semi-naïve, fully connected) though may be more accurate but are computationally expensive.

Logistic regression

Bader et al. used a logistic regression approach with statistical and topological descriptors to predict

the biological relevance of PPIs obtained from high-throughput screens for yeast (Bader et al., 2004).

A logistic regression model for PPI prediction learns the function of the form f : X → P (Y |X)

where X = (X1, X2, ....Xn) is a vector containing discrete or continuous variables (features) and

Y is ”interacting” or ”non-interacting” class (Mitchell, 1997). Logistic regression uses a sigmoid

function to parameterize the probability distribution P (Y |X). The parameterized form used by

logistic regression classifier is,

P (Y |X) = 1
1 + e−(Θo+

∑n

i=1 ΘiXi) (1.3)

where the model parameters Θi are learned from training set.

Random forest and decision trees

Lin et al. repeated the experiments in Jansen et al. (2003) with random forest and logistic regres-

sion classifiers and concluded that random forest approach gives highly accurate classifications on

complete datasets. They also discussed the importance of different features and concluded that
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the biological function category was the most informative (Lin et al., 2004). Zhang et al. used a

decision tree to integrate high-throughput protein interaction datasets and other gene and protein

pair characteristics to predict co-complexed pairs of proteins (Zhang et al., 2004). Qi et al. used

direct and indirect information about interaction pairs to constructs a random forest (collection of

decision trees) to determine the similarity between protein pairs and then using k-nearest neighbor

approach to classify protein pairs (Qi et al., 2005).

Random forest is an ensemble classifier that consisits of many decision trees. Random forest as

defined by Breiman and Schapire is ”a classifier consisting of a collection of tree-structured classifiers

{h(X,Θk), k = 1, ...} where the {Θk} are independent identically distributed random vectors and

each tree casts a unit vote for the most popular class at inputX” (Breiman and Schapire, 2001). The

construction of tree-structured classifiers usually work top-down by choosing a feature Xi from a

randomly selected set of features (X1, X2, ....Xm) (where m < n and X = (X1, X2, ....Xn)) at every

step which best splits the training data.

Support vector classifier

Yamanishi et al. presented a method to infer protein interaction networks using a variant of kernel

canonical correlation analysis. They transformed each genomic dataset into a symmetric positive

definite kernel function and then summed all the genomic kernels (Yamanishi et al., 2004). Ben-

Hur and Noble extended the kernel approach of Yamanishi et al. (2004) by integrating pairwise,

sequence, non-sequence genomic kernels to build a support vector classifier (Ben-Hur and Noble,

2005). A symmetric positive difinite kernel function is a real-valued function K (pi, pj) for a set of

proteins (p1, p2, ....pn) satisfies the following properties.

K (pi, pj) = K (pj , pi) (1.4)
n∑
i=1

rirjK (pi, pj) ≥ 0 where ri, rj ∈ <n (1.5)

Commonly used kernel functions K (pi, pj) are Gaussian RBF (1.6) and linear (1.7).
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K (pi, pj) = exp
(
−‖pi − pj‖2 /2σ2

)
(1.6)

K (pi, pj) = pi.pj (1.7)

Different biological datasets are represented by suitable kernel functions (K1,K2, ....Kn). These

kernels can be integrated by linear combination (1.8) and fed to a support vector machine for

making predictions.

K =
n∑
i=1

Ki (1.8)

Other approaches

All the above mentioned approaches consider protein pairs independently when inferring the pres-

ence of PPIs. Jaimovich et al. considered the neighborhood interaction pairs together and integrated

genomic features using a relational Markov network for simultaneous prediction of PPIs in yeast

(Jaimovich et al., 2006). Apart from the above mentioned machine learning approaches, Stelzl et al.

proposed a ”voting” based approach for predicting PPIs in human. They classified high confidence

PPIs based on the votes cast by experimental, topological, and GO information in their favor (Stelzl

et al., 2005). Brown and Jurisica presented a web-based database of predicted interactions between

human proteins. It combines the literature-derived human PPI from BIND, HPRD and MINT,

with predictions made from model organisms. They also evaluated their predictions using protein

domains, gene co-expression and Gene Ontology terms (Brown and Jurisica, 2005).

Domain-peptide interaction prediction approaches

Previously, discussed ensemble approaches are designed for full length proteins and cannot be used

to predict PRM mediated PPIs, including identification of binding sites. Tong et al. (2002) com-

bined in vitro phage-display ligand consensus sequences with in vivo large-scale two-hybrid physical

interaction experiments to predict SH3 domain mediated PPIs. Tonikian et al. (2009) combined

phage display, peptide array screening and yeast two-hybrid data using Bayesian integration to pre-

dict SH3 domain mediated PPIs in yeast. Lam et al. (2010) combined comparative and structural

genomic features with PWMs to reduce the number of false binding sites. More recently, Chen et al.
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(2015) combined limited number of peptide and protein features for predicting PRM mediated PPIs

in humans. Their protein features are based on one of the earlier the works in the field ensemble

PPI prediction (Jansen et al., 2003).

1.6 Thesis rationale

The proposed research is focused on developing computational methods for predicting physiologi-

cally relevant PRM mediated PPIs using peptides identified from phage display or peptide microar-

ray experiments in S. cerevisiae and H. sapiens. As discussed earlier, the straightforward approach

of constructing PWMs from peptides and scanning the whole proteome for potential binding sites

in target proteins using some threshold score leads to too many false positives and is not suffi-

cient to predict high confidence interactions because of missing sequence, structure, or contextual

information. Tonikian et al. (2009) addressed this problem by combining in vitro (phage display,

peptide array screening) and in vivo (yeast two-hybrid) data to predict SH3 domain mediated PPIs

in yeast. Verifying interactions using multiple experimental techniques improves the PPI confidence

but it is both time and resource consuming. Lam et al. (2010) combined comparative and struc-

tural genomic features with PWMs to reduce the number of false binding sites. But they did not

consider that PPIs are influenced by many cellular constraints including that interacting proteins

must be in close proximity and should be part of same process. Peptide-only features are not suffi-

cient for predicting high confidence physiologically relevant PRM mediated PPIs with binding site

resolution. Jansen et al. (2003), Rhodes et al. (2005), Li et al. (2008), Zhang et al. (2012b), and

others considered multiple types of cellular constraints and combined different evidence sources for

PPI prediction, but their approaches are designed for full length proteins and cannot be used to

predict PRM mediated PPIs, including identification of binding sites. More recently, Chen et al.

(2015) combined limited number of peptide and protein features for predicting PRM mediated PPIs

in humans. Their protein features are based on one of the earlier works in the field of ensemble

PPI prediction (Jansen et al., 2003). Since then many advances have been made in improving the

performance of individual features in PPI prediction (Reimand et al., 2012). Also, their method is

not compatible with high-throughput binding peptide data, such as from phage display.

In this thesis, we develop novel algorithms which make use of a larger set of evidence sources to

predict PRM-mediated PPIs and their binding sites by combining peptide level and protein level

features in a single predictor. PRM mediated PPIs do not occur in isolation in the cell. They
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are influenced by different constraints. For example, SH3 domains can only bind surface accessible

regions, interacting proteins must be present in same cellular compartment, and proteins in the same

biological process with correlated gene expression profiles are more likely to interact compared to

randomly selected protein pairs. Thus, diverse types of information can be used to help predict

physiologically relevant protein interactions. Our proposed research has two major goals:

• Developing methods for processing of biological information that can help predict physiologi-

cally relevant PRM mediated PPIs.

• Developing methods for integrating processed biological information to predict high confidence

PRM mediated PPIs.

We have identified peptide features: disorder, surface accessibility, peptide conservation, and

structural contact as evidence sources for predicting high confidence binding sites. We have also

identified protein features: cellular location, biological process, molecular function, gene expression,

protein expression, sequence signature, and network topology as evidence sources for predicting

PPIs. As discussed earlier, available methods for processing features like cellular location, biological

process, molecular function, gene expression, and network topology have certain limitations and

we will be focusing on improving them. We will also focus on using new experimental datasets

like protein expression for PPI prediction. Next, we will explore machine learning models for

integrating peptide and protein features into a single model. We will quantify the performance of

our proposed models using different statistical measures and perform any potential comparisons to

previous methods. Finally, we aim to construct a high confidence PRM mediated PPI network for

yeast and humans with binding site resolution.
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2.1 Abstract

Semantic similarity measures are useful to assess the physiological relevance of protein-protein in-

teractions (PPIs). Semantic similarity measures quantify the gene function similarity between two

or more proteins. Proteins that interact in the cell are likely to be in similar locations or involved in

similar biological processes compared to proteins that do not interact. Thus the more semantically

similar the gene function annotations are among the interacting proteins in ontologies capturing

protein location and process information like the Gene Ontology (GO), the more likely the inter-

20



Chapter 2. Semantic Similarity 21

action is to be physiologically relevant. However, most semantic similarity measures used for PPI

confidence assessment do not consider the unequal depth of term hierarchies in different biological

knowledge areas in gene function annotation systems, like GO. We describe an improved algorithm,

Topological Clustering Semantic Similarity (TCSS), to compute semantic similarity between GO

terms annotated to proteins in interaction datasets, that considers the different levels of biological

knowledge representation depth in different branches of the GO graph. The central idea is to divide

the GO graph into sub-graphs and score PPIs higher if participating proteins belong to the same

sub-graph as compared to if they belong to different sub-graphs. The TCSS algorithm performs

better than other semantic similarity measurement techniques that we evaluated on tests to dis-

tinguish true from false protein interactions, correlation with gene expression or protein families.

We show an average improvement of 4.6 times in F1 scores over Resnik, the next best method, on

our Saccharomyces cerevisiae PPI test and 2 times on our Homo sapiens PPI test using cellular

component, biological process and molecular function GO ontologies.

2.2 Introduction

Gene Ontology (GO)(The Gene Ontology Consortium, 2000) is a useful and popular taxonomy of

controlled biological terms that can be used to assess the functional relationship between different

gene products. GO organizes knowledge about gene function in a directed acyclic graph (DAG) of

terms and their relationships. It is organized in three orthogonal ontologies capturing knowledge

about cellular location, biological process and molecular function (The Gene Ontology Consortium,

2000). Experts annotate GO terms to genes in different organisms based on diverse evidence sources.

GO has become the most used ontology and annotation system for assessing the confidence and

biological relevance of high-throughput experiments based on the notion that if two or more genes

are related by an experiment, they should also be related by known gene function. For instance,

GO is often used as a benchmark for protein-protein interaction (PPI) experimental mapping and

prediction (Li et al., 2008; Patil and Nakamura, 2005; Rhodes et al., 2005; Stelzl et al., 2005),

protein function prediction (Jensen et al., 2003; Chen and Xu, 2005; Nariai et al., 2007), and

pathway analysis (Shen et al., 2008). In this paper, we are specifically interested in the use of GO

as a metric for scoring protein-protein interactions (PPIs).

The relationship between gene products annotated to GO is quantified either simply from the

annotated terms (for instance, by finding a set of common GO terms annotated to gene products)
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or more globally by using semantic similarity measures that consider the entire GO DAG. The

GO DAG is a complex network of over 31,000 terms and 46,900 relations (GO release March,

2010). The cellular component ontology of GO describes gene product locations at the levels of

sub-cellular structure and macromolecular complexes through over 2,650 terms and 5,000 relations.

The molecular function ontology of GO is described using over 8,650 terms and 10,150 relations. The

complexity of biological process ontology is even greater with over 18,500 terms and 38,700 relations.

The large number of terms and relations describing the cellular knowledge covered by GO makes

it difficult to naively quantify relationships between gene products. For example, Saccharomyces

cerevisiae proteins RPL10 (annotated to GO cellular component term ’large ribosomal subunit’)

and SQT1 (annotated to GO cellular component term ’ribosome’) physically interact with each

other but do not share a GO term. Often, a sub-set of GO terms or a reduced version of GO,

like GO slim (The Gene Ontology Consortium, 2000), is used for relating genes. This makes GO

terms and annotations easier to work with and compare, but valuable information is lost in the

simplification.

Semantic similarity is a technique used to measure the likeness of concepts belonging to an on-

tology. Most early semantic similarity measures (Resnik, 1995; Lin, 1998; Jiang and Conrath, 1997)

were developed for linguistic studies in natural language processing. Recently, semantic similarity

measurement methods have been applied to and further developed and tailored for biological uses

(Schlicker et al., 2006; Wang et al., 2007; Tao et al., 2007; Pesquita et al., 2007). A semantic simi-

larity function returns a numerical value describing the closeness between two (or sometimes more)

concepts or terms of a given ontology (Pesquita et al., 2009). In the context of PPI datasets, seman-

tic similarity can be used as an indicator for the plausibility of an interaction because proteins that

interact in the cell (in vivo) are expected to participate in similar cellular locations and processes.

For example, a high semantic similarity value between GO cellular component terms annotated to

proteins indicates that proteins are in close proximity and thus have a higher probability of inter-

action compared to proteins randomly selected from the proteome (Li et al., 2008; Rhodes et al.,

2005; Xia et al., 2006). Thus, semantic similarity measures are useful for scoring the confidence of

a predicted protein-protein interaction and have the advantage of using the full information stored

in the ontology, compared to methods using slim versions of the ontology.

Semantic similarity measures can be broadly classified into two groups: edge based and node

based. Edge based methods (Yu et al., 2005; Cheng et al., 2004; Wu et al., 2005; del Pozo et al., 2008)

determine semantic similarity based on the shared paths between two terms in a given ontology,
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whereas node based methods (Resnik, 1995; Lin, 1998; Jiang and Conrath, 1997) rely on comparing

the properties of the input terms (nodes), their ancestors, or descendants. One commonly used

property is the specificity, or the information content (entropy), of the common ancestors between

a pair of terms, which captures the notion of closeness in the DAG - the more specific the common

ancestors of the terms, the closer the terms. The information content of a term c can be defined as

the negative log likelihood of the term (eq. 2.1),

IC(c) = − ln p(c) (2.1)

where p(c) is the probability of occurrence of the term c in a specific corpus (e.g. GO annotations)

(Pesquita et al., 2009). While calculating p(c) in GO the descendants of term c are also considered.

For example, the probability of occurrence of the term ’cytosol’ in the cellular component hierarchy

of GO for S. cerevisiae defined by the number of genes assigned to it is 0.104 and its informa-

tion content is 0.98. Comparative studies to determine the best semantic similarity measurement

method have shown that performance on a variety of tests varies greatly depending upon the type

of biological datasets used (Lei and Dai, 2006; Guo et al., 2006; Pesquita et al., 2008; Xu et al.,

2008). For example, for function prediction Resnik’s (Resnik, 1995) and Graph Information Content

(simGIC) (Pesquita et al., 2008) work best and for cellular location prediction, the support vector

machine (SVM) based method Lei and Dai (2006) is preferable. Guo et al. (2006) compared a

number of semantic similarity methods (Resnik (Resnik, 1995) (avg), Lin (Lin, 1998), Jiang (Jiang

and Conrath, 1997), and graph similarity-based methods (Gentleman et al., 2005)) on a test to

distinguish true from false human PPIs. They used proteins within a complex or neighboring each

other in Kyoto Encyclopedia of Genes and Genomes (KEGG) regulatory pathways as a positive

PPI dataset and randomly chosen protein pairs as a negative interaction dataset. From receiver op-

erating characteristic (ROC) curve performance analysis they concluded that Resnik (avg) is better

than other measures at distinguishing positive from negative PPIs. Xu et al. (2008) compared the

Resnik (Resnik, 1995) (MAX, avg), Tao (Tao et al., 2007), Schlicker (Schlicker et al., 2006; Schlicker

and Albrecht, 2008), and Wang (Wang et al., 2007) semantic similarity measurement methods using

a similar test with a S. cerevisiae PPI dataset from the Database of Interacting Proteins (DIP).

They used Schlicker’s rfunSimAll method which considers all three ontologies. From ROC analysis

they found that the Resnik (MAX) method is best for all the three GO ontologies. Thus, recent

independent studies show Resnik’s method for calculating semantic similarity is best for measuring
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the likelihood of true PPIs.

Resnik’s method defines semantic similarity between two ontology terms s and t for a given set

C of common ancestors of s and t as,

r(s, t) = max
c∈C

[− ln(p(c))] (2.2)

where p(c) is the frequency of proteins annotated to term c and its descendants in the ontology.

However, in most cases, proteins are assigned to more than one term in the same GO ontology.

Suppose, proteins A and B are annotated to sets of GO terms S and T respectively. the semantic

similarity between A and B is defined as the maximum information content (Resnik (MAX)) of the

set S × T (2.3).

sim(A,B) = max
si,tj∈S,T

r(si, tj) (2.3)

or as the average information content (Resnik (avg)) of the set S × T (2.4).

sim(A,B) =
∑
si,tj∈S,T r(si, tj)

n×m
(2.4)

where si and tj are the GO terms in sets S and T respectively, r(si, tj) is the information content

of the lowest common ancestor of terms si and tj , and n and m are the set sizes. Resnik (MAX)

has been found to be a better measure of likelihood for PPIs. The use of the MAX function with

Resnick’s method to score PPIs, instead of an ’average’ function, makes sense because proteins in

PPIs only need to be in close proximity (similar cellular component terms) or in a similar biological

process once, among all possible combinations annotation terms, to be biologically relevant.

Resnik’s measure calculates semantic similarity based only on the information content of a

common ancestor. Therefore, it cannot differentiate between any two term pairs with same common

ancestor even if they are in different parts of the GO DAG. For example, proteins A and B annotated

to the same cellular component term, e.g. ’cytoplasm’, will have the same semantic similarity

value as proteins C and D annotated to different terms, e.g. ’nucleus’ and ’mitochondria’, which

have ’cytoplasm’ as a common ancestor. Thus, Resnik’s measure does not consider some of the

information contained in the taxonomy by focusing only on the information content of a single

ancestor term (Sevilla et al., 2005). Lin’s and Jiang’s measures consider the information content

of two terms along with that of a common ancestor but tend to overestimate similarity if the
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terms are higher up in the ontology (Sevilla et al., 2005). For example, Lin’s method will assign

a score of 1 if two proteins are present in a same general compartment, e.g. ’cytoplasm’. Similar

arguments also hold for molecular function and biological process GO ontologies. Further, the

structure of GO is unbalanced with some paths having more details (depth) than others. This

could be due to a particular path describing a more complex biological structure or to a particular

focus of GO curators as they work to complete the ontology. For example, the ’intracellular’

term of GO component has more depth than the ’extracellular’ term (for S. cerevisiae GO DAG

’extracellular’ term has a depth of 0 and ’intracellular’ has a depth of 7), because there are many

more biological terms associated with cell internals versus immediate cell externals. The ideal

solution to these problems is to use a balanced GO DAG and annotation, but this is difficult to

construct automatically (Alterovitz et al., 2010). Alternatively, we can develop semantic similarity

scoring methods that consider the unbalanced nature of GO. In this paper, we have used the

successful idea of information content from Resnik (MAX) and introduced clustering of similar

GO terms into sub-graphs in a new semantic similarity algorithm, Topological Clustering Semantic

Similarity (TCSS), which outperforms Resnik’s method for distinguishing positive from negative

protein interactions and other tests.

2.3 Approach

Topological Clustering Semantic Similarity (TCSS) algorithm computes semantic similarity between

GO terms annotated to proteins in interaction datasets. TCSS considers the different levels of

biological knowledge representation depth in different branches of the GO graph. TCSS clusters

similar GO terms in a given ontology and creates a hierarchical graph structure with proteins

belonging to the same sub-graph scored higher as compared to proteins belonging to different sub-

graphs.

2.4 Methods

2.4.1 Algorithm

The goal of TCSS is to find subsets of GO terms defining similar concepts (e.g. nucleus related

terms vs. mitochondrion related terms) and score gene products belonging to a similar subset higher

than if they belong to different sets. In an effort to normalize the depth of the GO DAG across
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the ontology, the algorithm first defines mutually exclusive (non-overlapping) sub-graphs (sets of

connected GO terms) rooted at major nodes. These sub-graphs are collapsed as single nodes to

form a meta-graph and a two-level semantic similarity calculation is performed, as described below.

Topology based clustering

To normalize the depth of terms across the GO DAG, semantic similarity between terms, s and t,

is calculated within a sub-graph instead of the complete GO graph. Sub-graphs consist of terms

defining related concepts (e.g. all terms relating to the ’nucleus’) and are defined based on a

threshold on the information content of all terms present in a given ontology. The topological

information content (ICT) of a term depends upon its specificity in the graph and is defined as

shown in equation (2.5)

ICT (t) = − ln
( |descendants of t|
|total terms in ontology|

)
(2.5)

where t is a term in the ontology (Zhang et al., 2006). The terms which are more specific (i.e.

terms which are present in the lower levels, closer to the leaves in the ontology graph) will have

high information content as compared to less specific ones (i.e. terms which are present in the

upper levels of the ontology graph closer to the root). An ICT cutoff (referred to as the ’topology

cutoff’) is defined in a pre-calculation step (see Implementation details). All terms with ICT values

below the topology cutoff are treated as nodes of the meta-graph. Terms are removed from meta-

graph if their ICT values are within 20% of their parent ICT values. This is done to increase the

dissimilarity between meta-graph nodes. For each node in the meta-graph a sub-graph is created

from all descendants terms of that node.

GO terms often have multiple parents, which could result in overlapping sub-graphs (a term is

present in two sub-graphs). Each GO term in the cellular component ontology has on average 1.9

edges, whereas the ratio is 2.1 for the biological process ontology, and 1.2 for the molecular function

ontology. All relationships (or edges) are considered and treated equally. Sub-graph overlap is

removed in two steps (Figure 2.1):

• Edge removal by transitive reduction. The GO DAG gives rise to partial orders ≤ on its

vertices, where u ≤ v when there exists a directed edge from u to v. However, u and v

could connect via many different GO DAG paths. For example, the GO graph with paths
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Figure 2.1: Mutually exclusive sub-graphs. (a) Transitive reduction - suppose a, b, c, and d are the
nodes in graph G with directed edges as shown in gure (a). Let the number of genes annotated to
each node is 1. Then the total annotation of node a in G (annotation of a and its descendants) is
4. Transitive reduction of G will result in G’ without edge d → a and with same total annotation
of 4 as a can still be reached from d. (b) Replication - suppose term d is common to both the
sub-graphs B and C then term d will be copied to both the sub-graphs.
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a −→ b −→ c and a −→ c has the same reachability as the GO graph with relationships

a −→ b −→ c. Thus, the transitive reduction of GO graph G results in the smallest graph

R(G) such that, the transitive closure of G is same as the transitive closure of R(G). This

results in 14% and 6% fewer edges in cellular component and biological process ontologies

respectively, reducing the likelihood of sub-graph overlap. There was no significant reduction

in the molecular function ontology.

• Term duplication. After the reduction step, if a term still belongs to more than one sub-graph

then it and its descendants are replicated in each sub-graph. Such a situation arises with a

term having disjunctive ancestors (having independent paths from the ancestors to the term)

belonging to different sub-graphs (Couto et al., 2005).

Finally, all sub-graphs are connected into a hierarchy based upon the position of their root terms

in original graph to construct a meta-graph (Figure 2.2). Meta nodes representing sub-graphs are

labeled using the GO term of their sub-graph root.

Normalized scoring

Notation: Gm and Gs denote the meta and sub graphs. Gsi is the ith sub-graph. ti is the ith term

belonging to either the meta or sub-graph. ICS and ICM are the normalized information content

values of a term t (denoted by ICA) in the sub and meta graphs, respectively. LCA is the lowest

common ancestor (or the ancestor with maximum information content) of any two given terms.

We developed a semantic similarity scoring system on the constructed meta-graph that results

in more balanced semantic similarity scores compared to scoring the GO DAG directly. The system

scores protein pairs in the same sub-graph higher than if they belong to different sub-graphs. The

annotation information content (ICA) of all the terms present in an ontology is calculated based on

the frequency of gene products annotated to a term and its children is shown in equation (2.6).

ICA(t) = − ln
(

annotation(t)
|total gene products annotated to the ontology|

)
(2.6)

annotation(t) = |(gene products ∈ t)
⋃

c∈descendants(t)
(gene products ∈ c)|

where t is a term in the ontology. The annotation information content values lie in the range [0,∞)
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Figure 2.2: Graphical illustration of the algorithm. Nodes in the higher level graph and sub-graphs
are shown by black and green circles, respectively. Root nodes of sub-graphs are shown by solid
green circles and are equivalent to the corresponding higher level node. Terms A and B belong to
the same sub-graph, therefore the semantic similarity score between them will be computed based
on their common ancestor term ’Cytoplasm’ (solid green). Terms B and C belong to different sub-
graphs, therefore their semantic similarity score will be computed based on the common ancestor
term ’Intracellular’.
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and are normalized to [0, 1] by dividing with the maximum information content in a sub-graph or

meta-graph. For a term ti belonging to the ith sub-graph Gsi , the sub-graph information content

(ICS) of ti is defined as shown in equation (2.7).

ICS(ti) = ICA(ti)
max
ti∈GSi

ICA(ti)
(2.7)

For a term ti in meta-graph Gm, the information content (ICM) of ti is calculated as shown in

equation (2.8).

ICM(ti) = ICA(ti)
max
ti∈Gm

ICA(ti)
(2.8)

It is possible that gene products A and B are annotated to more than one GO term. Let, S and

T be the sets of GO terms annotated to gene products A and B, respectively. Then the semantic

similarity between gene products A and B is defined by the maximum approach, as shown in

equation (2.9).

Simmax(A,B) = max
si,tj∈S,T


ICM(LCA(si, tj)), if si ∈ Gsi and tj ∈ Gsj

ICS(LCA(si, tj)), if si, tj ∈ Gsi
(2.9)

where LCA(si, tj) is the lowest common ancestor (or the common ancestor with maximum informa-

tion content) of the terms si and tj . If both the terms si and tj belong to the same sub-graph then

their lowest common ancestor will be in that sub-graph otherwise it will belong to the meta-graph.

Best-match average approach

Let, S and T be the sets of GO terms annotated to gene products A and B respectively. Then

semantic similarity between gene products A and B based upon the best-match average approach

(Azuaje et al., 2006; Wang et al., 2007) is defined by the equation (2.10).

Simbma(A,B) =

∑
si∈S

Sim(si, T ) +
∑
tj∈T

Sim(tj , S)

|S| × |T |
(2.10)
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where Sim(ui, V ) is defined as (2.11),

Sim(ui, V ) = max
vj∈V


ICM(LCA(ui, vj)), if ui ∈ Gsi and vj ∈ Gsj

ICS(LCA(ui, vj)), if ui, vj ∈ Gsi
(2.11)

where ui is a term annotated to a gene product and V is the set of terms annotated to the other

gene product.

2.5 Results

2.5.1 Data acquisition and processing

• Ontology data: Ontology data was downloaded from the Gene Ontology database (The Gene

Ontology Consortium, 2000) (dated March 2010) containing 31,382 ontology terms subdivided

into 2,689 cellular component, 18,545 biological process and 8,688 molecular function terms.

• GO Annotation data: Gene annotations for GO terms were downloaded from the Gene

Ontology database for S. cerevisiae (dated February 2010) (Christie et al., 2004) and H.

Sapiens (dated August 2010) (Consortium et al., 2010). Electronically inferred annotations

(IEA) lack manual review therefore, we designed two sets of tests one with IEA annotations

and one without. In our implementation, we only consider the most specific GO gene an-

notations. For example, if gene A is annotated to terms X and Y (and X is an ancestor of Y),

then we only consider annotation to Y. This is because in ontologies a term is a aggregate of

its descendants. This pre-filtering of GO could impact the results of some methods used in

our analysis. For instance, in CESSM tests, correlation between SimGIC semantic similarity

and EC similarity for the molecular function ontology increases by 25% and correlation with

sequence similarity decreases by 15% if all the annotations are considered, however all other

changes we noticed were minor and didn’t change our results.

• Interaction dataset: To evaluate the performance of TCSS against other semantic similarity

measures on the problem of scoring PPI confidence we created positive and negative interaction

datasets for S. cerevisiae and H. sapiens.

– S. cerevisiae: We retrieved 4,598 unique pairwise S. cerevisiae PPIs from the core set of

Database of Interacting Proteins (DIP) (dated December 2009) (Salwinski et al., 2004).

The DIP core database records data derived from both small-scale and large-scale exper-
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iments that have been validated by the occurrence of the interaction between paralogous

proteins in different species (Salwinski et al., 2004). The positive dataset for CC, BP,

and MF ontologies comprised interactions with both proteins annotated to terms (other

than root) in their respective ontologies (Table 2.1). The negative dataset with the same

number of PPIs as the positive set was generated by randomly selecting proteins from

genes in the GO annotation files that are not known to be positive in a set of all known

(45,448) yeast PPIs from iRefWeb (September 2010), a metadatabase containing the ten

largest primary PPI databases (Razick et al., 2008).

– H. sapiens: We retrieved 2077 unique pairwise PPIs (with three or more publications)

for H. sapiens from DIP (dated June 2010). The positive dataset for CC, BP, and MF

ontologies comprised interactions with both proteins annotated to terms (other than root)

in their respective ontologies (Table 2.1). The negative interaction dataset contained an

equal number of randomly selected interactions from a pool of all possible interactions

in human minus all known (43,935) iRefWeb (Razick et al., 2008) known PPIs.

• Gene expression datasets: The gene expression dataset for S. cerevisiae was downloaded

from GeneMANIA (Warde-Farley et al., 2010) (dated August 2010) and contained data from

39 different microarray experiments. Test datasets were prepared from 5000 randomly picked

S. cerevisiae gene pairs randomly selected from a list of all possible pairs of proteins in our

gene expression data set, including an equal number of random and known PPIs (PPIs in the

DIP core set have higher than average expression correlation). This was done independently

for CC, BP, and MF annotations of GO (including IEA annotations).

• CESSM dataset: Collaborative Evaluation of GO-based Semantic Similarity Measures

(CESSM) is an online tool for the automated evaluation of GO-based semantic similarity

measures in terms of performance against sequence, Pfam (protein family) and EC (enzyme

commission number) similarity (Pesquita et al., 2008). Protein pair (from multiple species),

GO (dated August 2010), and UniProt GO annotations (dated August 2008) were downloaded

from CESSM.

2.5.2 Model evaluation

In the previous section we presented a new algorithm, Topological Clustering Semantic Similarity

(TCSS), to compute semantic similarity between GO terms annotated to proteins that normalizes
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S. cerevisiae H. sapiens
DIP (core) DIP (core)

IEA+ IEA– IEA+ IEA–
CC 4469 4425 1431 1054
BP 4385 4326 1435 1204
MF 3858 3583 1441 1288

Table 2.1: Distribution of positive and negative interactions. Number of interactions in the pos-
itive dataset for cellular component (CC), biological process (BP), and molecular function (MF)
ontologies.

GO DAG branch depth. We compared the performance of TCSS with other semantic similarity

measures given by Resnik (Resnik, 1995), Lin (Lin, 1998), Wang (Wang et al., 2007), Schlicker

(simRel method) (Schlicker et al., 2006), Jiang (Jiang and Conrath, 1997), Pesquita (SimGIC)

(Pesquita et al., 2007) on the problem of scoring PPIs. Performance analysis of TCSS was done

using receiver operating characteristic (ROC) and F1 measures. ROC grades the performance of

classifiers as a trade-off between true positive rate (TPR) and false positive rate (FPR). We also used

the F1measure, which is the harmonic mean of precision (the proportion of retrieved information

that is actually relevant) and recall (the proportion of relevant information that is retrieved) and

indicates the classifier’s ability to retrieve relevant information. The evaluation was done separately

for cellular component (CC), biological process (BP), and molecular function (MF) ontologies.

Saccharomyces cerevisiae PPI test

S. cerevisiae positive and negative protein interaction sets were used to evaluate the above men-

tioned semantic similarity measures for their ability to distinguish positives from negatives. TCSS,

Resnik, Lin, Jiang and Schlicker were tested using both the maximum (MAX) and best-match aver-

age (BMA) approach of combining multiple GO gene annotations and Wang was tested using only

the BMA approach, as only BMA was used in the original Wang publication and is the only option

available in the author’s implementation. BMA averages scores when multiple combinations of GO

terms are possible (for gene products annotated with multiple terms). SimGIC considers multiple

GO annotations while calculating semantic similarity scores, thus MAX and BMA methods are not

relevant for it. We focused initial tests on manually annotated GO annotations (“without” anno-

tations with IEA evidence codes (IEA-)), but also tested with all annotations, including electronic

annotations (“with” annotations with IEA evidence codes (IEA+)).

TCSS and Resnik consistently showed the best performance for all three ontologies in ROC
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IEA– IEA+
CC BP MF CC BP MF

TCSS max 0.83 0.89 0.73 0.83 0.89 0.75
bma 0.82 0.88 0.72 0.83 0.88 0.74

Resnik max 0.83 0.89 0.73 0.83 0.89 0.75
bma 0.81 0.87 0.72 0.83 0.88 0.74

Lin max 0.80 0.87 0.70 0.79 0.87 0.72
bma 0.79 0.85 0.68 0.80 0.86 0.72

Jiang max 0.75 0.85 0.72 0.73 0.85 0.73
bma 0.73 0.84 0.70 0.72 0.84 0.73

Schlicker max 0.70 0.81 0.65 0.70 0.81 0.67
bma 0.69 0.82 0.64 0.71 0.82 0.68

SimGIC 0.73 0.75 0.64 0.73 0.76 0.68
Wang 0.74 0.83 0.72 0.76 0.82 0.73

Table 2.2: Area under ROC curves for the S. cerevisiae PPI dataset. Tests were performed sepa-
rately for cellular component (CC), biological process (BP), and molecular function (MF) ontologies.
Best-match average and maximum approaches were used for datasets with (IEA+) and without
(IEA-) electronic annotations. The best ROC scores are in bold.

Best-match average Maximun
IEA– IEA+ IEA– IEA+

CC BP MF CC BP MF CC BP MF CC BP MF
7.36 6.66 1.36 3.0 6.0 2.66 8.53 5.54 1.53 5.74 5.51 1.83

Table 2.3: Improvement in F1 score for the S. cerevisiae PPI dataset. Average improvement in F1
scores achieved by TCSS over Resnik for best-match average and maximum approaches. TCSS does
6 times better than Resnik for cellular component (CC), 5.9 times for biological process (BP), and
1.9 times for molecular function (MF) ontologies on average.

analysis under different conditions (Table 2.2, Figures 2.3 (MAX, IEA-), 2.5 (BMA, IEA-), 2.7

(MAX, BMA, IEA+)). Since it is not clear from ROC analysis which of TCSS and Resnik performs

better, we compared their F1 scores at different semantic similarity cutoffs for all the three ontologies

(Figures 2.4 (MAX, IEA-), 2.6 (BMA, IEA+), 2.8 (MAX, BMA, IEA+)). TCSS showed average

improvements of 6 times for CC, 5.9 times for BP, and 1.9 times for MF in retrieving relevant

information over Resnik (Table 2.3) mainly due to the faster increase in true positive rate for TCSS

at a given score threshold.

Homo sapiens PPI test

To test the generality of the method for PPI scoring, we ran similar tests as above using a H. sapiens

PPI data set. H. sapiens positive and negative protein interaction sets were used to evaluate TCSS,

Resnik, Lin, Jiang, Schlicker and SimGIC methods. The evaluation was done using BMA and MAX
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Figure 2.3: ROC curves for S. cerevisiae PPI dataset. ROC evaluations of semantic similarity
measures at different cutoffs based on the S. cerevisiae PPI dataset derived from DIP are shown. The
evaluation was performed using cellular component, biological process, molecular function ontologies
of GO. Maximum (max) approach for combining multiple annotations was used on dataset without
(IEA-) electronic annotations. TCSS and Resnik show the best ROC profiles for all three ontologies.
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Figure 2.4: F-score curves for S. cerevisiae PPI dataset. F1 score (harmonic mean of precision and
recall) evaluations of semantic similarity measures at different cutoffs based on the S. cerevisiae
PPI dataset derived from DIP are shown. The evaluation was performed using cellular component,
biological process, and molecular function ontologies of GO. Maximum (max) approach for com-
bining multiple annotations was used on a dataset with only manual annotations (no electronic
annotations (IEA-)). F1 score reaches its best value at 1 and worst at 0. TCSS does better than
Resnik for semantic similarity cutoff scores in all three ontologies.
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Figure 2.5: ROC curves for S. cerevisiae PPI dataset (IEA-). ROC evaluations of semantic similarity
measures at different cutoffs based on the S. cerevisiae PPI dataset derived from DIP are shown. The
evaluation was performed using cellular component, biological process, molecular function ontology
of GO. Maximum (max) approach for combining multiple annotations was used on dataset without
(IEA-) electronic annotations. TCSS and Resnik show the best ROC profiles for all three ontologies.
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Figure 2.6: F1-score curves for S. cerevisiae PPI dataset (IEA-). F1 score (harmonic mean of
precision and recall) evaluations of TCSS and Resnik semantic similarity measures at different
cutoffs based on the S. cerevisiae PPI dataset derived from DIP are shown. The evaluation was
performed using cellular component, biological process, molecular function ontology of GO. Best-
match average (bma) approach for combining multiple annotations was used on dataset without
(IEA-) electronic annotations. F1 score reaches its best value at 1 and worst at 0. TCSS does better
than Resnik for semantic similarity cutoff scores for all three ontologies.
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Figure 2.7: ROC curves for S. cerevisiae PPI dataset (IEA+). ROC evaluations of semantic similar-
ity measures at different cutoffs based on the S. cerevisiae PPI dataset derived from DIP are shown.
The evaluation was performed using cellular component, biological process, molecular function on-
tology of GO. Best-match average (bma) and maximum (max) approaches for combining multiple
annotations are used on dataset with (IEA+) electronic annotations. TCSS & Resnik show best
ROC profiles for all three ontologies.
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Figure 2.8: F1-score curves for S. cerevisiae PPI dataset (IEA+). F1 score (harmonic mean of
precision and recall) evaluations of TCSS and Resnik semantic similarity measures at different
cutoffs based on the S. cerevisiae PPI dataset derived from DIP are shown. The evaluation was
performed using cellular component, biological process, molecular function ontology of GO. Best-
match average (bma) and maximum (max) approaches for combining multiple annotations was used
on dataset with (IEA+) electronic annotations. F1 score reaches its best value at 1 and worst at 0.
TCSS does better than Resnik for semantic similarity cutoff scores in all three ontologies.
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Best-match average Maximun
IEA– IEA+ IEA– IEA+

CC BP MF CC BP MF CC BP MF CC BP MF
3.44 1.51 2.42 1.28 1.64 4.0 2.7 1.48 2.0 1.53 1.58 1.50

Table 2.4: Improvement in F1 score for H. sapiens PPI dataset. Average improvement in F1 scores
achieved by TCSS over Resnik for maximum and best-match average approaches. TCSS does 2.2
times better than Resnik for cellular component (CC), 1.5 times for biological process (BP), and
2.5 times for molecular function (MF) ontologies on average.

approaches for combining multiple GO annotations on IEA+/- datasets (Additional file 1: Supp.

figs. 6-9, Supp. tab. 1). Table 2.4 shows the improvement in F1 scores achieved by TCSS over

Resnik. On average TCSS performed 2.2 times better than Resnik for CC, 1.5 times for BP, and

2.5 times for MF ontologies.

Correlation with gene expression

To test how our method performs in another application scenario, we tested its correlation with

gene expression data. Two gene products that have similar function are more likely to have similar

expression profiles and be annotated to similar GO terms (Sevilla et al., 2005). Therefore, a com-

parison of the similarity between gene expression of two gene products with the semantic similarity

scores obtained by different measures can be used as a performance test. Gene expression profiles

of randomly selected S. cerevisiae gene pairs were evaluated against the above mentioned semantic

similarity methods. The evaluation was performed as above using the BMA/MAX approaches of

combining multiple GO annotations on IEA+ dataset. TCSS showed the best correlation between

gene expression and semantic similarity with all three GO ontologies (Figures 2.144(a), 2.13).

Correlation with EC, Pfam, and sequence similarity

The Collaborative Evaluation of GO-based Semantic Similarity Measures (CESSM) website was

developed by Pesquita et al. (2008) to evaluate semantic similarity measures on a standard set of

data and benchmarks: correlation of similarity measure with similarity of sequence, Pfam domains

and Enzyme Commission (EC) numbers. We compared TCSS against Resnik, Schlicker, Jiang,

Lin and SimGIC using CESSM for both MAX and BMA approaches on IEA- dataset. TCSS

showed the best (or one of the best) correlation with EC similarity for all three ontologies (Figure

2.14(b), Additional file 1: Supp. fig. 17). For Pfam similarity with MAX approach, TCSS is

best for CC and MF ontologies and SimGIC showed better correlation than TCSS for BP ontology
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Figure 2.9: ROC curves for H. sapiens PPI dataset (IEA-). ROC evaluations of semantic similarity
measures at different cutoffs based on the H. sapiens PPI dataset derived from DIP are shown. The
evaluation was performed using cellular component, biological process, molecular function ontology
of GO. Maximum (max) approach for combining multiple annotations was used on dataset without
(IEA-) electronic annotations. TCSS and Resnik show the best ROC profiles for all three ontologies.
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Figure 2.10: F1-score curves for H. sapiens PPI dataset (IEA-). F1 score (harmonic mean of
precision and recall) evaluations of TCSS and Resnik semantic similarity measures at different
cutoffs based on the H. sapiens PPI dataset derived from DIP are shown. The evaluation was
performed using cellular component, biological process, molecular function ontology of GO. Best-
match average (bma) approach for combining multiple annotations was used on dataset without
(IEA-) electronic annotations. F1 score reaches its best value at 1 and worst at 0. TCSS does better
than Resnik for semantic similarity cutoff scores in all three ontologies.
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Figure 2.11: ROC curves forH. sapiens PPI dataset (IEA+). ROC evaluations of semantic similarity
measures at different cutoffs based on the H. sapiense PPI dataset derived from DIP are shown.
The evaluation was performed using cellular component, biological process, molecular function
ontology of GO. Best-match average (bma) and maximum (max) approaches for combining multiple
annotations are used on dataset with (IEA+) electronic annotations. TCSS & Resnik show best
ROC profiles for all three ontologies.
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Figure 2.12: F1-score curves for H. sapiens PPI dataset (IEA+). F1 score (harmonic mean of
precision and recall) evaluations of TCSS and Resnik semantic similarity measures at different
cutoffs based on the H. sapiens PPI dataset derived from DIP are shown. The evaluation was
performed using cellular component, biological process, molecular function ontology of GO. Best-
match average (bma) and maximum (max) approaches for combining multiple annotations was used
on dataset with (IEA+) electronic annotations. F1 score reaches its best value at 1 and worst at 0.
TCSS does better than Resnik for semantic similarity cutoff scores in all three ontologies.
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Figure 2.13: Correlation with gene expression. Pearson correlation between gene expression simi-
larity and semantic similarity on S. cerevisiae dataset are shown. The evaluation was performed for
cellular component, biological process, and molecular function ontologies of GO. Best-match average
(bma) approach for combining multiple GO annotations was used. TCSS showed best correlation
with gene expression in all three ontologies.

(Figure 2.14(c)). SimGIC better correlates with sequence similarity than other methods in all three

ontologies (Figures 2.14(d), 2.15).

2.6 Discussion

We present a new algorithm (TCSS) for calculating semantic similarity and tested its performance

against other methods. TCSS shows an average improvement of 4.6 times in F1 scores over Resnik,

the next best method, on our S. cerevisiae PPI test and 2 times on our H. sapiens PPI test. This

clearly indicates the advantage of using TCSS to retrieve positive protein interactions and hold

back negative interactions over Resnik’s method. We compared TCSS using both the BMA and

MAX approaches for combining multiple GO annotations, and found that MAX generally works

best for PPI datasets. The use of the MAX function to score PPIs, instead of an ’average’ function,

makes sense because proteins in PPIs only need to be in close proximity (similar cellular component

terms) or in a similar biological process once, among all possible combinations annotation terms,

to be biologically relevant. Therefore, the MAX approach is unlikely to overestimate true PPIs.

However, there may be application scenarios (e.g to compute a more general measure of functional

similarity) where the MAX approach could lead to over-estimation and BMA would be a better

choice. In these cases, TCSS can be modified to use the BMA method instead of MAX. For example,
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Figure 2.14: Correlation with gene expression and CESSM dataset. (a) Pearson correlation be-
tween gene expression similarity and semantic similarity on a S. cerevisiae dataset containing 5000
randomly selected protein pairs are shown. (b - d) Correlation between semantic similarity and
sequence, enzyme commission (EC), protein family (Pfam) similarity using online CESSM tool.
The evaluation was performed for cellular component (CC), biological process (BP), and molecu-
lar function (MF) ontologies of GO using maximum (max) approach for combining multiple GO
annotations.
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Figure 2.15: Correlation with CESSM dataset. Correlation between semantic similarity and se-
quence, enzyme commission (EC), protein family (Pfam) similarity using online CESSM tool. The
evaluation was performed for cellular component (CC), biological process (BP), and molecular
function ontologies (MF) of GO. Best-match average (bma) approach for combining multiple GO
annotations was used on the dataset without (IEA-) electronic annotations. TCSS showed best
correlation with EC & Pfam similarity for CC ontology and same as Resnik’s for MF and BP
ontologies.
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TCSS shows worse correlation with Pfam similarity than SimGIC on the biological process ontology

test, but becomes better when using BMA (Figure 2.15). Also, it is evident from the correlation of

semantic similarity with gene expression similarity that TCSS is more likely to assign a higher score

to gene products if they also exhibit similar gene expression. Tests using the CESSM benchmark

dataset were in favor of TCSS for EC number similarity and Pfam similarity. SimGIC does better

than TCSS in the sequence similarity correlation test. One reason for this could be that SimGIC

scores gene products with shared annotation terms and gene products annotated to same term are

more likely to be part of the same gene family.

Scatter plots of the semantic similarity scores obtained by TCSS (MAX) and Resnik (MAX)

methods clearly indicate that a significant number of positive interactions are under-scored by

Resnik (Figure 2.16) in all three ontologies (p-values by Kolmogorov-Smirnov test: Cellular com-

ponent: 6.4e-59, Biological process: 3.4e-163, Molecular function: 1.6e-15). Given below are some

biological examples selected from these scatter plots in support of our claim:

• Cellular component: Rpl10p is a S. cerevisiae protein responsible for joining of the 40S

and 60S ribosomal subunits (Stark et al., 2006). It has been found to interact (Krogan

et al., 2006; Hofer et al., 2007; West et al., 2005; Eisinger et al., 1997) with Sqt1p, an essential

protein involved in a late step of 60S ribosomal subunit assembly or modification (Stark et al.,

2006) using affinity capture-mass spectrometry (MS), affinity capture-western and two-hybrid

experimental methods. RPL10 is annotated to the ’cytosolic large ribosomal subunit’ term

and Sqt1p is annotated to the ’cytosolic ribosome’ term (The Gene Ontology Consortium,

2000). The score assigned by Resnik (MAX) to the Rpl10p-Sqt1p interaction is 0.4 which is

low considering that both the proteins are in similar cellular components and the ’cytosolic

large ribosomal subunit’ term is the child term of ’cytosolic ribosome’ in GO. The same

interaction gets a score of 0.78 by TCSS (MAX), which categorizes it as a high confidence

interaction, due to the normalization step on the ’cytosolic ribosome’ sub-graph.

• Biological process: The Nth1p-Dcs1p protein-protein interaction was experimentally shown

by Yu et al. (2008); Uetz et al. (2000) using two-hybrid experiments. Both Nth1p and Dcs1p

proteins share the ’vacuolar protein catabolic process’ term in GO (The Gene Ontology Con-

sortium, 2000). The score assigned by Resnik (MAX) to the Nth1p-Dcs1p interaction is 0.45

which is low considering that both proteins are part of the same biological process. The same

interaction gets a score of 1 by TCSS (MAX), due to the normalization on ’vacuolar protein
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Figure 2.16: Comparison of our topological clustering method and Resnik (MAX) as scoring positive
and negative PPIs. The scatter plot of semantic similarity scores for positive (red) and negative
(green) interactions. Semantic similarity scores range between 0.0 and 1.0 for both methods, with
1.0 being the best. A significant number of positive interactions are under-scored by Resnik (Max)
in all three ontologies compared to TCSS.
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catabolic process’ sub-graph, thus categorizing it as a high confidence interaction.

• Molecular function: Mft1p and Hpr1p are the subunits of the nuclear THO complex.

THO complex is involved in transcription elongation, mitotic recombination and telomere

maintenance (Stark et al., 2006). Mft1p-Hpr1p interaction has been shown by affinity capture-

MS and affinity capture-western experimental techniques (Strasser et al., 2002; Krogan et al.,

2006; Gavin et al., 2006; Chavez et al., 2000). Both Mft1p and Hpr1p are annotated to the

’nucleic acid binding’ term of GO (The Gene Ontology Consortium, 2000). This interaction

is assigned a score of 0.2 by Resnik (MAX) because the term nucleic acid binding is fairly

general. This score is low considering that both the proteins are part of a same GO term.

The same interaction is assigned a score of 1 by TCSS (MAX), due to the normalization step

on the ’nucleic acid binding’ sub-graph. ’Nucleic acid binding’ is a general molecular function

term with a shallow hierarchy.

Future directions for TCSS development include testing if the GO graph edge type (e.g. is-a, part-

of) can provide additional information that will lead to improved performance and also testing the

method more rigorously with other data sets.

2.7 Conclusions

We present a new semantic similarity algorithm, Topological Clustering Semantic Similarity, de-

signed to use the GO for PPI confidence assessment. It partitions the GO DAG into non-overlapping

sub-graphs, using a topological clustering method, and computes semantic similarity normalized

within each sub-graph. We evaluated TCSS against other methods for measuring semantic sim-

ilarity between GO terms annotated to proteins involved in protein-protein interactions from S.

cerevisiae and H. sapiens. We also tested the correlation between multiple semantic similarity scor-

ing methods with gene expression, protein sequence, EC, and Pfam similarity. Performance tests

were generally in favor of TCSS in all three GO ontologies: cellular component, biological process

and molecular function. This new method will be useful as an evidence source in PPI prediction or

in confidence assessment of PPI datasets.
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Implementation

TCSS

The algorithm was implemented using the Python programming language (Van Rossum and Drake Jr,

1995). An important step in our algorithm is to determine the size of sub-graphs. This is determined

by thresholding the topological information content (ICT) of terms in a given ontology. The cutoff

is chosen to maximize performance (AUC and F1measures) on a given benchmark/test. The rela-

tionship between AUC and topology cutoff follows a U - shaped curve with a global maximum for all

three ontologies. Average F-score shows a general upward trend with topology cutoffs (Figures 2.17,

2.18, 2.20, 2.21). A topology cutoff must be computed for each test before we compute semantic

similarity scores, which is a practical disadvantage of our method, though we expect cutoffs to be

useful generally for a type of data and an organism once computed. Topology cutoffs for different

datasets are as follows:

• S. cerevisiae PPI dataset: 2.4 for CC, 3.6 for BP, and 3.2 for MF (Figure 2.19)

• H. sapiens PPI dataset: 3.0 for CC, 4.0 for BP, and 3.6 for MF (Figure 2.22)

• Expression dataset: 2.4 for CC, 3.6 for BP, and 3.2 for MF

• CESSM dataset: 3.4 for CC, 3.2 for BP, and 3.0 for MF

Our results are resilient in the immediate cutoff range of ±0.1 for all three ontologies.

Other methods

Semantic similarity measurement methods proposed by Resnik (1995) (Resnik), Lin (1998) (Lin),

Schlicker et al. (2006) (simRel) (Schlicker), Jiang and Conrath (1997) (Jiang), and Pesquita et al.

(2007)(SimGIC) were implemented as mentioned in respective publications. The GOSemSim (Yu

et al., 2010) implementation in R was used Wang et al. (2007) (Wang).

ROC and F-measure

Different measures used for analyzing the performance of our algorithm are as follows:

• True positive rate (TPR), also known as Recall:

TPR = TP

TP + FN
(2.12)
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Figure 2.17: Effect of topology cutoff on (ROC) AUC and F-score for S. cerevisiae PPI dataset
(IEA-). Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology
cutoffs under different settings. BMA stands for best-match average approach of combining multiple
annotations and MAX stands for maximum approach. Test was conducted separately for cellular
component (CC), biological process (BP), and molecular function (MF) ontologies without IEA
(IEA-) annotations.
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Figure 2.18: Effect of topology cutoff on (ROC) AUC and F-score for S. cerevisiae PPI dataset
(IEA+). Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology
cutoffs under different settings. BMA stands for best-match average approach of combining multiple
annotations and MAX stands for maximum approach. Test was conducted separately for cellular
component (CC), biological process (BP), and molecular function (MF) ontologies with IEA (IEA+)
annotations.
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2.4 3.6 3.2 ⇥

Figure 2.19: Topology cutoff for S. cerevisiae PPI dataset. Topology cutoffs for cellular component
(CC), biological process (BP), and molecular function (MF) ontologies were determined by eval-
uating AUC values and average F-scores at different cutoffs. The topology cutoff where both the
AUC and average F-score are maximized under different conditions is picked. Test was done with
best-match average (bma) and maximum (max) approaches of combining multiple annotations on
datasets with (IEA+) and without (IEA-) electronic annotations. Topology cutoff value chosen for
CC is 2.4, BP is 3.6, and MF is 3.2 (marked by "X").



Chapter 2. Semantic Similarity 56

Figure 2.20: Effect of topology cutoff on (ROC) AUC and F-score for H. Sapiens PPI dataset
(IEA-). Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology
cutoffs under different settings. BMA stands for best-match average approach of combining multiple
annotations and MAX stands for maximum approach. Test was conducted separately for cellular
component (CC), biological process (BP), and molecular function (MF) ontologies without IEA
(IEA-) annotations.
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Figure 2.21: Effect of topology cutoff on (ROC) AUC and F-score for H. Sapiens PPI dataset
(IEA+). Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology
cutoffs under different settings. BMA stands for best-match average approach of combining multiple
annotations and MAX stands for maximum approach. Test was conducted separately for cellular
component (CC), biological process (BP), and molecular function (MF) ontologies with IEA (IEA+)
annotations.
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Figure 2.22: Topology cutoff for H. Sapiens PPI dataset. Topology cutoffs for cellular component
(CC), biological process (BP), and molecular function (MF) ontologies were determined by eval-
uating AUC values and average F-scores at different cutoffs. The topology cutoff where both the
AUC and average F-score are maximized under different conditions is picked. Test was done with
best-match average (bma) and maximum (max) approaches of combining multiple annotations on
datasets with (IEA+) and without (IEA-) electronic annotations. Topology cutoff value chosen for
CC is 3.0, BP is 4.0, and MF is 3.6 (marked by "X").
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• False positive rate (FPR):

FPR = FP

FP + TN
(2.13)

• Precision (P):

P = TP

TP + FP
(2.14)

• F1measure (F):

F = 2P × TPR
P + TPR

(2.15)

• Improvement in F1 score is calculated as the average improvement at different semantic sim-

ilarity cutoffs.

• Area under curve (AUC) was calculated using the trapezoidal rule.

where TP , FP , TN , FN are true positive, false positive, true negative, and false negative, respec-

tively.

Correlation with gene expression

Average gene expression Pearson correlation was calculated for the S. cerevisiae positive and nega-

tive interaction dataset using Fisher’s z transformation (Faller, 1981).

zn = 1/2 ln
(1 + rn

1–rn

)
(2.16)

where rn is the Pearson correlation between two genes for the nth experiment. Then, an appropriate

estimate of the true mean is calculated as,

z̄n = N−1
N∑
i=1

zi (2.17)

where N is the total number of experiments. Then, by inversion, average correlation is calculated

as,

r̄n = e2z̄n − 1
e2z̄n + 1 (2.18)

CESSM evaluation

TCSS, Schlicker, Jiang, SimGIC and Resnik methods were used to find the semantic similarity

between protein pairs provided by CESSM. Correlation between semantic similarity scores and
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sequence, Pfam, EC similarity for these methods was calculated using the CESSM online tool.

Wang was not used here due to the difficulty in modifying the R implementation to use the datasets

provided by the CESSM website.
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Predicting in-vivo SH3 domain

mediated protein interactions in yeast

This work was published in Bioinformatics, 15;32(12):1865-72: Jain, S. and Bader, GD. (2016),

Predicting physiologically relevant SH3 domain mediated protein-protein interactions in yeast.

Author contributions: I collected the data, developed and implemented the method and performed

the analyses. Gary D. Bader supervised and advised this project.

3.1 Abstract

Many intracellular signaling processes are mediated by interactions involving peptide recognition

modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which

can be identified using high-throughput experimental screens such as phage display. Binding motif

patterns can then be used to computationally predict protein interactions mediated by these do-

mains. While many protein-protein interaction prediction methods exist, most do not work with

peptide recognition module mediated interactions or do not consider many of the known constraints

governing physiologically relevant interactions between two proteins. A novel method for predict-

ing physiologically relevant (or in vivo) SH3 domain-peptide mediated protein-protein interactions

in S. cerevisae using phage display data is presented. Like some previous similar methods, this

method uses position weight matrix models of protein linear motif preference for individual SH3

domains to scan the proteome for potential hits and then filters these hits using a range of evidence

sources related to sequence-based and cellular constraints on protein interactions. The novelty of

61
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this approach is the large number of evidence sources used and the method of combination of se-

quence based and protein pair based evidence sources. By combining different peptide and protein

features using multiple Bayesian models we are able to predict high confidence interactions with

an overall accuracy of 0.97. Domain-Motif Mediated Interaction Prediction (DoMo-Pred) com-

mand line tool and all relevant datasets are available under GNU LGPL license for download from

http://www.baderlab.org/Software/DoMo-Pred.

3.2 Introduction

Protein-protein interactions (PPIs) are physical associations between protein pairs in a specific

biological context. Their knowledge provide important insights into the functioning of a cell.

Previously, experimental detection of PPIs was limited to labor intensive techniques such as co-

immunoprecipitation or affinity chromatography (Skrabanek et al., 2008). Though the detected

PPIs are largely accurate, these techniques are difficult to apply to whole proteome analysis. This led

to the development of various high-throughput PPI detection protocols such as mass-spectrometry

combined with affinity-purification, yeast two-hybrid and next-generation sequencing to detect PPIs

at whole genome level (Davy et al., 2001; Ito et al., 2001; McCraith et al., 2000; Rain et al., 2001;

Uetz et al., 2000; Yu et al., 2011; Braun et al., 2013). However, genome-scale methods are also

highly resource intensive and single projects and techniques do not cover all known protein interac-

tions. Further, they only cover interactions in one organism at a time. Computational approaches

designed to predict reliable and novel PPIs based on experimental interaction data sets have the

advantages that they are inexpensive to apply to genomes, including those that are infeasible to

tackle experimentally and this motivates their further development (Skrabanek et al., 2008).

Multiple kinds of protein-protein interactions exist. We focus on interactions involving peptide

recognition modules (PRMs), in particular Src homology 3 (SH3), which are important in many

cellular signaling processes. These domains bind to small, linear sequence motifs (peptides) within

proteins (Pawson and Nash, 2003). SH3 domains are approximately 60 amino acids long with five

beta strands organized into two perpendicular beta sheets interrupted by a 3-10 helix (Pawson and

Gish, 1992). They often bind to proline-rich regions and multiple classes have been recognized based

on their binding motifs. Class I SH3 domains bind to [R/K]xxPxxP and class II bind to PxxPx[R/K]

motifs (Mayer, 2001). They can also bind to proline-free regions containing arginine or lysine

(Tong et al., 2002). SH3 domains are involved in many regulatory or signaling processes, including
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endocytosis (Tonikian et al., 2009), actin cytoskeleton regulation (Pawson and Schlessingert, 1993),

and tyrosine kinase pathways (Schlessinger, 1994). Experimental methods such as phage display

(Tonikian et al., 2008, 2009; Tong et al., 2002) and peptide microarray (MacBeath and Schreiber,

2000; Hu et al., 2004; Stiffler et al., 2007) have been used to identify the peptides binding to PRMs.

The computational problem under focus in this work is to use the SH3 domain binding peptides

identified from phage display experiments to predict SH3 domain mediated PPIs in S. cerevisiae.

A straightforward approach is to construct position weight matrices (PWMs) from phage peptides

and scan the whole proteome for potential binding sites in target proteins using some threshold

score (Obenauer et al., 2003). The problem with this simple approach is the lack of contextual

information, for example, the predicted binding site might not be accessible or it might lie within

a structured part of protein (e.g. domain). Tonikian et al. (2009) addressed this problem by

combining in vitro (phage display, peptide array screening) and in vivo (yeast two-hybrid) data to

predict SH3 domain mediated PPIs in yeast. Verifying interactions using multiple experimental

techniques improves the PPI confidence but it is both time and resource consuming. Lam et al.

(Lam et al., 2010) combined comparative and structural genomic features with PWMs to reduce the

number of false binding sites. But they did not consider that PPIs are influenced by many cellular

constraints including that interacting proteins must be in close proximity and should be part of

same process. Peptide-only features are not sufficient for predicting high confidence physiologically

relevant PRM mediated PPIs with binding site resolution. Jansen et al. (2003), Rhodes et al. (2005),

Li et al. (2008), Zhang et al. (2012b), and others considered multiple types of cellular constraints

and combined different evidence sources for PPI prediction, but their approaches are designed for

full length proteins and cannot be used to predict PRM mediated PPIs, including identification of

binding sites. More recently, Chen et al. (2015) combined limited number of peptide and protein

features for predicting PRM mediated PPIs in humans. Their protein features are based on one of

the earlier works in the field of ensemble PPI prediction by Jansen et al. (2003). Since then many

advances have been made in improving the performance of individual features in PPI prediction

(Reimand et al., 2012). Also, their method is not compatible with high-throughput binding peptide

data, such as from phage display. Here, we make use of a larger set of evidence sources to predict

SH3-mediated PPIs and their binding sites than has been collected previously and combine peptide

level and protein level features in a single predictor.
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3.3 Approach

PRM mediated PPIs do not occur in isolation in the cell. They are influenced by different sequence-

based and cellular constraints. For example, SH3 domains can only bind surface accessible regions,

interacting proteins must be present in same cellular compartment, and proteins in the same bi-

ological process with correlated gene expression profiles are more likely to interact compared to

randomly selected protein pairs. Thus, diverse types of information can be used to help predict

physiologically relevant protein interactions. In our method, PWMs constructed using peptides

from phage display experiments are used to scan the yeast proteome for potential targets. Peptide

features: disorder, surface accessibility, peptide conservation, and structural contact are combined

using naïve Bayes integration to score the PWM targets. Another naïve Bayes model is used to

combine protein features: cellular location, biological process, molecular function, gene expression,

and sequence signature to score the same targets. Scores from both peptide and protein classifiers

are then combined using Bayes theorem to predict physiologically relevant SH3 domain mediated

PPIs in yeast. Figure 3.1 shows the work flow of our PRM mediated PPI prediction pipeline.

3.4 Methods

3.4.1 Position weight matrix and proteome scanning

Position weight matrices (PWMs) are statistical models for representing sequence motifs. They

are real valued m × n matrices, where m are the amino acids and n is the motif length. They

are constructed using peptides from phage display experiments and then used to scan a protein

sequences to find motif matches above a certain p-value threshold (Pizzi et al., 2011; Wu et al.,

2000). Also, significant positions within the PWMs are identified and used in scoring peptide

features: disordered region, surface accessibility, and peptide conservation. PWMs contain a weight

for each alphabet symbol i at each position j in the motif. Weight can be described as a log-odds

score of a probabilistic model against a background (Pizzi et al., 2011).

M(i, j) = log P (i, j)
B(i) (3.1)

where B(i) is the background probability of amino acid i in the proteome and P (i, j) is the proba-



Chapter 3. DoMo-Pred 1.0 65

Bayesian Integration 

Gene Expression 

Cellular Location, Biological Process, 
Molecular Function 

Sequence Signature 

Protein Features 

-SH3-WW- 
-PDZ-WW- 

Bayesian Integration 

SH3 Binding Peptides 

Peptide Features 

Structural contact 

Peptide Conservation 

…RAGPTWP… 
…RDPPTNP… 
…RAPPTNP… 

Disordered Region 

Surface Accessibility 

A" 0.6" 0.1" 0.6" 0.1" 0.1" 0.1"
C" 0.1" 0.6" 0.1" 0.1" 0.1" 0.1"
D" 0.1" 0.1" 0.1" 0.6" 0.1" 0.1"
E" 0.1" 0.1" 0.1" 0.1" 0.6" 0.1"
…" …" …" …" …" …" …"

PWM Proteome Scan 

Bayesian Integration 

P(C | Peptide, Protein) 

✔! ✗!

A"

B"

C"

P!A!F!P!L!K!K!S!F!D!
P!K!E!P!K!K!E!R!F!E!
P!F!K!P!S!K!C!L!E!A!
P!E!L!P!F!R!L!F!A!C!
P!F!E!P!L!R!C!S!D!L!
!

Figure 3.1: Work flow of PRM mediated PPI prediction pipeline. (A) Proteome is scanned using
a PWM built using experimentally derived binding peptides (e.g. from phage display) of a given
SH3 domain for potential interactors. (B) Separate naïve Bayes classifiers for peptide and protein
features. (C) Integration of classifiers for predicting interacting and non-interacting protein pairs.
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bility of amino acid i at position j.

P (i, j) = count(i, j)
N

(3.2)

where count(i, j) is the empirical count of amino acid i at position j and N is the count of all the

amino acids at position j. Low information content positions or columns at the edges of PWMs are

removed to improve signal of the core motif. The information content of each position in the motif

is calculated as (Erill, 2012),

IC(j) =
[
−

m∑
i=1

B(i) logB(i)
]
−
[
−

m∑
i=1

P (i, j) logP (i, j)
]

(3.3)

where IC(j) is the mutual information content of jth position in the motif. Information content

ratio is then calculated as,

ICR(j) = IC(j)
ICmax

(3.4)

Amino acid positions on both ends of the motif with ICR(j) ≤ 0.4 are removed. Trimmed PWMs

are used to scan a protein sequence to find matches of the weighted pattern above a threshold score

(k). For a protein sequence (S = s1s2s3...) the match score (W (s)) of any m amino acid long

segment is the sum of individual amino acid weights in the PWM (Pizzi et al., 2011).

W (sj ..sj+m−1) =
m∑
j=1

M(sj , j) (3.5)

where M(si, j) is the log-odds score of amino acid si at position j in the PWM. The number of

statistically significant matches are controlled by converting match score thresholds to p-values.

For a given PWM the relationship between its match scores and p-values is defined such that in

the background distribution match scores W (s) ≥ k (Pizzi et al., 2011; Wu et al., 2000). Not all

amino acid positions within a motif are significant. For example, in class 1 SH3 binding motif

[R/K]xxPxxP, positions 1, 4, and 7 are more significant than others. Amino acid positions with

(IC(j)) ≥ 0.5 within the trimmed PWMs are identified as significant. These significant amino acid

positions are used in calculation of disordered region, surface accessibility, and peptide conservation

scores.
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3.4.2 Peptide features

Disordered region

PRMs bind to small peptide stretches containing a specific motif. Specifically interactions between

proteins having SH3 domains and their targets are often mediated by proline rich peptide sequences

containing PXXP, [R/K]xxPxxP, PxxPx[R/K] motifs. Proline disrupts the secondary structure of

a protein by inhibiting the formation of helices and sheets (Morgan and Rubenstein, 2013). Also,

small linear motifs tend to accumulate in disordered regions of protein (Linding et al., 2003; Beltrao

and Serrano, 2005; Davey et al., 2010). Beltrao and Serrano showed that the binding sites of SH3

domains in S. cerevisiae often lie within the disordered regions of a protein (Beltrao and Serrano,

2005). DISOPRED, a neural network based tool, is used to estimate the probability of the protein

region being disordered. Disordered region (DR) score is calculated as the fraction of disordered

amino acids at significant positions in the binding site.

DR =

∑
i pi =


1 if amino acid i is disordered

0 otherwise

N
(3.6)

where pi is the disorder score of the ith significant amino acid (either 1 for disordered or 0 for

ordered) and N is the number of significant amino acids in the binding site.

Surface accessibility

Sequences present on a protein’s surface are more accessible to binding by SH3 domains than those

that are buried inside a protein structure. The degree of solvent-accessible surface area of amino

acid residues in a sequence indicates its level of exposure and is measured in terms of relative solvent

accessibility (RSA) (Lam et al., 2010; Adamczak et al., 2004). We use SABLE (Adamczak et al.,

2004) to predict RSA values for target sequences. It uses a neural network based nonlinear regression

model for continuous approximation of RSA values. Amino acid residues with RSA value ≥ 25% are

considered to be exposed and available for binding (Adamczak et al., 2004). Surface accessibility

(SR) score is then calculated as the fraction of exposed amino acid residues at significant positions

in the binding site.
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SA =

∑
i pi =


1 if RSA >= 25%

0 otherwise

N
(3.7)

where pi is the surface accessibility score of ith significant amino acid and N is the number of

significant amino acids in the binding site.

Peptide conservation

Biologically relevant peptides binding to yeast SH3 domains are more likely to be conserved in

other yeast species (Beltrao and Serrano, 2005; Davey et al., 2010). For measuring the conservation,

orthologs of S. cerevisiae protein sequences in C. glabrata, D. hansenii, K. lactis, Y. lipolytica, C.

albicans, N. crassa, and S. pombe (an optimal set as selected by (Beltrao and Serrano, 2005)) are

identified using INPARANOID (Remm et al., 2001). The orthologous sequences are then aligned

with MAFFT (Katoh et al., 2002) and the unweighted sum-of-pairs method from AL2CO (Pei and

Grishin, 2001) is used to estimate the conservation score of each position in the multiple sequence

alignment (Lam et al., 2010). Peptide conservation (PC) score is defined as average conservation

score of significant amino acid residues in the binding site.

PC =
∑
i pi
N

(3.8)

where pi is the conservation score of the ith significant amino acid and N is the number of significant

amino acids in the binding site.

Structural contact

Known 3-D structures of SH3 domains complexed with peptides can be used to assess the binding

potential of a query SH3 domain and peptide by reducing residue-residue contacts in 3-D structures

to a binary 2-D contact matrix (Chen et al., 2008; Hui and Bader, 2010). Six yeast SH3-peptide

co-complex PDB structures (1N5Z, 1SSH, 1ZUK, 2KYM, 2RQW, 2VKN) are used as base models.

The Contact Map Analysis (CMA) tool from the SPACE software suite (Sobolev et al., 2005) is used

to reduce the 3-D structures to 2-D contact maps with residue level contact area for all base models.

Query domain and peptide sequences are aligned with all base models using the Needleman-Wunsch

algorithm and BLOSUM 62 substitution matrix to calculate the contact distance between aligned
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residues. Structural contact (SC) score is defined as the average contact area of significant amino

acid residues in the binding site.

SC = max
j

∑
i cij
N

(3.9)

where cij is the normalized contact area of the ith aligned domain and peptide residues of the jth

base model. Alignment gaps in contact residues will negatively impact the average contact area as

only the aligned residues are used for scoring (a gap at a position associated with a large residue

contact area will reduce the SC score more than a gap associated with a smaller residue contact

area). N is the number of aligned contact residues.

3.4.3 Protein features

Cellular location, biological process, molecular function

Physical PPIs require proteins to be in close proximity to each other i.e. they should co-localize

in the same cellular compartment. Also, interacting proteins are more likely to be part of same

biological process or have the same function. The Gene Ontology (GO) contains a hierarchy of

controlled terms describing cellular location, biological process, and molecular function of proteins

(The Gene Ontology Consortium, 2000). The functional relationship between two proteins can be

quantified using GO. Semantic similarity can be used to quantify relationships between different

GO terms in an ontology. The higher the semantic similarity score between GO terms annotated to

two proteins, more likely that they will interact with each other (Jain and Bader, 2010). Topological

Clustering Semantic Similarity (TCSS) (Jain and Bader, 2010) is an accurate semantic similarity

measure for PPI prediction. It normalizes the GO hierarchy before computing semantic similarity,

according to cutoffs defined in the original TCSS paper.

CC = TCSS(a, b, ontology = C, cutoff = 2.4) (3.10)

BP = TCSS(a, b, ontology = P, cutoff = 3.5) (3.11)

MF = TCSS(a, b, ontology = F, cutoff = 3.3) (3.12)

where a and b are the query proteins and C,P, F are the cellular component, biological process,

and molecular function ontologies.
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Figure 3.2: Change in average area under the curve (AUC) with the number of yeast gene expression
datasets used for predicting PPIs. This figure was generated by randomly selecting (repeated 100
times) yeast gene expression datasets in incremental fashion and doing receiver operating charac-
teristic (ROC) analysis.

Gene expression

Gene expression as a measure for assessing the confidence and biological relevance of high-throughput

PPIs is based on the notion that the cell is optimized to co-express genes if they function together

and if they function together, they are more likely to physically interact than by chance (Bhardwaj

and Lu, 2005; Grigoriev, 2001; Ge et al., 2001; Jansen et al., 2002). Most PPI prediction methods

that make use of gene expression profile (GEP) correlation with PPIs to predict novel interactions

(Li et al., 2008; Rhodes et al., 2005) rely on observations from a single expression dataset which can

lead to many false positives and true negatives, as not all genes are expressed under a particular set

of experimental conditions. Using multiple GEPs clearly improves the performance of a predictor

as shown in Figure 3.2. Correlation coefficients from 86 gene expression profiles from GeneMANIA

(Warde-Farley et al., 2010) for a given pair of genes are combined using Fisher’s z transformation

(Faller, 1981; Jain and Bader, 2010)



Chapter 3. DoMo-Pred 1.0 71

EX = 1− e2z̄ + 1
e2z̄ − 1 (3.13)

z̄ = N−1
N∑
i=1

1
2ln

(1 + ri
1− ri

)
(3.14)

where N is the number of profiles and ri is the Pearson correlation of the ith profile.

Sequence signature

Sequence signature based PPI prediction methods are based on the notion that protein domains

are correlated with specific functions. For instance, it has been shown that functionally related

proteins have similar domain composition or they belong to the same "domain club" (Jin et al.,

2009). Information content of co-occurring InterPro (Apweiler et al., 2001) signatures extracted

from sequences of an experimentally verified set of 22,707 PPIs from DIP (Salwinski et al., 2004)

is used to score novel interactions, as described by Sprinzak and Margalit (Sprinzak and Margalit,

2001).

SS =
∑
ij

−log2

(
pij
pipj

)
(3.15)

where pij is the probability of seeing motif i on one protein and motif j on other protein in the

experimentally verified PPI set, pi is the probability of seeing motif i and pj is the probability of

seeing motif j in the same set.

3.4.4 Bayesian integration

The objective of a Bayesian PPI prediction model is to estimate the probability that a given pro-

tein pair interacts, conditioned on the biological evidence in support of that interaction. A naïve

Bayes model simplifies this problem by assuming independence between different types of biological

evidence. While modeling the PRM mediated PPI prediction problem a set of observations are

made on domain-peptides while others are made on full-length proteins. (Mitchell, 1997). For a

protein pair described by a set of features X = 〈X1, X2, ....Xn〉 a naïve Bayes PPI prediction model

is defined as,
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arg max
Y

P (Y |X) = arg max
Y

P (X|Y )P (Y )
P (X)

= arg max
Y

P (Y )
∏
i

P (Xi|Y ) (3.16)

arg max
Y

logP (Y |X) = arg max
Y

logP (Y ) +
∑
i

logP (Xi|Y )

where P (Y ) is the class prior probability and P (Xi|Y ) is the class-conditional probability of feature

Xi ∈ X. As there are only two classes Y ∈ {interacting,non-interacting} therefore class priors

are estimated by treating P (Y ) as a multinomial (or categorical) distribution P (Y ) = ΠY . All

continuous peptide and protein features are discretized by binning and modeled using a multinomial

probability distribution P (Xi|Y ) = Multi(Xi; θiY ) ∝ ΘXi
iY . Putting it all together, the naïve Bayes

model is defined as,

arg max
Y

logP (Y |X) = arg max
Y

log ΠY +
∑
i

log ΘXi
iY (3.17)

where model parameters ΠY and ΘXi
iY are learned from the training data set. While modeling

the PRM mediated PPI prediction problem a set of observations are made on domain-peptides

while others are made on full-length proteins. Assuming that peptide and protein features are

independent of each other, two separate naïve Bayes models Mpep for peptide features and Mpro for

protein features are built to independently assess the class probability Y . The posterior probabilities

P (Y |Mpep) and P (Y |Mpro) are combined using Bayes’ theorem (Mitchell, 1997),

P (Y |Mpep,Mpro) = P (Y )P (Mpep,Mpro|Y )
P (Mpep,Mpro)

(3.18)

as Mpep and Mpro are independent therefore, they are conditionally independent given the class Y ,

P (Mpep,Mpro|Y ) = P (Mpep|Y )P (Mpro|Y ) (3.19)

substituting P (Mpep,Mpro|Y ) in equation (3.18),
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P (Y |Mpep,Mpro) = P (Y )P (Mpep|Y )P (Mpro|Y )
P (Mpep,Mpro)

(3.20)

re-writing P (Mpep|Y ) and P (Mpro|Y ) using Bayes theorem,

P (Y |Mpep,Mpro) = P (Y )P (Y |Mpep)P (Mpep)P (Y |Mpro)P (Mpro)
P (Y )P (Y )P (Mpep,Mpro)

= P (Mpep)P (Mpro)
P (Mpep,Mpro)

× P (Y |Mpep)P (Y |Mpro)
P (Y ) (3.21)

= α
P (Y |Mpep)P (Y |Mpro)

P (Y )

α = P (Mpep)P (Mpro)
P (Mpep,Mpro) is a class independent term and thus can be treated as normalization constant

to ensure
∑
i P (Yi|Mpep,Mpro) = 1.

3.5 Results

3.5.1 Model training

The goal is to construct a generalized model which can predict high confidence, in vivo yeast SH3

domain - peptide physical interactions. To achieve this, both peptide and protein classifiers are

trained on their respective positive and negative datasets. The peptide classifier is trained on a

high confidence set of 628 SH3 domain-peptide interactions in yeast from the MINT database (P1)

and an equal number of random selected negative interactions (N1). The protein classifier is trained

on a high confidence set of 5,215 pairwise yeast PPIs from the iRefIndex database (P2) and an

equal number of randomly selected negative interactions (N2).

Peptide classifier positive set (P1)

MUSI (Kim et al., 2011) is used to identify multiple binding specificities of the 864 unique peptides

(sequence length less than 25 amino acids) belonging to 1238 SH3-peptide PPIs from the MINT

database (Licata et al., 2012). This resulted in three generic PWMs capturing major known SH3

domain binding motif classes RxxPxxP, PxxPxR, and PxxP (Figure 3.3).
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Figure 3.3: SH3 domain binding motifs in MINT database

All 864 peptides were scored using the three PWMs and only those with scores greater than the

stringent p-value threshold of 1e− 05 were retained. This filtering resulted in a set of 683 interac-

tions. Further, interactions with missing feature information are removed thus resulting in a high

confidence positive set of 628 SH3 domain-peptide mediated interactions.

Peptide classifier negative set (N1)

The negative dataset consists of randomly selected protein pairs with one member containing a SH3

domain and the other a 10 − 17 amino acid long randomly selected proteome sequence. Peptide

sequences are scored using positive PWMs from the P1 dataset and only those with scores below

the p-value threshold of 0.05 are retained (Figure 3.4).

Figure 3.4: Negative peptide set motif

Also, the protein pairs are not part of known interactions from the iRefIndex (version 13.0) database

(Razick et al., 2008). Positive (P1) and negative (N1) data sets are balanced with complete feature

information.

Protein classifier positive set (P2)

5,795 pairwise yeast PPIs are retrieved from iRefIndex using its web interface iRefWeb (Turner

et al., 2010). iRefIndex consolidates PPIs from 10 major public databases and provides many

filters to create a high confidence PPI set. The interactions retrieved from iRefWeb are all physical,

experimental, from a single organism, supported by at least two publications and have a MI (MINT-

Inspired) score >= 0.5. A high confidence set of 5,215 interactions was created after removing

instances with missing protein feature information.
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Figure 3.5: Prediction efficacy of individual (a) peptide features: disordered region (DR), surface
accessibility (SA), peptide conservation (PC), structural contact (SC); and (b) protein features:
cellular component (CC), biological process (BP), molecular function (MF), gene expression (EX),
sequence signature (SS).

Protein classifier negative set (N2)

5,215 randomly selected protein pairs which are not known yeast interactions (over 117 thousand)

from iRefIndex and have complete feature information.

3.5.2 Feature selection

Figure 3.5 shows the discriminatory power of individual features for peptide and protein classifiers.

Disordered region (DR) and surface accessibility (SA) perform much better in separating positives

from negatives as compared to structural contact (SC) and peptide conservation (PC). Prediction

efficacy of PC is least among the peptide features. This is due to the difficulty distinguishing positive

and negative interactions because both of these sets have high conservation scores caused by the

high similarity of protein sequences (and peptides they contain) in general across different yeast

species (Figure 3.6). Biological process (BP), cellular component (CC), and sequence signature (SS)

outperform molecular function (MF) and gene expression (EX) in the protein feature set. Proteins

could have the same molecular function but still belong to different processes and this could be one

of the reasons behind molecular function feature’s weak performance. Gene expression data alone is

not as powerful as others in discriminating positives from negatives (Kim et al., 2014), which may

be due to its moderate correlation with protein expression (i.e. gene expression may not imply that

a functioning protein will be available for interaction) (Vogel and Marcotte, 2012).
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Figure 3.6: Distribution of positive and negative dataset score for peptide and protein features.
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Figure 3.7: Maximal information coefficients for (a) Peptide feature set: disordered region (DR),
surface accessibility (SA), peptide conservation (PC), structural contact (SC). (b) Protein feature
set: cellular component (CC), biological process (BP), molecular function (MF), gene expression
(EX), sequence signature (SS)

An important assumption behind a naïve Bayes classifier is that the features are independent

of each other. Highly correlated features can negatively impact the performance of a naïve Bayes

classifier (Ratanamahatana and Gunopulos, 2003). Mutual information is one of the methods for

measuring dependence between two variables. Mutual information can capture both linear and

non-linear relationships.

MI(X,Y ) =
∑
y∈Y

∑
x∈X

P (x, y)log P (x, y)
P (x)P (y) (3.22)

where P (x, y) is the joint probability distribution and P (x) and P (y) are the marginal probability

distributions. Mutual information score lies within the range [0,∞]. Maximal information coefficient

(MIC) technique calculates normalized mutual information scores within the range [0, 1] where, a

score of 0 indicates complete independence and 1 total dependence between two variables (Albanese

et al., 2012; Reshef et al., 2011). Figure 3.7 shows the MICs for peptide and protein features.

Peptide features: disordered region (DR) and surface accessibility (SA) and protein features: cellular

component (CC) and biological process (BP) have MICs of 0.72 and 0.5 respectively.

To analyze the impact of correlation between DR and SA in peptide feature set and CC and

BP in protein feature set on the performance of naïve Bayes classifier we built four different clas-

sifiers without one of the correlated features: (-)DR, (-)SA, (-)CC, and (-)BP and compared their

performance with classifiers built using all features (ALL) using different statistics. Moreover, to
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Model AUROC AUPRC BRIER F1-score MCC ACC
ALL 0.94 0.93 0.09 0.86 0.73 0.86
(-) DR 0.93 0.92 0.09 0.64 0.45 0.68
(-) SA 0.94 0.93 0.09 0.65 0.46 0.69
(-) PC 0.92 0.9 0.1 0.84 0.69 0.84
(-) SC 0.92 0.92 0.1 0.87 0.73 0.86
(-) DR, SA 0.78 0.77 0.19 0.47 0.26 0.57
(-) DR, PC 0.91 0.88 0.1 0.69 0.47 0.71
(-) DR, SC 0.92 0.91 0.11 0.54 0.34 0.61
(-) SA, PC 0.93 0.91 0.1 0.72 0.52 0.74
(-) SA, SC 0.92 0.91 0.11 0.55 0.35 0.62
(-) PC, SC 0.9 0.91 0.11 0.86 0.72 0.86
(-) DR, SA, PC 0.72 0.68 0.21 0.33 0.0 0.5
(-) DR, SA, SC 0.64 0.7 0.23 0.48 0.27 0.57
(-) DR, PC, SC 0.88 0.9 0.12 0.33 0.0 0.5
(-) SA, PC, SC 0.88 0.9 0.11 0.33 0.0 0.5

Table 3.1: Peptide classifier: area under ROC curve (AUROC), area under precision-recall curve
(AUPRC), Brier score (BRIER), F1-score, Matthews correlation coefficient (MCC) and accuracy
(ACC) for different models.

identify the feature subset which maximizes the performance of both classifiers we compared all

possible feature combinations. We computed average area under ROC curve (AUROC), area under

precision-recall curve (AUPRC), Brier score (BRIER), F1-score, Matthews correlation coefficient

(MCC) and accuracy (ACC) of 10-fold cross-validation protocol to determine the performance of

different models. The peptide classifier was trained and tested using P1 & N1 datasets and the pro-

tein classifier using P2 & N2. F1-score, MCC and ACC are reported at threshold score ≥ 0.9. All

measures except the Brier score are directly proportional to performance i.e. the higher the score for

a model, the better the performance. On the other hand, the lower the Brier score for a model, the

better the performance. Except MCC, which lies within the range [−1, 1], other measures are within

[0, 1] range. It is clear from the Tables 3.1 and 3.2 that removing any of the individual features or

any of the combinations do not improve the performance of either classifier. Even removing one

of the correlated features does not improve the performance. For the peptide classifier, F1-score,

MCC, and ACC drop sharply for (-)DR and (-)SA models. Similarly, for the protein classifier, the

performance degrades when either BP or CC are removed.

3.5.3 Model evaluation

Blind validation protocols is used to assess the predictive power of peptide Mpep and protein Mpro

naïve Bayes classifiers. The majority of interactions in the P1 dataset are from two peptide array
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Model AUROC AUPRC BRIER F1-score MCC ACC
ALL 0.98 0.98 0.06 0.9 0.81 0.9
(-) CC 0.97 0.98 0.06 0.89 0.8 0.89
(-) BP 0.97 0.98 0.06 0.89 0.8 0.89
(-) MF 0.97 0.98 0.06 0.9 0.81 0.9
(-) EX 0.97 0.98 0.07 0.89 0.8 0.89
(-) SS 0.95 0.96 0.08 0.88 0.78 0.88
(-) CC, BP 0.96 0.97 0.07 0.84 0.72 0.84
(-) CC, MF 0.97 0.97 0.07 0.88 0.78 0.88
(-) CC, EX 0.97 0.97 0.07 0.87 0.76 0.87
(-) CC, SS 0.94 0.95 0.09 0.85 0.73 0.85
(-) BP, MF 0.97 0.97 0.07 0.88 0.78 0.88
(-) BP, EX 0.97 0.97 0.07 0.86 0.76 0.87
(-) BP, SS 0.93 0.95 0.09 0.86 0.76 0.87
(-) MF, EX 0.97 0.98 0.07 0.88 0.78 0.88
(-) MF, SS 0.94 0.96 0.09 0.87 0.76 0.87
(-) EX, SS 0.93 0.95 0.09 0.86 0.75 0.86
(-) CC, BP, MF 0.94 0.95 0.09 0.79 0.64 0.79
(-) CC, BP, EX 0.94 0.95 0.09 0.82 0.68 0.82
(-) CC, BP, SS 0.88 0.91 0.12 0.81 0.67 0.81
(-) CC, MF, EX 0.96 0.97 0.08 0.84 0.72 0.85
(-) CC, MF, SS 0.93 0.94 0.1 0.82 0.69 0.82
(-) CC, EX, SS 0.91 0.94 0.11 0.79 0.65 0.8
(-) BP, MF, EX 0.96 0.97 0.07 0.84 0.73 0.85
(-) BP, MF, SS 0.91 0.94 0.1 0.85 0.73 0.85
(-) BP, EX, SS 0.91 0.93 0.11 0.84 0.72 0.85
(-) MF, EX, SS 0.92 0.94 0.1 0.85 0.73 0.85
(-) CC, BP, MF, EX 0.9 0.92 0.12 0.69 0.51 0.71
(-) CC, BP, MF, SS 0.8 0.86 0.16 0.72 0.56 0.74
(-) CC, BP, EX, SS 0.77 0.84 0.18 0.66 0.48 0.69
(-) CC, MF, EX, SS 0.9 0.92 0.12 0.77 0.62 0.78
(-) BP, MF, EX, SS 0.87 0.91 0.12 0.8 0.67 0.81

Table 3.2: Protein classifier: area under ROC curve (AUROC), area under precision-recall curve
(AUPRC), Brier score (BRIER), F1-score, Matthews correlation coefficient (MCC) and accuracy
(ACC) for different models.
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Test Classifier MCC ACC F1-score AUROC

Filtered Peptide 0.74 0.87 0.87 0.92
Protein 0.68 0.83 0.83 0.94

Unfiltered Peptide 0.72 0.86 0.86 0.92
Protein 0.63 0.80 0.80 0.92

Table 3.3: The filtered set has no missing values for any of the features, whereas unfiltered includes
all feature data (as would be the case in a real world prediction scenario). Matthews correlation
coefficient (MCC) threshold score ≥ 0.9, accuracy (ACC), F1-score and area under ROC curve
(AUROC) of protein and peptide classifiers for blind and 10-fold cross-validation tests are shown.
MCC, ACC, and F1-score are reported at threshold score ≥ 0.9.

experiments (Tonikian et al., 2009; Landgraf et al., 2004). This could lead to an experimental bias

therefore, for blind testing, the peptide classifier is trained using interactions only from peptide

array experiments and tested using interactions from all other experiments (no overlap between

training and test data sets). Similarly, to make an unbiased assessment, the protein classifier was

trained using P2 dataset but tested using the 2,304 interactions (with no missing information) from

the core subset of Database of Interacting Proteins (DIP) that do not overlap the P2 training set

and are based on different filtering criteria compared to the MINT-inspired score used to select the

iRefIndex P2 training set (Salwinski et al., 2004). The DIP core database includes PPIs derived

from both small-scale and large-scale experiments that have been scored by quality of experimental

methods, occurrence of interaction between paralogs (PVM), probable domain-domain interactions

between protein pairs (DPV), and comparison with expression profiles (EPR) (Salwinski et al.,

2004). In a real world prediction scenario, both classifiers are expected to encounter cases with

missing information. Therefore, the performance of both classifiers is also tested using an unfiltered

blind set. The results are summarized in Table 3.3. The AUROC for peptide clasifier is 0.92 and

ACC lies within the range [0.86, 0.87]. The protein classifier has an AUROC within the range

[0.92, 0.94] and ACC is between [0.80, 0.83].

The efficacy of the combined peptide and protein model was tested on the manually curated SH3

domain mediated PPI set from Tonikian et al. (2009). Tonikian and co-workers curated interactions

supported by multiple experiments through an exhaustive literature search. Not all interactions

(especially those identified using two hybrid and overlay assays) in this set are mapped to the

peptide sequence within the interacting partner (Tonikian et al., 2009). Therefore, these sequences

are scanned using the three P1 training set PWMs to identify binding sites and significant amino

acid positions within those sites. Peptide and protein classifiers are trained on P1 & N1 (no overlap



Chapter 3. DoMo-Pred 1.0 81

MCC ACC F1  score AUROC

Performance measures

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

S
c
o
re

Curated Dataset Analysis

Peptide classifier
Protein classifier
Combined classifier

Figure 3.8: Performance of peptide, protein, and combined classifiers on the curated SH3 domain
mediated PPI set. (Note: small size of curated validation dataset prevents the variance from being
estimated.)

with curated set) and P2 & N2 datasets, respectively. A randomized negative test set is created in

the same way as N1. Results from different statistical measures are summarized in Figure 3.8. The

combined classifier outperforms both the peptide and protein classifiers on the curated set.

3.5.4 SH3 domain mediated PPI predictions

30 PWMs representing multiple binding specificities of 25 SH3 domains in yeast are constructed

using phage display data from Tonikian et al. (2009) as described in section 3.4.1 (Table 3.4). These

PWMs are then used to predict SH3 domain-peptide interactions using the combined classifier. 534

unique PPIs (1, 481 binding sites) are predicted as positives for the stringent p-value PWM threshold

of 1e − 05 with no missing features. Approximately 55% (295 PPIs, 1, 139 binding sites) of these

interactions are known at the PPI level (iRefIndex & MINT) and at least 172 (464 binding sites)

out of 295 PPIs are known SH3 domain mediated interactions at the peptide level (with ≥ 60%

overlapping binding site). For example, the FUS1p SH3 domain is known to bind the STE5p

protein (verified by two-hybrid assay and phage display) via an R(S/T)(S/T)SL motif, supported

by two separate studies (Nelson et al., 2004; Kim et al., 2008). This interaction is part of the
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predicted set. 143 (203 binding sites) out of 239 (342 binding sites) novel interactions are of

high confidence with the combined classifier scores ≥ 0.9. Biological pathway enrichment (KEGG

(Kanehisa, 2002) and Reactome (Fabregat et al., 2015)) of the interactors reveal that a number

of over-represented processes or pathways are associated with known SH3 domain biology such as

endocytosis (Tonikian et al., 2009; Xin et al., 2013), MAPK signaling (Lyons et al., 1996), and Rho

GTPase signaling (Bishop and Alan, 2000) (Table 3.5). For example, some interacting partners

of the MYO3 SH3 domain are found to be enriched in PI3K/AKT signaling. AKT is known to

regulate actin organization and cell motility during endocytosis (Koral et al., 2014; Enomoto et al.,

2005). MYO3 is also implicated in actin organization for the internalization step in endocytosis

(Toret and Drubin, 2006) (Table 3.6). These examples support our results and suggest that our

predicted interactions are biologically relevant.

Table 3.4: List of yeast SH3 domains from Tonikian et al. (2009) and their binding motifs (trimmed)
with significant amino acid positions within those motifs.

Domain id Phage logo Significant positions

P11710 0, 1, 2, 3, 4

P15891 0, 2, 3, 5, 6, 8, 9

P29366-1 0, 2, 4, 5

P29366-2_PXXP 0, 1, 2, 3, 5, 6

P32790-1_classI 0, 4, 6

P32790-2_classII 0, 1, 2, 3, 4, 5, 6, 8

P32790-3 0, 1, 2, 3, 5

P32793 0, 2, 3, 5

P36006 0, 4, 5, 8
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P38041 0, 2, 3, 4, 5, 6

P38753 0, 3, 5

P38822-1 0, 2, 3, 4, 5, 6, 7

P38822-2 3, 4

P39743_ClassI 0, 1, 2, 3, 6

P39743_ClassII 0, 2, 3, 5

P39969 0, 3, 4, 5, 6

P40073 0, 1, 3, 4

P43603 0, 2, 3, 5

P47068_classIIcombined 0, 2, 3, 5, 6

P53281_classI 0, 1, 5, 6

P53281_classII 0, 3, 5

P80667_classIIA 0, 2, 3, 5, 6, 7

P80667_classIIB 0, 1, 3, 4

Q04439 0, 4, 5, 8

Q05080 0, 2, 3, 6
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Q06449_classI 0, 2, 6, 7, 8

Q06449_classII 0, 1, 2, 3, 5

Q07533_classI 0, 3, 6

Q07533_classII 0, 2, 3, 5, 6, 7

Q12163_PXXP 0, 2, 3, 5, 6
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P-value Term ID Term name Proteins

0.00113 KEGG:04011 MAPK signaling pathway - yeast P24583, P32917, Q03497,

P08018, P41832, P32491

0.0375 KEGG:04144 Endocytosis P34216, P25604, P35197,

P40343, Q12446

0.00077 KEGG:04070 Phosphatidylinositol signaling system P24583, P34756, P50942,

Q12271

0.0169 KEGG:00562 Inositol phosphate metabolism P34756, P50942, Q12271

0.00698 REAC:5733237 Innate Immune System Q03306, Q03497, P08018,

Q12236, Q12446, P32491

0.00316 REAC:5733336 Fc epsilon receptor (FCERI) signaling Q03306, P08018, Q12236,

P32491

0.00000197 REAC:5733138 Signal Transduction P24583, Q03306, Q04739,

Q03497, P40450, P32521,

P41832, Q12236, Q12446,

P48582, P32873, P32491

2.97E-09 REAC:5733143 Signaling by Rho GTPases P24583, Q03306, Q03497,

P40450, P32521, P41832,

Q12236, Q12446, P48582,

P32873

1.65E-08 REAC:5733142 RHO GTPase Effectors P24583, Q03306, Q03497,

P40450, P41832, Q12236,

Q12446, P48582

0.05 REAC:5733141 RHO GTPases activate PKNs P24583, Q03306, Q12236

0.0337 REAC:5733628 Signaling by ERBB4 Q03306, Q12236, P32491

0.0337 REAC:5733629 Signaling by SCF-KIT Q03306, Q12236, P32491

0.0314 REAC:5733228 Signalling by NGF Q03306, P32521, Q12236,

P32873, P32491

0.0123 REAC:5733461 Costimulation by the CD28 family Q03306, Q03497, Q12236

0.0123 REAC:5733460 CD28 co-stimulation Q03306, Q03497, Q12236

Table 3.5: Enrichment analysis of predicted high confidence interactors.
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P-value Term ID Term name Proteins

0.04 REAC:5733141 RHO GTPases activate PKNs Q03306, Q12236

0.000817 REAC:5733234 Signaling by ERBB2 Q03306, Q12236, P32491

0.000817 REAC:5733232 Signaling by EGFR Q03306, Q12236, P32491

0.000817 REAC:5733230 Signaling by PDGF Q03306, Q12236, P32491

0.000161 REAC:5733628 Signaling by ERBB4 Q03306, Q12236, P32491

0.000344 REAC:5733311 VEGFA-VEGFR2 Pathway Q03306, Q12236, P32491

0.00337 REAC:5733625 PIP3 activates AKT signaling Q03306, Q12236

0.000473 REAC:5733336 Fc epsilon receptor (FCERI) signaling Q03306, Q12236, P32491

0.00376 REAC:5733190 IGF1R signaling cascade Q03306, Q12236, P32491

0.00337 REAC:5733185 Activation of AKT2 Q03306, Q12236

0.000817 REAC:5733242 Signaling by FGFR Q03306, Q12236, P32491

0.00337 REAC:5733405 Downstream TCR signaling Q03306, Q12236

0.00337 REAC:5733635 CD28 dependent PI3K/Akt signaling Q03306, Q12236

0.000161 REAC:5733629 Signaling by SCF-KIT Q03306, Q12236, P32491

0.00376 REAC:5733187 IRS-mediated signalling Q03306, Q12236, P32491

Table 3.6: Enrichment analysis of predicted MYO3 interactors.

3.6 Conclusion

We developed a novel method for predicting physiologically relevant PPIs in yeast. This method

combines diverse binding site (peptide) features, including presence in a disordered region of the

protein, surface accessibility, conservation across different yeast species, and structural contact

with the SH3 domain, as well as protein features such as cellular proximity, shared biological

process, similar molecular function, correlated gene expression and sequence signature. Two separate

Bayesian models are used to combine peptide and protein features. Their respective posterior

probabilities are further combined using Bayes rule for predicting high confidence interactions.

The combination of peptide and protein models achieved a higher accuracy of 0.97 compared to

individual models on a curated benchmark dataset from Tonikian et al. (2009). Disordered region

and surface accessibility data from the peptide feature set and biological process, cellular location

and sequence signature information from the protein feature set are able to separate positive from
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negative interactions significantly better than other features. The method presented is generic and

modular in nature. Given binding peptide and feature data, we expect it can be used to predict other

PRM mediated PPIs in yeast and other organisms. Additional features such as network topology,

protein expression, and text mining derived protein relationships can be added to our framework.

Future development includes testing this method on other PRMs in different organisms, especially

human.

Implementation

The DoMo-Pred command line tool is implemented using Python 2.7 and C++. It is available for

download under the GNU LGPL license from http://www.baderlab.org/Software/DoMo-Pred.
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4.1 Abstract

SH3 domains mediate many intracellular signaling processes and are critical for cell functioning.

These domains bind to proline rich regions which can be identified using high-throughput experi-

mental screens such as phage display. SH3 binding motifs identified by phage display can be used

to computationally predict domain mediated protein-protein interactions. The existing landscape

of computational approaches for predicting protein interactions is either limited by their inability

to predict peptide recognition module mediated interactions or do not consider many known con-

straints governing these interactions. A novel method of predicting SH3 domain-peptide mediated

88
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protein-protein interactions in humans using phage display data is presented. This method builds

upon our previously published work of combining multiple binding site and full length protein fea-

tures using naïve Bayes models for predicting PRM mediated interactions. In this work, we present

a novel algorithm for predicting protein interactions using network topology and show that it out-

performs existing approaches. We have also extended the semi-supervised training framework of

multinomial naïve Bayes classifier developed for text classification to Gaussian naïve Bayes mod-

els for PPI prediction to overcome limited availability of labeled data. Domain-Motif Mediated

Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available un-

der GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred-human.

The DoMo-Pred command line tool is implemented using Python 2.7 and C++.

4.2 Introduction

Protein-protein interactions (PPIs) are the building blocks of complex cellular processes. They

are critical for cell functioning and their knowledge help us better understand cellular dynamics.

They are the physical associations between protein pairs in a specific biological context (Jain and

Bader, 2016). Experimental methods for detecting PPIs can be classified into two broad categories:

small scale techniques like affinity chromatography, co-immunoprecipitation, affinity blotting (Phiz-

icky and Fields, 1995) and high-throughput techniques such as mass-spectrometry combined with

affinity-purification, phage display, yeast two-hybrid, and next-generation sequencing (Davy et al.,

2001; Ito et al., 2001; McCraith et al., 2000; Rain et al., 2001; Uetz et al., 2000; Yu et al., 2011;

Braun et al., 2013). PPIs detected using physical techniques are largely accurate but it is difficult

to adapt these techniques for whole genome analysis. On the other hand, high-throughput methods

can be used to detect PPIs on genomic scale but they are resource intensive and also suffer from

the problem of false positives. This led to the development of computational approaches using

experimental data to predict high confidence novel interactions on genome-wide scale (Skrabanek

et al., 2008). Computational approaches can model complex systems are inexpensive to apply to

whole genome analysis and this motivates their further development (Jain and Bader, 2016).

Domains are the functional units in proteins. A protein can have multiple domains of same or

different families. Domains mediate PPIs by physically interacting with other domains or peptide

sequences. We are interested in interactions involving peptide recognition modules (PRMs), in

particular Src homology 3 (SH3), which are important in many cellular signaling processes. These
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domains bind to linear sequence motifs of 10− 15 amino acids within proteins (Pawson and Nash,

2003). SH3 domains are approximately 60 amino acids long and fold into a beta-barrel structure

composed of five to six anti-parallel beta strands. The SH3 domain has a flat, hydrophobic surface

which consists of three shallow pockets with conserved aromatic residues (Zafra-Ruano and Luque,

2012). They often bind to proline-rich regions with PxxP as the minimal consensus target sequence.

Based on the positioning of positively charged residues around the core PxxP motif, SH3 domains

are divided into two classes. Class I SH3 domains bind to [R/K]xxPxxP and class II bind to

PxxPx[R/K] motifs (Mayer, 2001; Saksela and Permi, 2012). However, studies have shown that

class boundaries are not rigid and SH3 domains can bind to peptide sequences without the core

PxxP motif like PxxDY, RxxPxxxP, PxxxPR, and PxRPxR (Carducci et al., 2012; Mongioví et al.,

1999; Tian et al., 2006; Moncalián et al., 2006). They can also bind to proline-free regions containing

combinations od arginine, lysine, and/or tyrosine residues such as RxxK and RKxxYxxY (Tong

et al., 2002; Carducci et al., 2012). SH3 domains are involved in many regulatory or signaling

processes, including endocytosis (Tonikian et al., 2009), actin cytoskeleton regulation (Pawson and

Schlessingert, 1993), and tyrosine kinase pathways (Schlessinger, 1994). Experimental methods such

as phage display (Tonikian et al., 2008, 2009; Tong et al., 2002) and peptide microarray (MacBeath

and Schreiber, 2000; Hu et al., 2004; Stiffler et al., 2007) have been used to identify the peptides

binding to PRMs.

This work focuses on developing a computational model to predict SH3 domain mediated PPIs

in humans using peptides identified from phage display experiments. As discussed in our previous

work Jain and Bader (2016), the straightforward approach of constructing a position weight matrices

(PWMs) from phage peptides and scanning the whole proteome for potential targets lacks the

contextual information needed to reduce false positives. For example, the predicted binding site

might not be accessible or the two proteins might never be co-localized in the cell. Contextual

information can be grouped into two categories, one for predicting high confidence binding site

(peptide features) and the other working with full length proteins for predicting PPIs in general

(protein features). Efforts have been made to predict PPIs by combining different full length protein

evidence sources but they cannot be used to predict PRM mediated PPIs (Jansen et al., 2003;

Rhodes et al., 2005; Li et al., 2008; Zhang et al., 2012b). Lam et al. (2010) combined comparative

and structural genomic features with phage display data to predict high confidence binding sites

but they failed to incorporate many cellular constraints like interacting proteins must be in close

proximity and should be part of same process (Jain and Bader, 2016). Chen et al. (2015) combined
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limited number of peptide and protein features for predicting PRM mediated PPIs in humans.

Apart from using an outdated protein feature set from the earlier works in the field of ensemble PPI

prediction by Jansen et al. (2003) their method is also not compatible with high-throughput binding

peptide data, such as from phage display (Jain and Bader, 2016). Recently, we published DoMo-

Pred, a novel method for predicting SH3 domain-peptide mediated PPIs in yeast by combining

large number of peptide and protein features using multiple Bayesian models (Jain and Bader,

2016). Here, we extend DoMo-Pred to include protein expression and network topology features.

We developed a novel algorithm for predicting PPIs using network topology and extended the semi-

supervised training regime of multinomial naïve Bayes classifier developed for text classification to

Gaussian naïve Bayes models for PPI prediction.

4.3 Approach

PPIs in general are governed by many cellular and structural constrains. For example, two proteins

can physically interact only if they are expressed at the same time and are co-localized. Also,

a true binding site should be accessible and is more likely to be conserved when compared to

random sequence. Therefore, the potential binding sites identified by scanning the whole proteome

using SH3 domain specific PWMs are filtered using a combination of peptide (or binding site) and

full length protein features. Peptide features: disorder, surface accessibility, peptide conservation

and structural contact are combined using a semi-supervised naïve Bayes model to score domain

binding sites. Another semi-supervised naïve Bayes model is used to combine protein features:

cellular location, biological process, molecular function, gene expression, sequence signature, protein

expression, and network topology to score the same PWM targets. Scores from both the models are

combined using Bayes theorem. Figure 4.1 shows the workflow of our PRM mediated PPI prediction

pipeline.

4.4 Methods

4.4.1 Position weight matrix and proteome scanning

Position weight matrices (PWMs) are statistical models for representing sequence motifs. They are

real valued m× n matrices, where m is the size of alphabet (20 amino acids for protein sequences)

and n is the motif length. PWMs contain a weight for each alphabet symbol i at each position j in
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Figure 4.1: Work flow of PRM mediated PPI prediction pipeline. (A) Proteome is scanned using
a PWM built using experimentally derived binding peptides (e.g. from phage display) of a given
SH3 domain for potential interactors. (B) Separate naïve Bayes classifiers for peptide and protein
features. (C) Integration of classifiers for predicting interacting and non-interacting protein pairs.
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the motif as a log-odds score of a probabilistic model against the background probability distribution

of amino acids in proteome (B(i)) (Pizzi et al., 2011). For a given set of peptides binding to a SH3

domain the PWM for that SH3 domain is constructed using the empirical count of amino acid i at

position j.

M(i, j) = log count(i, j)
N ×B(i) (4.1)

where N is the count of all the amino acids at position j. PWMs are trimmed at either ends to

improve the signal of core motif by removing low information content positions. Trimmed PWMs

are then used to scan a protein sequence to find matches of the weighted pattern above a p-value

threshold score. Not all amino acid positions within a motif are significant. For example, in

class 1 SH3 binding motif [R/K]xxPxxP, positions 1, 4, and 7 are more significant than others.

Amino acid positions with information content ≥ 0.5 within the trimmed PWMs are identified

as significant. These significant amino acid positions are used in calculation of disordered region,

surface accessibility, and peptide conservation scores (Jain and Bader, 2016).

4.4.2 Peptide features

As discussed in Jain and Bader (2016), disordered region, surface accessibility, peptide conservation,

and structural contact features are used to assess the confidence of binding site predicted from PWM

scan. SH3 domains often bind to proline rich regions containing PXXP, [R/K]xxPxxP, PxxPx[R/K]

motifs. As presence of prolines disrupts the secondary structure of a protein therefore, a true SH3

domain binding site is more likely to be disordered. Disordered (DR) score is defined as the fraction

of significant amino acid residues predicted being disordered by DISOPRED (Ward et al., 2004) tool

as shown in equation 4.2. Also, any SH3 domain binding peptide should be accessible i.e. it should

not be buried inside the folded protein. Equation 4.3 estimates the surface accessibility (SA) score

of a peptide using the relative solvent accessibility (RSA) of significant amino acids as estimated

by SABLE (Adamczak et al., 2004).

DR =

∑
i pi =


1 if amino acid i is disordered

0 otherwise

N
(4.2)
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SA =

∑
i pi =


1 if RSA >= 25%

0 otherwise

N
(4.3)

where pi is the disordered or surface accessible ith amino acid residue and N is the number of

significant amino acids in the binding site.

Biologically relevant peptides are more likely to be conserved across different organisms. For

measuring the conservation of peptides, orthologs of human protein sequences in P. troglodytes, M.

musculus, M. putorius, L. africana, O. cuniculus, M. lucifugus, M. domestica, S. scrofa, S. harrisii,

X. tropicalis, L. chalumnae, O. niloticus, T. chinensis, X. maculatus, T. rubripes, M. gallopavo,

T. guttata, O. latipes and O. anatinus (organisms with different taxonomic order and >= 10, 000

human orthologs) are identified using INPARANOID (Remm et al., 2001) and aligned with MAFFT

(Katoh et al., 2002). The unweighted sum-of-pairs method from AL2CO (Pei and Grishin, 2001)

is used to estimate the conservation score of each position in the multiple sequence alignment and

converted into the peptide conservation (PC) score,

PC = φ

(∑
i con(i)
N

)
(4.4)

where con(i) is the AL2CO conservation z-score of ith amino acid residue of SH3 domain binding

peptide and φ is the normal cumulative distribution function. N is the number of significant amino

acids in the binding site.

2-D contact maps of eight human SH3-peptide co-complex PDB structures (1AGZ, 1BBZ, 1IO6,

3UA7, 4CC2, 4EIK, 4J9F, 4LN2) are used as base models. Query domain and peptide sequences

are aligned with all base models to calculate the contact distance between aligned residues. Then

the structural contact (SC) score is defined as maximum average contact area

SC = max
j

∑
i cij
N

(4.5)

4.4.3 Protein features

As discussed in Jain and Bader (2016), full length protein features: cellular location, biological pro-

cess, molecular function, gene expression, and sequence signature are used to independently assess

the interaction potential of proteins involved in PRM mediated PPIs. True physical interactions

are more likely to occur between co-localized proteins belonging to same biological process with
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similar molecular function. The Gene Ontology (GO) describes cellular compartment (CC), bio-

logical process (BP), and molecular function (MF) of proteins using a set of hierarchical terms and

the relationship between these terms can be quantified by topological clustering semantic similarity

(TCSS) measure. For a given protein pair, CC, BP, and MF scores are defined as,

CC = TCSS(a, b, ontology = C, cutoff = 3.4) (4.6)

BP = TCSS(a, b, ontology = P, cutoff = 4.0) (4.7)

MF = TCSS(a, b, ontology = F, cutoff = 3.6) (4.8)

where a and b are the query proteins and C,P, F are the cellular component, biological process,

and molecular function ontologies.

Cell systems are optimized to co-express functionally related genes and if the genes are func-

tionally related, their protein products are more likely to physically interact. Therefore, for a given

protein pair, correlation coefficients from 140 human gene expression datasets from GeneMANIA

(Warde-Farley et al., 2010) are combined using Fisher’s z transformation (Faller, 1981; Jain and

Bader, 2010) and the result is normalized to lie within the range (0, 1) using a logistic function as

shown below,

EX = 1
1 + e−5r̄ (4.9)

r̄ = e2z̄ + 1
e2z̄ − 1 (4.10)

z̄ = N−1
N∑
i=1

1
2ln

(1 + ri
1− ri

)
(4.11)

where N is the number of gene expression datasets and ri is the Pearson correlation of the ith

dataset.

Sequence composition of known protein interactions can be used as an indicator for predicting

novel PPIs. Information content of co-occurring InterPro (Apweiler et al., 2001) sequence signatures

is used for scoring interactions, as described by Jain and Bader (2016); Sprinzak and Margalit (2001).

SS =
∑
ij

−log2

(
pij
pipj

)
(4.12)
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where pij is the probability of seeing motif i on one protein and motif j on other protein in the

experimentally verified PPI set, pi is the probability of seeing motif i and pj is the probability of

seeing motif j in the same set.

4.4.4 Protein expression

Recently, Kim and co-workers published a draft map of human proteome with expression profiles of

17, 294 protein coding genes. They did in-depth proteomic profiling of 30 histologically normal hu-

man samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells

using high-resolution Fourier-transform mass spectrometry (Kim et al., 2014). As discussed previ-

ously, gene expression profiles are used to assess the likelihood that protein products of co-expressed

genes also interact physically. With the availability of protein expression data, we hypothesized and

proved that protein expression pattern is a better predictor of protein-protein interactions than

gene expression profiles (Kim et al., 2014). For a given protein pair we correlate their normalized

spectral count profiles across all 30 cells/tissues in our data using Pearson correlation. The Pearson

correlation coefficients are normalized to lie within the range (0, 1) using a logistic function,

PX = 1
1 + e−5r (4.13)

where r is the Pearson correlation coefficient of spectral count profiles for a given protein pair.

4.4.5 Network Topology

Networks or graphs provide a powerful computational framework to represent and analyze complex

biological systems. They include transcriptional regulatory networks, metabolic networks, signal

transduction networks, and PPI networks. Development of high-throughput technologies for detect-

ing protein interactions have created large-scale PPI networks where, nodes correspond to proteins

and undirected edges represent physical interactions amongst them. Much work has been done in

defining the relationship between the PPI network topology and biological function (Sharan et al.,

2007). We are interested in predicting PPIs using network topology. Goldberg and Roth (2003)

exploited the neighborhood cohesiveness property of small-world networks to assess confidence of

PPIs in high-throughput experimental network. They showed that true edges in a PPI have higher

neighborhood cohesiveness as compared to false edges. Conversely, an edge in a PPI can be quali-

fied to be true positive if it shows higher degree of neighborhood cohesiveness. Bader et al. (2004)



Chapter 4. DoMo-Pred 2.0, NTOP, Semi-supervised Training 97

proposed that interacting proteins sharing interactors are more likely to be biologically relevant.

Yu et al. (2006) predicted interactions in protein networks by completing defective cliques. They

used the matrix model interpretation of the results from large-scale experiments, which states that

two proteins interacting with the same protein clusters are likely to interact with each other. Yu et

al.’s method is biased towards complexes and Goldberg’s neighborhood cohesiveness approach does

not consider graph properties such as edge density, edge connectivity, mean degree and others.

Network TOPology (NTOP) Algorithm

We propose a machine learning based algorithm for predicting PPIs using topological information

of known networks. PPI networks have the properties of small-world network: presence of cliques

or near-cliques, over-abundance of hub nodes, and random connectivity at longer distances (Bader

et al., 2004). Therefore, for a given a graph G = (V,E) we compute the following small-world

network descriptors:

• Edge density is defined as the fraction of edges (interactions) and all possible edges in a

graph. For undirected PPI networks edge density (ED) is calculated as,

ED = 2|E|
|V |(|V | − 1) (4.14)

• Mean degree is defined as the fraction of twice the number of edges in G and the total

number of vertices in G,

MD = 2|E|
|V |

(4.15)

• Edge connectivity of an undirected graph G is defined as the minimum number of edges

(E) whose deletion from G disconnects it. A graph is said to be k-edge-connected if it remains

connected when fewer than k edges are removed.

• Transitivity is the measure of clustering in a graph. Small-world networks tend to have

tightly knit groups of nodes. Therefore, true interactions in a PPI network are more likely to

be present in densely connected regions of the network. Transitivity is calculated by counting

the number of triangles in G,

TA = 3× number of triangles in the graph
number of connected triples in the graph (4.16)
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• Mutual clustering coefficient is a measure of neighborhood cohesiveness around the edge

of interest in G. Watts and Strogatz (1998) showed that small-world networks have high

clustering coefficients. Therefore, clustering coefficients of true interactions in a PPI network

must be greater than that of randomly established links (Goldberg and Roth, 2003). One

of the methods for computing mutual clustering coefficient as defined by Goldberg and Roth

(2003) is,

Eab = |Na
⋂
Nb|

min(|Na|, |Nb|)
(4.17)

where Na and Nb are the neighbors of nodes a and b respectively, in G.

Feature vector: For a given pair of proteins A & B in a PPI network G a feature vector is created

as,

1. Compute the neighbors NA and NB of nodes A & B respectively, in graph G.

2. Compute the sub-graphs SNA , SNB and SNA∪NB from graph G.

3. For each sub-graph in step 2 compute edge density, mean degree, edge connectivity, and

transitivity. Also, compute mutual clustering coefficient for sub-graph SNA∪NB .

4. Concatenate the graph features into a single vector of size 13 to be used by a logistic regression

model in next step.

Logistic regression model for PPI prediction learns the function of the form f : X → P (Y |X)

where X = (X1, X2, ...Xn) is a vector containing discrete or continuous variables (features) and

Y = k is "interacting" or "non-interacting" class (Mitchell, 1997). Logistic regression uses a sigmoid

function to parameterize the probability distribution P (Y |X). The parameterized form used by

logistic regression classifier is,

arg max
k

P (Y = k|X) = arg max
k

1
1 + e−(Θo+

∑n

i=1 ΘiXi) (4.18)

where the model parameters Θi are learned from training set of 9, 29 high confidence human protein

interactions from iRefIndex (Razick et al., 2008) downloaded through its web interface iRefWeb

(Turner et al., 2010). These interactions are all pairwise, physical, experimental, from a single

organism and have a MI (MINT-Inspired) score >= 0.8. To remove any bias in the dataset due to

the presence of hub proteins, only single randomly selected interaction involving the hub protein
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Method MCC ACC F1-score
NTOP 0.57 0.78 0.78
Mutual clustering coefficient 0.45 0.68 0.65
Defective cliques 0.46 0.70 0.68

Table 4.1: Matthews correlation coefficient (MCC), accuracy (ACC) and F1-score for NTOP, mutual
clustering coefficient proposed by Goldberg and Roth (2003) and predicting PPIs by completing
defective cliques proposed by Yu et al. (2006). Best value for each measure is shown in bold.

is retained. A negative interaction (or non-interaction) set is built using an equal number of low

confidence interactions from iRefWeb. These interactions have MI (MINT-Inspired) score < 0.3.

Similar to the positive set any bias due to hub proteins is removed.

Feature selection and model evaluation

The recursive feature elimination (RFE) algorithm is used to select an optimal subset of features for

the logistic regression model. RFE is an iterative procedure of ranking the features and eliminating

smallest ranked feature in each iteration. It is a greedy approach and is an instance of backward

feature elimination (Guyon et al., 2002). RFE along with 10-fold cross-validation was used to rank

the individual features and find a subset which optimize the classifier performance. All the 13

features when used together maximizes the performance of logistic regression classifier.

NTOP achieved an accuracy of 0.71, F1-score of 0.71 and Matthews correlation coefficient score

of 0.43 in a 10-fold cross-validation protocol. We compared the performance of NTOP algorithm

for predicting PPIs to that of mutual clustering coefficient approach proposed by Goldberg and

Roth (2003) and completing defective cliques by Yu et al. (2006) on a blind set (no overlap between

training and test sets) of 544 high confidence human protein interactions from iRefWeb (P2) and

equal number of experimentally verified non-interaction set from Negatome (N2) (Blohm et al.,

2013) (refer to section 3.7 for details). Table 4.1 summarizes the result of blind validation test.

NTOP outperforms both mutual clustering coefficient and completing defective cliques techniques.

For a given protein pair network topology (NT) score is the probability estimate of it belonging to

the interacting class.

4.4.6 Semi-supervised training of naïve Bayes model

As discussed earlier, PRM mediated PPI prediction algorithm computes a set of features involving

domain-peptide and another using full length proteins. Assuming that peptide and protein features
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are independent from each other, two separate naïve Bayes models Mpep for peptide features and

Mpro for protein features are built to independently estimate the probability that a given protein pair

interacts. A naïve Bayes model simplifies this problem by assuming independence between different

types of biological evidence. For a protein pair described by a set of features (Xi = X1, X2, ....Xn)

a naïve Bayes PPI prediction model is defined as,

arg max
k

P (Y = k|Xi) = arg max
k

P (Xi|Y = k)P (Y = k)
P (Xi)

= arg max
k

P (Y = k)
∏
i

P (Xi|Y = k)
(4.19)

where P (Y = k) is the class prior probability and P (Xi|Y ) is the class-conditional probability.

Class priors are estimated by treating P (Y = k) as a multinomial distribution P (Y ) = Πk as

there are only two classes k ∈ {interacting,non-interacting}. All peptide and protein features Xi

are continuous therefore the probability distributions P (Xi|Y ) are modeled as Gaussian P (Xi|Y =

k) = N (Xi;µik, σik). Putting it all together, the Gaussian naïve Bayes (GNB) model is defined as,

arg max
k

P (Y = k|Xi) = arg max
k

Πk

∏
i

N (Xi;µik, σik) (4.20)

where N (Xi;µik, σik) is the probability density of a Gaussian (or normal) distribution,

N (Xi;µik, σik) = 1√
2πσ2

ik

exp
− (Xi−µik)2

2σ2
ik (4.21)

where µik is the mean and σ2
ik is the variance of ith feature in class k. Mean, variance, and priors

are estimated using a training set of positive and negative interactions (labeled dataset) in PPI

prediction setting. They are defined as,

µik =
∑Nk
j=1 x

j
ik

Nk
(4.22)

σ2
ik =

∑Nk
j=1(xjik − µik)2

Nk − 1 (4.23)
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Πk = |Nk|∑
kNk

(4.24)

where xjik is the jth observation of Xi belonging to class k. Nk is the number of examples in class

k.

Nigam et al. (2000) proposed a text classification algorithm for learning a naïve Bayes classifier

using both labeled and unlabeled documents. They showed that the accuracy of a multinomial naïve

Bayes text classifier can be improved by augmenting a small set of labeled training documents with

a large set of unlabeled documents using Expectation-Maximization (EM) algorithm (Dempster

et al., 1977). The EM technique iteratively computes maximum-likelihood estimates when the

data has missing values. In semi-supervised training setting, the missing values correspond to

the missing labels of examples in unlabeled dataset. The E-step of the EM algorithm estimates the

class probabilities (or expectations) of unlabeled data given the latest iteration of model parameters.

M-step maximizes the likelihood of model parameters using previously estimated probabilities of

unlabeled data and labeled data (Nigam et al., 2000). The training of naïve Bayes classifier using

unlabeled data proceeds as follows:

1. Train the naïve Bayes classifier with labeled dataset.

2. Compute the class probabilities of examples in unlabeled set using the naïve Bayes classifier

trained in step 1 (E-step).

3. Re-estimate the classifier parameters using both labeled and unlabeled data. Class probabil-

ities estimated for unlabeled examples in step 1 are treated as true class labels i.e. in a two

class setting the unlabeled example is assigned to both the classes with probability estimated

in previous step (M-step).

4. Go back to step 2 until convergence.

Convergence of EM algorithm is measured as the change in complete log probability of training data

(labeled & unlabeled) and the prior. Complete probability of training data is the sum of posterior

probabilities of labeled (Sl) and unlabeled data (Su).

` = log(P (Y )) +
∑
i∈Su

log
∑
Y

P (Y = k)P ((Xi|Y = k) +
∑
i∈Sl

log(P (Y = k)P ((Xi|Y = k) (4.25)
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EM algorithm converges when ∆` = (`present − `previous) < ε, where ε is a threshold set to 0.01.

Machine learning based methods for PPI predictions rely on positive and negative datasets

during the training phase. In most cases, including this work, a positive set is created using

experimentally determined high confidence protein interactions. These interactions are readily

available from a number of PPI databases (Ceol et al., 2007; Razick et al., 2008; Salwinski et al.,

2004). On the other hand, it is difficult to find experimentally detected negative interactions (or

non-interacting protein pairs), as they are rarely published. Also, experimentally detected PPIs,

especially through high-throughput screens, suffer from false positives. Therefore, we hypothesized

that using a high confidence set of experimentally detected positive and negative interactions as

labeled data (Sl) and a larger unlabeled set (Su) during the training phase could improve the

performance of classifier. We extended Nigam et al.’s semi-supervised training approach to Gaussian

naïve Bayes models by replacing mean, variance and priors in equations 4.22, 4.23 and 4.24 with

weighted mean, weighted variance and weighted priors respectively,

µ̄ik =
∑Nk
j=1 δ

j
kx

j
ik∑Nk

j=1 δ
j
k

(4.26)

σ̄2
ik =

∑Nk
j=1 δ

j
k(x

j
ik − µ̄ik)2

∑Nk
j=1 δ

j
k − (

∑N

j=1(δj
k
)2∑N

j=1 δ
j
k

)
(4.27)

Π̄k =
∑Nk
j=1 δ

j
k∑

kNk
(4.28)

where δjk is the weight of jth example of class k and it is defined as,

δjk =


1 or 0 if j ∈ Sl

p(j, k) if j ∈ Su
(4.29)

where p(j, k) is the probability of jth unlabeled example belonging to class k as computed in the E

step of EM algorithm. For labeled examples, δjk is either 1 or 0. The EM algorithm iterates over E

& M steps till the classifier parameters improve, which is measured by the change in the sum of log

probability of labeled data, unlabeled data, and the prior (Nigam et al., 2000). Both the peptide

(Mpep) and protein (Mpro) classifiers are trained using labeled and unlabeled datasets (see model

training for more details). Assuming that peptide and protein features are independent of each

other, the posterior probabilities P (Y |Mpep) and P (Y |Mpro) are combined using Bayes’ theorem
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(Jain and Bader, 2016),

P (Y |Mpep,Mpro) = P (Y )P (Mpep,Mpro|Y )
P (Mpep,Mpro)

= α
P (Y |Mpep)P (Y |Mpro)

P (Y )

(4.30)

where α is the normalizing constant.

4.5 Results

4.5.1 Model training

Peptide classifier training and validation set

400 unique peptides (sequence length upto 15 amino acids) belonging to 1, 074 SH3-peptide mediated

PPIs were downloaded from MINT (Licata et al., 2012), DOMINO (Ceol et al., 2007) databases

and a literature curated list from Carducci et al. (2012). MUSI (Kim et al., 2011) was used to

divide the peptide set into two generic PWMs capturing major known SH3 domain binding motif

classes [R/K]xxPxxP and PxxPxR. These PWMs were then used to scan all 1, 074 interactions to

identify significant amino acid positions and trim the binding sites. 847 out of 1, 074 interactions

have complete feature information. The vast majority of these interactions (793 out of 847) are only

supported by in vitro experiments, like phage display or peptide chips. They are not supported

by any evidence that indicates their occurrence in the cell (i.e. in vivo). However, 583 out of 793

interactions are supported by experimental techniques other than phage display and peptide chips

at the protein level in iRefWeb database (Turner et al., 2010). These interactions are used as labeled

training set (L1). The remaining 54 interactions out of 847 with complete feature information are

supported by in vivo experiments and used as a blind validation set (V1).

There are more than 200 SH3 domain containing human proteins but the high confidence SH3

domain-peptide labeled set (L1) covers only 6 SH3 domain containing proteins. Also, the training

set only represents class I and II canonical binding motifs whereas it is known that SH3 domains

have other binding modes. Therefore, to increase the coverage, unlabeled data is used in a semi-

supervised training setting. 210 interactions out of 793 which are not supported by any in vivo or

small scale experiment are teated as unlabeled (U1). Another, 2, 500 novel SH3 domain-peptide

mediated PPIs predicted using high-throughput peptide chip technology and sequence matching by



Chapter 4. DoMo-Pred 2.0, NTOP, Semi-supervised Training 104

Carducci et al. (2012) are added to the unlabeled set as these interactions are not supported by

in vivo evidence. By adding unlabeled data the coverage is increased to 59 human SH3 domain

containing proteins.

The negative dataset is created from randomly selected protein pairs with one member containing

a randomly selected human SH3 domain and the other a randomly selected 10−15 amino acid long

peptide sequence. Positive PWMs from the P1 dataset are used to scan the peptide sequences and

only those with scores below the p-value threshold of 0.05 are retained. Also, the protein pairs are

not part of known interactions from the iRefIndex (version 13.0) database (Razick et al., 2008). To

balance the positive training and validation sets equal number of negative interactions are added

to L1, V1 and U1 datasets.

Protein classifier training and validation set

544 high confidence pairwise human PPIs are randomly selected from 4, 652 interactions retrieved

from iRefIndex (Razick et al., 2008) using its web interface iRefWeb. iRefIndex consolidates PPIs

from 10 major public databases and provides many filters to create a high confidence PPI set.

The interactions retrieved from iRefWeb are all physical, experimental, from a single organism,

supported by at least two publications and have a MI (MINT-Inspired) score >= 0.9. The number

of interactions is limited to 544 because the high confidence negative interaction set has only that

many interactions with complete feature information. 1, 048 non-interacting human protein pairs

are retrieved from Negatome (Blohm et al., 2013). Negatome uses manual literature curation and

3-D structure analysis to compile a high confidence list of non-interacting protein pairs. A high

confidence set of 544 non-interactions is created after removing instances with missing protein

feature information (labeled set: L2).

Trabuco et al. (2012) published a set of negative interactions computationally derived from two-

hybrid screens. As these interactions are not experimentally verified they are not part of the labeled

dataset. 4, 000 derived negatives and equal number of positive interactions from iRefWeb are used

to create an unlabeled set for semi-supervised training (U2). To make an unbiased assessment of

the classifier 1, 000 interactions (with no missing information) from the core subset of Database of

Interacting Proteins (DIP) that do not overlap with L2 & U2 training sets are used (Salwinski et al.,

2004). DIP interactions are based on different filtering criteria compared to the MINT-inspired score

used to select the iRefIndex. The DIP core database includes PPIs derived from both small-scale

and large-scale experiments that have been scored by quality of experimental methods, occurrence
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Figure 4.2: Prediction efficacy of individual (a) peptide features: disordered region (DR), surface
accessibility (SA), peptide conservation (PC), structural contact (SC). (b) protein features: cellular
component (CC), biological process (BP), molecular function (MF), gene expression (EX), protein
expression (PX), sequence signature (SS), network topology (NT).

of interaction between paralogs (PVM), probable domain-domain interactions between protein pairs

(DPV), and comparison with expression profiles (EPR) (Salwinski et al., 2004). Equal number of

derived negatives are added to the blind validation set (V2).

4.5.2 Feature selection

Figure 4.2 shows the prediction efficacy of individual features for peptide and protein classifiers.

All the peptide and protein features perform better than random in separating positives from

negatives. Surface accessibility (SA) is ranked best, whereas the prediction efficacy of peptide con-

servation (PC) is least among the peptide features. Surprisingly, the performance of disordered

region (DR) is comparatively weak considering the preference of SH3 domains for amino acids in

these regions. Approximately, 62% of human proteins are either intrinsically disordered or have

intrinsically disordered regions (Deiana and Giansanti, 2016) and this could lead to higher disorder

score for peptides in the negative dataset thus, affecting its prediction performance. In the protein

feature set, network topology (NT) outperforms biological process (BP), cellular component (CC),

and sequence signature (SS) molecular function (MF), gene expression (EX) and protein expression

(PX). Weak performance of molecular function can be attributed to the fact that proteins same

molecular function might belong to completely different biological processes. As expected, protein

expression performs better than gene expression in discriminating positives from negatives, as ex-
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pression of a gene does not necessarily lead to a protein product for interaction (Vogel and Marcotte,

2012).

A naïve Bayes classifier works under the assumption of feature independence. Therefore, a

highly correlated set of features could degrade its performance (Ratanamahatana and Gunopulos,

2003). The maximal information coefficient (MIC) technique measures the linear and non-linear

relationship between two variables by calculating their normalized mutual information. Mutual

information quantifies the reduction in uncertainty of one variable given the information of another.

MIC score ranges from 0 for complete independence to 1 for total dependence between two variables

(Albanese et al., 2012; Jain and Bader, 2016). Figure 4.3 shows the MIC plot for peptide and protein

features. None of the feature pairs in peptide and protein classifiers show significant correlation.

Maximum MIC score of 0.37 is observed between disordered region (DR) and surface accessibility

(SA) features in peptide classifier and 0.36 for cellular component (CC) and biological process (BP)

in protein classifier. Further, to identify the feature subset which maximizes the performance of

both classifiers recursive feature elimination (RFE) algorithm with a support vector classifier (SVC)

is used. RFE-SVC routine starts with computing weights for all the features using a SVC model and

then recursively eliminates the feature with smallest absolute weight. The RFE routine is performed

in a 5-fold cross-validation loop to select the optimal number of features using model accuracy as a

benchmark. Figure 4.4 shows that both peptide and protein classifiers achieve maximum accuracy

when all the features are used.

4.5.3 Model evaluation

Peptide classifier is evaluated using a blind validation protocol where the classifier is trained on the

labeled set L1 and the unlabeled set U1 and tested with validation set V1. The accuracy of the

peptide classifier increased from 0.80 to 0.83 when unlabeled data is added to the training procedure.

Table 4.2 shows the incremental increase in MCC, accuracy and F1-score with the increase in number

of unlabeled training examples. Similarly, the protein classifier is trained on the labeled set L2 and

the unlabeled set U2 and tested with validation set V2. MCC, accuracy and F1-score of the protein

model also showed an increasing trend with the increase in number of unlabeled training examples

(table 4.3). Accuracy of the protein classifier increased from 0.86 to 0.92 when unlabeled data is

added. As discussed earlier, PRM mediated PPI prediction pipeline combines both the binding site

(domain-peptide) and full length protein features to identify high confidence interactions with true

binding sites. Validation set V1 with 54 interactions with complete feature information that are
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Figure 4.3: Maximal information coefficients for (a) Peptide feature set: disordered region (DR),
surface accessibility (SA), peptide conservation (PC), structural contact (SC). (b) Protein feature
set: cellular component (CC), biological process (BP), molecular function (MF), gene expression
(EX), protein expression (PX), sequence signature (SS), network topology (NT).
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Figure 4.4: Recursive feature elimination plots (a) Peptide classifier. (b) Protein classifier.
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Peptide classifier
Unlabeled data MCC ACC F1-score
0 0.63 0.80 0.79
500 0.66 0.81 0.81
1000 0.67 0.82 0.82
1500 0.68 0.83 0.83
2000 0.69 0.83 0.83
2500 0.69 0.83 0.83

Table 4.2: Peptide classifier: Matthews correlation coefficient (MCC), accuracy (ACC), and F1-
score for different models with increasing number of unlabeled data.

Protein classifier
Unlabeled data MCC ACC F1-score
0 0.75 0.87 0.86
500 0.78 0.88 0.88
1000 0.79 0.89 0.89
1500 0.81 0.90 0.90
2000 0.82 0.91 0.91
2500 0.83 0.91 0.91
3000 0.83 0.91 0.91
3500 0.83 0.91 0.91
4000 0.83 0.92 0.92

Table 4.3: Protein classifier: Matthews correlation coefficient (MCC), accuracy (ACC), and F1-score
for different models with increasing number of unlabeled data.

supported by in vivo experiments and equal number of negative interactions is used to compare the

combined classifier with that of individual peptide and protein classifiers. Figure 4.5 shows that

by combining peptide and protein classifiers high confidence PRM mediated PPIs can be predicted

along with binding sites. Moreover, using only peptide features as was used by MOTIPS (Lam et al.,

2010) are not sufficient and adding full length protein information improves the PRM mediated PPI

predictions as shown by different measures.
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Figure 4.5: Performance of peptide, protein and combined classifiers on the curated SH3 domain
mediated PPI set. (Note: small size of curated validation dataset prevents the variance from being
estimated.)

4.5.4 Discussion1

Recently, Teyra et al. (2017) comprehensively surveyed the specificity landscape of human SH3 do-

mains in an unbiased manner using peptide-phage display and deep sequencing. Based on more than

70,000 unique binding peptides, 154 specificity profiles for 115 SH3 domains were obtained, which

revealed that roughly half of the SH3 domains exhibit non-canonical specificities and collectively

recognize a wide variety of peptide motifs, most of which were previously unknown. 154 binding

specificities for 115 SH3 domains were organized into nine classes based on similarities in peptide

binding preferences using PWM logos. Class I (Fig. 4.6(A)) and class II (Fig. 4.6(B)) domains are

defined as those recognizing peptides containing the PxxP core and an R/K residue either N- or

C-terminal to the core, respectively. Domains able to recognize both class I and class II peptides

were placed in class I/II (Fig. 4.6(C)). They identified 25 domains showing alternative class I-like

or class II-like specificities that were grouped in six additional classes (III to VIII). Specificities

where the proximal Pro residue was not required were classified as class III (-6RxxxxxP0(+), three

domains, Fig. 4.7(D)) or class IV (0PxxxxR+5(-), three domains, Fig. 4.7(E)) if they resembled
1This section is derived from our published work in Structure: Teyra, J., Huang, H., Jain, S. et al. (2017). I

collected human SH3 domains and analyzed phage display data.
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Figure 4.6: A total of 154 peptide-binding specificities for 115 SH3 domains were grouped in nine
classes, as follows: (A) class I, (B) class II, (C) class I/II, (D) class III, (E) class IV, (F) class V, (G)
class VI, (H) class VII, (I) class VIII, and (J) class IX. Each panel contains the list of SH3 domains
for a particular class with the defining motif shown at the top. Each row contains the SH3 domain
name, the number of unique peptide ligands isolated by phage display (n), and the sequence logos
derived from the frequencies of amino acids in aligned peptide ligand sequences.
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Figure 4.7: A total of 154 peptide-binding specificities for 115 SH3 domains were grouped in nine
classes, as follows: (A) class I, (B) class II, (C) class I/II, (D) class III, (E) class IV, (F) class V, (G)
class VI, (H) class VII, (I) class VIII, and (J) class IX. Each panel contains the list of SH3 domains
for a particular class with the defining motif shown at the top. Each row contains the SH3 domain
name, the number of unique peptide ligands isolated by phage display (n), and the sequence logos
derived from the frequencies of amino acids in aligned peptide ligand sequences.
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class I or II, respectively. Conversely, if the distal Pro residue was not required, the specificities were

classified as class V (-3RxxP0xxx+3(+), nine domains, Fig. 4.7(F)) or class VI (-3xxxP0xR+2(-),

three domains, Fig. 4.7(G)) if they resembled class I or II, respectively. Class II-like domains

that substituted the flanking Arg residue with a Lys residue inserted within the PxxP core were

classified as class VII (0PxK+2P+3(-), two domains, Fig. 4.7(H)). Class VII peptides bound in a

minus orientation because of the positively-charged residue embedded in the PxxP core for class II

domains, 0PxK+2P+3xR+5(-), and because this orientation is observed in all known structures of

SH3 domains in complex with a peptide conforming to a 0Px[R/K]+2P+3(-) motif. Domains that

recognize peptides with an extra Pro residue in place of the canonical flanking Arg residue were

placed in class VIII (0PxxP+3xxP+6(-), seven domains, Fig. 4.7(I)). Finally, many SH3 domains

exhibited a variety of atypical specificities which will require additional study to characterize their

binding properties and define new classes, thus these were grouped for convenience into a single

class IX (35 domains, Fig. 4.7(J)). These PWMs are then used to predict SH3 domain-peptide

interactions using the combined classifier. 2,359 high confidence (probability > 0.9) unique SH3

mediated PPIs with 3,097 binding sites are predicted. Proteins involved in these interactions are

found to be enriched in Reactome (Croft et al., 2013) biological pathways such as signaling, cell-cell

communication, and phagocytosis (Figure 4.8). These pathways are known to be mediated by SH3

domains thus providing an independent source of verification.

4.6 Conclusion

We developed a novel method for predicting SH3 domain mediated physiologically relevant PPIs

in human. This method combines diverse binding site (peptide) features, including presence in a

disordered region of the protein, surface accessibility, conservation across different human species,

and structural contact with the SH3 domain, as well as protein features such as cellular proxim-

ity, shared biological process, similar molecular function, correlated gene and protein expressions,

network topology, and sequence signature. Two separate Bayesian models are used to combine pep-

tide and protein features using a semi-supervised training framework and their respective posterior

probabilities are further combined using Bayes rule for predicting high confidence interactions. We

have also developed a novel algorithm for predicting PPIs using network topology and successfully

extended the existing semi-supervised training framework for text classification to Gaussian naïve

Bayes model for PPI prediction problem. The combination of peptide and protein models achieved
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a higher AUROC score of 0.97 compared to individual models on a benchmark dataset. Surface

accessibility data from the peptide feature set and network topology information from the protein

feature set are able to separate positive from negative interactions significantly better than other

features. The method presented is generic and modular in nature and given binding peptide and

feature data it can be used to predict other PRM mediated PPIs in different organisms. Additional

features such as text mining derived protein relationships, evolutionary conservation of protein in-

teractions, and correlated mutations within the binding sites can be added to our framework. Future

development includes testing this method on other PRMs in different organisms and a web based

PRM mediated PPI interaction prediction tool.

Implementation

The DoMo-Pred command line tool is implemented using Python 2.7 and C++. It is available for

download under the MIT license from http://www.baderlab.org/Software/DoMo-Pred-human
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Chapter 5

Summary and future directions

My thesis focuses on building computational models for predicting peptide recognition module

(PRM) mediated protein-protein interactions.

5.1 Summary of our major contributions

5.1.1 Cellular location, biological process, molecular function

This work was published in BMC Bioinformatics: An improved method for scoring protein-protein

interactions using semantic similarity within the gene ontology (Jain and Bader, 2010).

Semantic similarity measures are useful to assess the physiological relevance of protein-protein

interactions (PPIs). They quantify similarity between proteins based on their function using anno-

tation systems like the Gene Ontology (GO) (The Gene Ontology Consortium, 2000). Proteins that

interact in the cell are likely to be in similar locations or involved in similar biological processes

compared to proteins that do not interact. Thus the more semantically similar the gene function an-

notations are among the interacting proteins, more likely the interaction is physiologically relevant.

However, most semantic similarity measures used for PPI confidence assessment do not consider the

unequal depth of term hierarchies in different classes of cellular location, molecular function, and

biological process ontologies of GO and thus may over-or under-estimate similarity. We developed

an algorithm, Topological Clustering Semantic Similarity (TCSS), to compute semantic similarity

between GO terms annotated to proteins in interaction datasets. Our algorithm, considers unequal

depth of biological knowledge representation in different branches of the GO graph. The central idea

is to divide the GO graph into sub-graphs and score PPIs higher if participating proteins belong

115
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to the same sub-graph as compared to if they belong to different sub-graphs. The TCSS algorithm

performs better than other semantic similarity measurement techniques that we evaluated in terms

of their performance on distinguishing true from false protein interactions, and correlation with

gene expression and protein families.

5.1.2 Gene expression

This work was published in Bioinformatics: Predicting physiologically relevant sh3 domain mediated

protein-protein interactions in yeast (Jain and Bader, 2016).

Gene expression as a measure for assessing the confidence and biological relevance of high-throughput

PPIs is based on the notion that the cell is optimized to co-express genes if they function together

and if they function together, they are more likely to physically interact than by chance (Bhardwaj

and Lu, 2005; Grigoriev, 2001; Ge et al., 2001; Jansen et al., 2002). Most PPI prediction methods

that make use of gene expression profile (GEP) correlation with PPIs to predict novel interactions

(Li et al., 2008; Rhodes et al., 2005) rely on observations from a single expression dataset which can

lead to many false positives and true negatives, as not all genes are expressed under a particular set

of experimental conditions. We showed that by combining multiple GEPs improves the performance

of a PPI predictor. In case of yeast, we combined correlation coefficients from 86 gene expression

profiles and 140 for human from GeneMANIA (Warde-Farley et al., 2010) for a given pair of genes

using Fisher’s z transformation to improve the efficacy of gene expression as a measure for PPI

prediction (Faller, 1981; Jain and Bader, 2010).

5.1.3 Protein expression

This work was part of a collaboration that was published in Nature: A draft map of the human

proteome (Kim et al., 2014). I did the PPI network analysis and proposed the use of protein

expression data for predicting PPIs.

The availability of human genome sequence has transformed biomedical research over the past

decade. However, an equivalent map for the human proteome with direct measurements of proteins

and peptides was not available until Kim and co-workers used high-resolution Fourier-transform

mass spectrometry to produce a draft map of human proteome. They did in-depth proteomic pro-

filing of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6

purified primary haematopoietic cells, which resulted in identification of proteins encoded by 17,294
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genes. As described in previous section, gene expression profiles across various experimental condi-

tions or tissues have been utilized to investigate the likelihood of co-expressed genes to physically

interact at the protein level. With the availability of protein expression data, we hypothesized

that protein expression pattern should be a better predictor of protein-protein interactions than

gene expression measured at the mRNA level. We correlated normalized spectral count profiles

for each available protein pair across all 30 cells/tissues in our data using Pearson correlation and

compared this to known protein-protein interactions. We then repeated this analysis using correla-

tions obtained from 111 published gene expression data sets. Our analysis clearly showed that the

human proteome profile correlation outperforms gene expression profile correlation for predicting

protein-protein interactions, even if all gene expression data sets are combined and used as a single

predictor.

5.1.4 Network topology (NTOP)

This work was part of the manuscript: Predicting in-vivo SH3 domain mediated interactions in

human (Jain et al., to be submitted).

Networks or graphs provide a powerful computational framework to represent and analyze com-

plex biological systems. They include transcriptional regulatory networks, metabolic networks,

signal transduction networks, and PPI networks. Development of high-throughput technologies

for detecting protein interactions have created large-scale PPI networks where, nodes correspond to

proteins and undirected edges represent physical interactions amongst them. We propose a machine

learning based algorithm for predicting PPIs using topological information of known networks. We

combined network properties, such as edge density, edge connectivity, mean degree, transitivity,

and mutual clustering coefficient using a logistic regression model and outperformed the existing

network topology based PPI prediction methods. Network topolgy was then used as one of the

features in our PRM mediated PPI prediction pipeline.

5.1.5 Semi-supervised training

This work was part of the manuscript: Predicting in-vivo SH3 domain mediated interactions in

human (Jain et al., to be submitted).

Machine learning based methods for PPI predictions rely on positive and negative datasets during
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training phase. In most cases, including this work, the positive set is created using experimentally

determined high confidence protein interactions. These interactions are readily available from a

number of PPI databases (Ceol et al., 2007; Razick et al., 2008; Salwinski et al., 2004). On the

other hand, it is difficult to find experimentally detected negative interactions (or non-interacting

protein pairs), as they are rarely published. Also, experimentally detected PPIs, especially through

high-throughput screens, suffer from false positives. Therefore, we hypothesized that using a high

confidence set of experimentally detected positive and negative interactions as labeled data and

a larger unlabeled set during the training phase could improve the performance of classifier. We

extended Nigam et al. (2000)’s semi-supervised training approach to Gaussian naïve Bayes (GNB)

models and were able to improve the performance of our PRM mediated PPI prediction model. The

proposed semi-supervised GNB framework can be applied to any supervised classification problem

including generic PPI prediction problem.

5.1.6 Domain-Motif Mediated Interaction Prediction (DoMo-Pred)

First version of DoMo-Pred was published in Bioinformatics: Predicting physiologically relevant

sh3 domain mediated protein-protein interactions in yeast (Jain and Bader, 2016). Latest version

of DoMo-Pred is part of the manuscript: Predicting in-vivo SH3 domain mediated interactions in

human (Jain et al., to be submitted).

Many intracellular signaling processes are mediated by interactions involving peptide recognition

modules, such as SH3 domains. These domains bind to small, linear protein sequence motifs which

can be identified using high-throughput experimental screens, such as phage display. Binding motif

patterns can then be used to computationally predict protein interactions mediated by these do-

mains. While many protein-protein interaction prediction methods exist, most do not work with

peptide recognition module mediated interactions or do not consider many of the known constraints

governing physiologically relevant interactions between two proteins. We developed a novel method

for predicting physiologically relevant SH3 domain-peptide mediated protein-protein interactions in

S. cerevisae and H. sapiens using phage display data. Like some previous similar methods, this

method uses position weight matrix models of protein linear motif preference for individual SH3

domains to scan the proteome for potential hits and then filters these hits using a range of evidence

sources related to sequence-based and cellular constraints on protein interactions. The novelty of

this approach is the large number of evidence sources used and the method of combination of se-
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quence based and protein pair based evidence sources. By combining different peptide and protein

features using multiple Bayesian models we were able to predict high confidence interactions.

5.2 Future directions

5.2.1 Additional features and other domains

DoMo-Pred tool uses a combination of peptide (or binding site) and full length protein features

for predicting PRM mediated PPIs. Surface accessibility of binding site, its presence in disordered

region of a protein, conservation and structural contact are combined with protein features, such

as cellular proximity of domain containing and binding site proteins, biological process, molecular

function, correlated gene and protein expression profiles, sequence composition, and network topol-

ogy. The feature landscape used in DoMo-Pred is quite comprehensive but more features can be

added to the model to improve its performance and coverage.

Automated information extraction from literature through text mining can be used to predict

PRM mediated PPIs or PPIs in general. Proteins that are often cited together in sentences in

journal articles are more likely to interact. The simplest way to extract PPIs from the literature

is to detect the co-occurrence of protein names in a text. The STRING database parses scientific

documents for statistically relevant co-occurrences of gene names (Snel et al., 2000). Ramani et al.

(2005) developed natural-language processing and literature-mining algorithms to recover interac-

tions among human proteins from Medline abstracts. Daraselia et al. (2004) proposed MedScan,

a full-sentence based PPI information extraction system from Medline abstracts. Donaldson et al.

(2003) proposed a support vector machine based information extraction system trained to recognize

abstracts describing biomolecular interactions. While text mining is error-prone when combined

with other features it could improve the classifier’s performance (Reimand et al., 2012). Other PPI

evidence sources which can be used are evolutionary conservation of PPIs across different species

and correlation between evolutionary mutations in binding sites (Jothi et al., 2006). These evidence

sources are promising but have their own sets of challenges. For example, the coverage of conserved

PPIs across different species is quite low. Further research into these evidence sources could help in

improving the model. Moreover, improvements in some of the existing DoMo-Pred features, such

as developing new models for combining multiple gene expression profiles, can help in improving

the classifier performance.

In this thesis, the focus was on the SH3 domains but the framework can be easily extended
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to other domains binding to short linear motifs, such as WW, PDZ, 14-3-3, DEP, and G-alpha.

Extending DoMo-Pred algorithm to other domains will help us in generating a high-resolution (i.e.

with binding site information) PPI network which in turn will help in better understanding different

biological processes and human diseases.

5.2.2 PRM-mediated protein-protein interaction networks in human disease

PRM-mediated PPIs are involved in many important biological processes including signaling systems

and human diseases (Reimand et al., 2012). For example, mutations in PDZ domains disrupts

cell polarity which in turn plays a role in tumor metastasis and immune deficiencies (Dev, 2004;

Doorbar, 2006). SH2 and SH3 domain mediated PPIs are required for the transmission of signals

initiated by tyrosine kinases and are involved in cancers, such as acute lymphocytic leukemias and

HER-2/Neu in breast and ovarian cancer (Smithgall, 1995). Therefore, a systematic analysis of high-

confidence, high-resolution protein interaction networks will help explain disease mechanisms and

identify new therapeutic targets. In this thesis, the focus was on developing these high-confidence

and high-resolution networks and the next logical step is to use them for generating insights into

the genetic basis of specific diseases and their treatments. PRM mediated PPI networks can help

us in understanding network rewiring due to disease DNA mutations which could lead to gain or

loss of an interaction. Mapping a large number of disease-associated mutations and their network

effects will also enable a better understanding of the relationship between genomes and networks

(Reimand et al., 2012).
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