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Abstract 

Protein complexes are key macromolecular machines of the cell, but their description remains 

incomplete. Our group and others previously reported an experimental strategy for global 

characterization of native protein assemblies based on chromatographic fractionation of 

biological extracts coupled to precision mass spectrometry analysis (chromatographic 

fractionation–mass spectrometry, CF–MS), but the resulting data are challenging to process and 

interpret. In this thesis, I describe EPIC (elution profile-based inference of complexes), a 

software toolkit for automated scoring of large-scale CF–MS data to define high-confidence 

multi-component macromolecules from diverse biological specimens. The software toolkit EPIC 

is “plug-and-play”, connects to public repositories for automatic data processing, and can be 

adopted productively to explore the network biology of any model system with little 

computational expertise required.  The optimized CF-MS pipeline and EPIC data analysis 

workflows described in this thesis can be used to study different biological specimens, including 

diverse model organisms, to chart protein complexes on a global scale to expand our knowledge 

of macromolecular networks and their association with physiology, development, evolution and 

disease. Beyond providing a powerful framework to interpret CF-MS data, as a case study, I used 

EPIC to map the global interactome of Caenorhabditis elegans (WormMap), an important 

genetic model, comprising 612 putative multi-protein complexes linked to diverse biological 

processes. These encompassed new subunits for previously annotated protein complexes as well 

as novel assemblies seemingly unique to nematodes that we verified using stringent 

benchmarking criteria as well as by independent orthogonal affinity-purification mass 
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spectrometry validation experiments. To my knowledge, this is the first biochemically-based 

large-scale map of nematode protein complexes, which provides a rich platform for hypothesis-

driven mechanistic investigations of animal biology. The major two outcomes of this dissertation 

consist of a tool (EPIC) and a knowledgebase (WormMap), which should serve as lasting 

resources for the broader biological research community.   
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 Introduction 

1.1 Proteomics experiments generate fruitful data for charting 

molecular networks 

In cells, proteins rarely carry out biological functions on their own, but rather physically interact 

with each other to form multi-protein complexes to facilitate or catalyze cellular processes. In the 

past century, biologists usually focused on one or a few genes/proteins in one experiment, which 

undoubtedly led to many important scientific discoveries. However, the big picture of biological 

systems was usually bypassed, thus the derived molecular mechanism models were often 

incomplete. Unbiased elucidation of global protein-protein interaction (PPI) networks, or protein 

complex maps, is an alternate strategy to understand biological systems, and has become a major 

research focus of the proteomics research community. The term “proteomics” refers to “the large-

scale study of proteins”. Thanks to recent mass spectrometry-based technology development in 

proteomics, by our group and many others, nowadays thousands of interacting proteins can be 

identified and quantified in a single experiment, providing unprecedented opportunities to map the 

intermolecular connectivity that underlies biological systems. In the following sections of Chapter 1, 

I provide a snapshot of relevant technical and conceptual advances in the functional proteomics field. 

I focus on two traditional large-scale experimental approaches to map protein-protein physical 

interactions in biological systems. In closing, I discuss how modern machine learning techniques can 

be integrated with a powerful proteomics pipeline to make large-scale molecular network charting 

more efficient and effective. 

 

1.1.1 The development of mass spectrometry and its application in 

proteomics 

Protein mass spectrometry was first introduced as a follow-up step of 2-D gel electrophoresis for 

performing protein identification by peptide mass fingerprinting (Celis et al., 1996). Since the 

availability of gene and genome sequence databases and the development of increasingly 

sophisticated protein identification algorithms, mass spectrometry has become an effective strategy 
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for analyzing complex proteomics samples. Below I describe the basic workflows commonly used 

for charactering polypeptide mixtures, namely  “top-down” and “bottom-up” proteomics.  

Top-down proteomics analyses aim to characterize intact proteins, which has great potential for 

studying protein post-translational modifications (PTMs) and protein isoforms (Aebersold et al., 

2018). Coupled with four-dimensional chromatographic separation, a single top-down proteomics 

experiment can successfully identify around 1,000 proteins, encompassing previously undetected 

protein isoforms (Tran et al., 2011). On the other hand, bottom-up proteomics aims to identify 

proteins from peptides released after proteolytic digestion, usually by the use of the enzyme trypsin. 

Unlike top-down proteomics, this bottom-up ‘shotgun’ approach aims to characterize proteins in an 

indirect way by detecting the digested peptides and then mapping them back to their cognate mother 

proteins. Top-down method is still limited in terms of sensitivity and throughput, because separation, 

ionization and fragmentation of entire proteins are naturally much more challenging than with 

smaller peptides. Thus, bottom-up proteomics has been significantly more widely adopted for 

protein analysis by the international proteomics community. 

Regardless of which proteomics approach is utilized, mass spectrometry represents a state-of-art 

“workhorse” for protein analysis in both academia and industry. In order to carry out such 

experiments, peptide/protein analytes must first be ionized and then measured in the gas phase. 

Electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are two 

efficient ionization techniques used in proteomics studies. MALDI and ESI are considered soft 

ionization methods, because they do not fragment macromolecules into charged particles. The 

advantage of gentle ionization makes the detection of complex biological molecules tractable. 

MALDI uses laser pulses to ionize samples from a dry matrix, and was historically favored for less 

complex peptide samples, such as excised gel bands containing a single polypeptide. For more 

complex samples, ESI is normally the preferred choice, as ESI-MS can be relatively easily coupled 

to a liquid chromatography-based sample separation system. The entire liquid-chromatography ESI-

MS workflow is called “LC-MS”. Since ESI-LC/MS has dominated proteomics research in recent 

years, I will only focus on this system in the following discussion. 

After ionization, mass-to-charge ratios (m/z) of ions eluting from the LC system are recorded by a 

mass analyzer, which measures MS1 intensities. Ions from this step can be further selected, 
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fragmented and measured by a second mass analyzer, in an cyclic process called tandem mass 

spectrometry (MS/MS). In MS/MS mode, the ESI process is often coupled to an ion trap MS device 

to select precursor ions according to a chosen mass window, and collision induced dissociation 

(CID) is then performed afterwards to fragment precursor ions, then the resulting fragmented ion 

spectra produced by CID of selected precursor ions are subsequently recorded by a mass detector 

(Michalski et al., 2011).  For example, in the popular Q-Exactive mass spectrometry instrument line, 

a Quadrupole plays the role of mass filter to select precursor ions for fragmentation and analysis by a 

high-field Orbitrap mass analyzer (Michalski et al., 2011). This whole process is called “LC-

MS/MS”.  In addition to measuring mass-charge ratio, recording protein or peptide fragmentation 

spectra provides critical sequence information. Based on the sequence-dependent fragmentation 

behavior, MS/MS spectra can often be easily mapped in silico against protein sequence databases to 

identify proteins that encode these peptides using different computational algorithms. For instance, 

in the SEQUEST algorithm (Eng et al., 1994), theoretically fragmented mass spectra are first 

generated computationally from a reference protein FASTA formatted sequence database, and a 

similarity metric is then used to calculate the overlap  between experimentally derived tandem mass 

spectra and theoretical spectra to figure out the most likely (best-matched) sequence. The identified 

peptides are then mapped back to the corresponding protein sequences. Nowadays, with the 

continuing development of precision mass spectrometry and improvements in database search 

algorithms, scientists can routinely and confidently identify almost 4,000 proteins expressed by the 

yeast proteome within one hour using an Orbitrap/Q-Exactive mass spectrometer (Hebert et al., 

2014). 

Besides protein identification, protein quantification is also important in proteomics research. There 

are two major approaches for determining protein abundance. The first approach involves stable 

isotope labeling, in which pairs of chemically identical analytes can be distinguished based on their 

different masses due to the incorporation of different isotopes. The mass spectrometry signal usually 

reflects the relative abundance ratio of two chemically identical analytes, which allows changes in 

protein expression in one or more test samples to be determined relative to the background level in a 

reference control specimen. 

Categorically speaking, there are three commonly used types of stable isotope labeling techniques. 

The first one to gain wide adoption is to introduce isotope labels metabolically by culturing cells in a 
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medium that contains isotopically enriched nutrients. For example, in the seminal method of “stable-

isotope labeling with amino acids in cell culture” (SILAC), cells are cultured in 13C enriched ‘heavy’ 

medium, such that 13C is metabolically incorporated into all newly synthesized proteins/peptides 

(Ong et al., 2002). Molecules labeled with exogenous 13C are readily discerned based on their mass 

differential or shift relative to the natural, native 12C isotopologue.  

The second approach incorporates stable isotopes through enzymatic reaction. For example, the 

heavy 18O isotope can be incorporated from 18O-labeled water during proteolysis (Miyagi and Rao, 

2007; White et al., 2009). 

The third labeling approach is to introduce heavy isotopes through a chemical reaction. In this 

strategy, specific sites (e.g. amino acid side chains) or functional groups on the proteins/peptides are 

labeled by reactive isotopically-encoded reagents. For example, tandem mass tags (TMT) are 

commercially available multiplexing reagents for labeling amino groups on peptides. By 

incorporating different neutron tags that produce readily discernible reporter ions and advanced mass 

spectrometry, TMT multiplexing allows relative quantification up to 10 or 11 different conditions in 

a single mass spectrometry run (Werner et al., 2014). Due to the simplicity of this experimental set-

up and multiplexing advantage, TMT labeling has become the most popular isotope reagent among 

all. Using labeling approaches, especially the advantage of multiplexing, mass spectrometry machine 

time can be dramatically reduced. Although in this thesis work only the label-free approach is 

utilized, labeling techniques based multiplexing experiments are definitely a promising future 

direction that can be incorporated into this thesis work. 

Besides isotope labeling based quantification, “label-free” quantification is commonly performed  in 

proteomics studies and is suitable for different purposes, including mapping protein interaction 

networks and complexes. There are two “label-free” metrics for protein quantification: the summed-

up mass spectrometry precursor ion intensity of peptides (MS1 intensity) and the number of MS/MS 

spectral counts (MS2 spectral counts) acquired for a protein (Nahnsen et al., 2013). Research has 

shown that protein quantification determined by MS2 spectral counts generally agrees well with 

MS1 intensity measurement and is proportional to protein abundance (and other factors, such as 

protein length) (Park et al., 2008), while  the sensitivity of the label-free quantification is only 
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slightly less reliable compared with that achieved by isotopic labeling quantification methods (Old et 

al., 2005).  

In summary, the overall workflow of using bottom-up proteomics to analyze protein mixtures could 

be summarized into seven parts (Zhang et al., 2013): sample preparation, protein fractionation, 

protein digestion, peptide separation, LC-MS/MS, database searching, and quantification. In the next 

section, I discuss how various methods devised to identify PPIs using proteomics based experiments. 

 

1.1.2 Proteomics data elucidates PPI network 

Since the possibility of systematically identifying and quantifying proteins from biological systems 

through proteomics experiments, researchers have devised methods focused on generating global 

proteome maps of biological systems (Florens et al., 2002; Washburn et al., 2001).  The task of 

mapping the protein architecture of biological systems itself remains undoubtedly important and 

technically challenging, but it is conceptually simple and leaves many biological questions 

unanswered. For instance, global proteome mapping is not sufficient to answer the molecular 

mechanisms of cellular functions, which is the most important for biology research. It is well known 

that most proteins physically interact with other proteins to carry out their functions within cells. 

Furthermore, many proteins associate stably to form multi-protein complexes, such as core 

components of cellular replicative machinery, to regulate or mediate cellular biological functions 

(Alberts, 1998). For instance, the human nuclear pore complex, composed of 34 different protein 

subunits, is considered as the largest macromolecular assembly in a cell that is responsible for 

regulating component exchange between nucleus and cytoplasm while also helping to stabilize the 

nuclear envelope (Rout et al., 2000).   

Apart from playing an architectural role within a cell, many protein complexes function within 

biological systems through the coordinated activity of multiple enzymatic activities. For example, 

RNA polymerase II is a well-characterized multi-protein enzyme complex that is responsible for 

catalyzing the synthesis of mRNA precursors through the transcription of chromosomal DNA 

templates in eukaryotic cell systems (Gnatt et al., 2001; Orphanides et al., 1996). Many, but not all, 
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of these complexes are widely conserved across evolution, whereas others show a more restricted 

lineage distribution. 

Although the importance of studying protein complexes is widely appreciated, knowledge of their 

composition is still lacking for many species, including human, and many protein assemblies remain 

to be mapped. How to utilize mass spectrometry-based experimental techniques to study PPIs or to 

map protein complexes in a high-throughput but unbiased manner remains a major challenging task 

for the proteomics community.  

Traditionally, low-throughput experimental approaches have been developed to study specific PPIs. 

For instance, one of the most commonly used experimental techniques is co-immunoprecipitation 

(Co-IP), where the antibody is used to capture a target protein and its interacting cellular partners. 

Afterwards, washing steps are typically performed to eliminate unspecific contaminants. 

Independent validation experiments often consist of gel-separation followed by Western blotting to 

probe putative interactors using specific antibodies (Markham et al., 2007). Such low-throughput 

assays are useful for characterizing small systems, but are difficult to adopt as platforms for large-

scale discovery projects due to the high cost of experiments.  

Two widely applied high-throughput strategies for mapping PPIs on a large-scale are the yeast two-

hybrid (Y2H) assay (Fields and Song, 1989) and affinity-purification mass spectrometry (AP-MS) 

(Rigaut et al., 1999). In the following sections, I will discuss methodologies of these two high-

throughput PPI mapping approaches and their applications in biology studies. 

 

1.1.2.1 Yeast two-hybrid assay 

The yeast two-hybrid (Y2H) assay, a molecular genetic test first introduced in 1989, was designed to 

identify direct binary interactions between two proteins based on the measurement of reporter gene 

transcriptional activity (Fields and Song, 1989).  Briefly speaking, in this assay, genes encoding two 

potentially interacting proteins are fused to two halves of a transcriptional activator (DNA binding 

domain, and a transactivation domain). The interaction of the two proteins reconstitutes the two 

domains to activate the transcription of a reporter construct, leading to the preferential growth of the 
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yeast strain or expression of some colorimetric enzyme (Fig. 1-1). The Y2H system provides a 

versatile platform to screen hundreds of binary PPIs, and has been applied to map global PPI 

networks in different species (Arabidopsis Interactome Mapping, 2011; Rolland et al., 2014; 

Rozenblatt-Rosen et al., 2012; Simonis et al., 2009). However, the limitations of this assay exist; for 

example, fusion to another protein might alter the biochemical properties of the two proteins and two 

proteins interacting in the yeast nucleus does not necessarily mean they interact in their native 

cellular environments. Meanwhile, the yeast two-hybrid assay provides limited information about the 

composition of multi-protein complexes since it fails to capture indirect PPIs.  In addition to false 

negatives, a major criticism of the Y2H assay is that it suffers a high false positive rate, which was 

estimated to be up to 50% using manually curated protein complexes as the reference dataset (von 

Mering et al., 2002). It has been suggested that the Y2H method provides reliable information about 

binary interactions involved in transient signaling and inter-complexes interactions rather than intra-

complex interactions (Yu et al., 2008). (In the work presented in this thesis, I focus on the 

characterization of protein complexes, in other words, intra-complex PPIs; nevertheless, the terms of 

intra-complex (co-complex) PPIs and protein complexes will be used interchangeably.) 

 

Figure 1-1: Yeast two-hybrid (Y2H) assay. Adopted from (Ratushny and Golemis, 2008) 
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1.1.2.2 Affinity-purification mass spectrometry (AP-MS) 

AP-MS is a proven, and widely used high-throughput experimental approach to systematically 

isolate and characterize protein complexes and PPIs on a large-scale. The first demonstration of the 

power of APMS was introduced in yeast in 1999, which established its utility for detecting both 

known and unexpected PPIs in biological samples (Rigaut et al., 1999). Since then, this 

biochemistry-based PPI detection technique has been adopted by many research groups to map 

global protein complexes across different model organisms and biological systems (Butland et al., 

2005; Guruharsha et al., 2011; Krogan et al., 2006). Lots of interesting biology can be drawn from 

these interactome maps. For example, in the yeast protein complex map, the authors noticed the 

protein Iwr1 co-purifies with RNA polymerase II, initiation factor TFIIF and transcription elongation 

factors Spt4/Spt5/Dst1. Further investigations confirm that Iwr1 is a conserved transcription factor.  

The original AP-MS system used a dual tag system consisting of two IgG-binding units from protein 

A of Staphylococcus aureus (ProtA) and a calmodulin-binding peptide (CBP) linked by a Tobacco 

Etch Virus (TEV) endopeptidase cleavage sequence. Genetic engineering is required to fuse the dual 

tag system to target protein C-terminals, which can often be achieved by targeted integration of the 

tagging cassette into the native chromosomal context without disturbing endogenous expression 

levels. Cell extract or lysate containing the tagged target protein, together with associated interacting 

proteins, is first incubated with an IgG matrix (usually agarose or magnetic beads) that binds to 

ProtA. Then TEV protease was added into the sample to release the bound proteins. The eluate is 

then incubated with Calmodulin-coated beads that capture the CBP fusion protein in the presence of 

calcium ions (Fig. 1-2). The whole process is called tandem affinity purification (TAP) as two 

washing steps are involved (Rigaut et al., 1999). The eluted proteins can later on be analyzed by 

mass spectrometry. As described before, the consistent biochemical nature of the AP-MS approach is 

well suited to the study of soluble protein macromolecules. Indeed, in this thesis work, AP-MS was 

used as an independent orthogonal approach by which to validate protein complexes detected using 

an alternate workflow. However, the disadvantages of AP-MS are also obvious: adding tags to target 

proteins through genetic engineering is laborious, while altering the stability, folding or expression 

of target proteins might affect PPIs, and the extensive bead washing might remove weakly 

interacting partner proteins, limiting its screening coverage. 
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Figure 1-2: Tandem affinity purification (TAP). Adopted from (Babu et al., 2009) 

 

1.1.2.2.1 Previous large-scale studies of protein complexes mapped using 

AP-MS 

Since my thesis work is focused on mapping protein complexes, and since AP-MS has been used 

as an orthogonal approach to validate novel protein complexes from my predicted protein 

complexes map, I provide a concise review of previous efforts of utilizing large-scale AP-MS to 

map protein interaction networks in literature. 
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The large-scale AP-MS-based discovery of protein complexes, or global PPIs surveys, started 

from pioneering work in unicellular model organisms. The first bacterial protein complex map 

charted by AP-MS was generated for Escherichia coli (E. coli) (Butland et al., 2005). In this 

work, 857 E. coli proteins were tagged and purified. The final filtered network was found to 

contain many complexes that were predicted to be broadly conserved across prokaryotes. A later 

paper published in 2009 extended the original work to cover virtually the entire soluble proteome 

of E. coli, encompassing 5,993 PPIs (Hu et al., 2009). In addition to providing a global PPI map, 

this study also focused on making use of this physical interaction map to assign functions to un-

annotated gene products based on the principle of guilt-by-association. Independent experiments 

were performed to verify the biological significance of certain predicted functions of previously 

unannotated gene products, ranging from biofilm formation and envelope assembly to protein 

synthesis and biomolecular replication. Apart from prokaryotes, AP-MS has been used to map 

protein interactions in eukaryotic organisms. To date, the most comprehensive PPI datasets in 

eukaryotic system community have been generated by applying AP-MS to the genetically 

tractable budding yeast Saccharomyces cerevisiae (Gavin et al., 2006; Krogan et al., 2006). In 

two papers co-published in 2006, researchers used tandem affinity purification to process 3,206 

and 4,562 tagged proteins, from which 491 and 429 protein complexes were identified, 

respectively. However, the two maps are surprisingly different on both PPI and complex levels 

(Goll and Uetz, 2006). Further analyses demonstrate the differences of the two studies mainly 

come from two sources. First, these two studies sampled different sub-proteomes from yeast with 

only 1,152 proteins overlapping. Considering 3,033 and 2,701 proteins sampled in each study, 

the overlap on the sampled proteins is small (Goll and Uetz, 2006). Secondly, the two papers 

used different computational approaches on all steps from data pre-processing, PPIs scoring to 

complexes clustering (Goll and Uetz, 2006; Hart et al., 2007). This illustrates the importance of 

careful analysis and benchmark of large-scale proteomics data. 

These microbial AP-MS mapping efforts have also been extended to study macromolecular 

assembly formation within cellular membranes. Membrane protein complexes are difficult to 

study due to the unique biochemical properties of cellular membrane proteins that hinder their 

extraction and affinity purification using traditional protocols. It was shown that using non-

denaturing detergent, membrane system associated protein complexes can be identified by AP-
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MS, and this strategy has been applied to both eukaryotic and prokaryotic envelope systems 

(Babu et al., 2018; Babu et al., 2012). 

Later on, large scale AP-MS based PPI surveys have been expanded to multi-cellular model 

organisms. Notably, in 2011, the first global scale protein complexes map in Drosophila 

melanogaster was published, in which, 4,927 Drosophila proteins were tagged by FLAG-HA 

epitope and 556 protein complexes were identified (Guruharsha et al., 2011). 

More recently, two large-scale AP-MS based studies of human the PPI network in cell culture 

models were published (Hein et al., 2015; Huttlin et al., 2015b). These studies used different 

human cell lines and tagging strategies (HeLa cell line vs. HEK293T cells; GFP tagged vs. 

FLAG-HA tagged) to define 28,504 and 23,744 PPIs, respectively. However, the two papers 

show limited overlap: among all 51,468 reported PPIs, only 758 PPIs are reported in both 

studies, which accounts for only 1.47% of all the reported PPIs from both papers. Apart from 

different cell lines and tagging strategies having been utilized in both studies, different 

computational pipelines might be the major reason for the discrepancy. Indeed, future detailed 

investigation is required before making any solid conclusion. The results of one of the projects, 

the BioPlex Network, was further expanded in a second recent update, in which more than 25% 

of protein-coding genes from the human genome were reportedly tagged and purified, forming 

the largest AP-MS based human PPI network to date (Huttlin et al., 2017). 

Besides using AP-MS to map the global protein-protein network within model organism systems, 

scientists have applied AP-MS to probe specific biological systems. For example, AP-MS has 

been used to map protein networks centered on the human deubiquitinating enzyme and Cullin-

RING ubiquitin ligase systems to study their mechanistic role in protein degradation in 

eukaryotic cells (Bennett et al., 2010; Sowa et al., 2009). 

AP-MS has also been adapted to study disease modified protein networks. A nice example is the 

use of targeted AP-MS to map the impact of the ∆F508 mutation (a major cause of cystic 

fibrosis) on the interaction partners of the cystic fibrosis transmembrane receptor (CFTR) 

(Pankow et al., 2015). 
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Host-pathogen PPI networks have also been documented by AP-MS. For instance, a HIV-human 

protein complex map was first charted in 2012, in which all 18 proteins from HIV-1 were tagged 

and purified from two human cell lines (HEK293 and Jurkat). A putative network of 497 HIV-

human PPIs were identified in this work (Jager et al., 2011). In a related work published more 

recently, scientists applied AP-MS to study PPIs between effector proteins expressed by 

mosquito-borne flaviviruses (dengue and Zika virus) and their host (human or mosquito) protein 

targets. This work identified many novel host-pathogen protein interactions, some of which were 

found to be important for virus infection (Shah et al., 2018). 

AP-MS can be coupled with other quantitative mass-spectrometry techniques to answer more 

difficult biological questions. For example, using a sensitive data independent acquisition mass 

spectrometry strategy (sequential window acquisition of all theoretical spectra, or SWATH, AP-

MS has been adopted to compare protein network dynamics under different conditions, 

potentially opening a new window to tackle differential protein network problems in biological 

systems (Collins et al., 2013; Lambert et al., 2013). 

 

1.1.2.3 PPI detection through co-fractionation experiments 

Mapping PPI network of a biological system from a global scale is important and informative. 

However, the current standard approaches for screening PPIs are tedious and laborious, which 

require tagging proteins individually (AP-MS) or in combination  (yeast 2-hybrid). How to 

simultaneously isolate native protein assemblies to detect thousands of PPIs in a more 

physiological context without genetic engineering is a key goal for systems biologists. 

Historically, biochemists have used liquid chromatography to isolate and purify endogenous 

protein complexes (Boekema et al., 2001). The concept is simple; protein complexes consisting 

of strongly associated components are expected to co-elute with a similar retention time during 

liquid chromatographic separation. While traditionally most of the protein complex purification 

works have been focused on isolating individual protein complexes to near homogeneity, in 

2012, two papers extended this idea to high-throughput study of macromolecules by collecting 

and analyzing multiple, relatively impure fractions using liquid chromatography separation 

systems (Havugimana et al., 2012; Kristensen et al., 2012).  
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In a proof of principle paper, human PPIs were identified by correlating protein elution profiles 

across a large set of biochemical fractions: a strong correlation supports a possible physical 

interaction between two or more proteins. Later on, this approach was extended to study multiple 

metazoan species to identify conserved protein complexes (Wan et al., 2015).  

A key requirement of this co-fractionation-mass spectrometry (CF-MS) approach was to develop 

a rigorous computational strategy to reliably and confidently detect PPIs. The major focus of this 

thesis work was to develop a stringent computational platform to automatically score, predict and 

evaluate protein complexes using data collected from CF-MS experiments. Since the details of 

this method (both experimental and computational parts) have now been published and are 

reported at length in the following data chapters, the general approach to PPI scoring and 

filtering will only be described briefly here. 

However, it is worthy to mention some existing tools have been developed by other groups to 

analyze this type of data. For instance, PrInCE written in MATLAB was developed by the Foster 

group (Stacey et al., 2017), in which the authors used the Expectation Maximization (EM) 

algorithm to fit a Gaussian mixture distribution to chromatographic peaks observed from elution 

profile. Then they used a Naïve Bayes based machine learning approach to predict protein-

protein interactions from pre-processed elution profiles. The advantage of this approach is that 

by fitting Gaussian mixture distributions to chromatographic peaks, most noise from the elution 

profile could be eliminated. However, the fitting process requires at least five data points (five 

fractions), which eliminates weaker, but still useful peak signals detected by the CF-MS 

approach. Also, chromatographic peaks with skewed tails are not well modeled by Gaussian 

distributions. As a result, the Gaussian mixture modeling procedure is too stringent that might 

remove many real within-complex protein interactions. Another paper published by the Marcotte 

group (Drew et al., 2017) adapts a sophisticated sparse graphical model to infer direct protein 

interactions using the co-variation pattern of the protein abundances. They tend to skip the 

protein elution profile correlation to directly predict protein complexes.  But this method lacks a 

software implementation and requires further experimental validation. Further, the lack of 

automation limits the usage of all existing tools: users need to manually curate multiple datasets 

from various sources and perform data pre-processing, which would be challenging for many 

proteomics labs. 
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1.1.3 Computational challenges in proteomics research 

From identifying proteins using mass spectra data collected from high performance LC-MS/MS 

systems to scoring PPIs based on the results from high-throughput experimental techniques, 

proteomics researchers have stepped into the ‘big data’ era. Thus, the demand for better 

computational algorithms and robust statistical methods for interpreting interactomics data has been 

increasing. Computational improvements in the proteomics field mainly focus on two aspects. The 

first concerns how to improve the quality of data acquired using mass spectrometry instruments. 

Better protein searching algorithms can make protein identification and quantification faster and 

more accurate. Efforts are also centered on building more effective new algorithms and software 

tools to enhance instrument performance through technology development. Another angle is how to 

efficiently or smartly apply innovative computational approaches to extract meaningful biological 

information from the large amount of proteomics data collected by mass spectrometry. After 

stepping into the big data era, many different artificial intelligence (AI) techniques, especially many 

machine learning algorithms, have been injecting fresh ideas into proteomics research help us better 

understand biology from proteomics data in a highly efficient way. But before discussing some 

exciting machine learning approaches and their applications in proteomics, I briefly review some 

important computational protein searching algorithms/tools for proteomics, and some of them are 

used in this thesis work. 

 

1.1.3.1 Computational tools in proteomics data acquisition 

Proteomics research relies on mass spectrometry technology. However, a mass spectrometry 

machine outputs a spectrum of mass-charge-ratios (m/z) obtained from the injected samples. 

These need to be interpreted to convert them into molecule identifications. For simplified or 

purified samples, an experienced mass spectrometry analytical chemist can manually assign 

chemical structures based on the fragmentation pattern and isotopic evidence. Even so, this work 

is not an easy task: chemists sometimes require other evidence, usually Infrared (IR) and Nuclear 

Magnetic Resonance (NMR) spectroscopy, to determine functional groups and finalize chemical 
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structures. The chemical diversity of polypeptides is much simpler than the chemical space of 

small molecules, as there are only 21 proteinogenic amino acids and the peptide bonds are 

strictly formed by the carboxyl group and the amino group from two different amino acids. As a 

result, the fragmentation pattern for a polypeptide is relatively easy to predict, even with the 

extra post-modifications on peptides. 

The first protein-searching algorithm is SEQUEST that was developed in 1994 (Eng et al., 1994). 

The idea of SEQUEST is that a cross-correlation function is defined to measure the similarity 

between the mass-to-charge ratios between fragment ions theoretically predicted from protein 

sequences and the one experimentally obtained through a tandem mass spectrometry experiment. 

The matched peptide is the theoretically predicted peptide that receives the highest similarity 

score. Since then, SEQUEST has been improved by several groups: to be more efficient 

(Diament and Noble, 2011; Eng et al., 2008), consider post-translation modification on peptides 

during protein search (Yates et al., 1995) and introduce single nucleotide polymorphism to 

nucleotide databases for amino acid variant recognition (Gatlin et al., 2000). Overall, SEQUEST 

has been a very impactful tool in proteomics community that greatly facilitated proteomics 

research, and many other useful tools are built on SEQUEST. 

MaxQuant is a newer generation popular proteomics searching platform. MaxQuant was first 

introduced as a tool specifically designed for protein identification and quantification in stable 

amino acid isotope (SILAC) samples (Cox and Mann, 2008). Later on, this platform has been 

expanded to cover many new functions including the control of false-discovery-rates (FDRs), the 

analysis of post-modifications (PTMs), label-free protein quantification and incorporating more 

isotope labeling strategies (Tyanova et al., 2016). The new version of MaxQuant uses 

Andromeda as the peptide searching engine, although the general framework is very similar to 

SEQUEST, the detailed peptide matching function and the ways of generating theoretical 

fragment masses are different (Cox et al., 2011). A major advantage of using the MaxQuant 

platform to perform protein label-free quantification is that it provides both MS1 intensity and 

MS2 spectral count measures. To more accurately perform MS1 intensity quantification, the 

MaxQuant intrinsic label-free quantification algorithm MaxLFQ uses the extracted ion currents 

(XICs) ratio to select peptides with good quality for further MS1 protein quantification (Cox et 

al., 2014). 
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Another interesting computational improvement in protein searching is to combine results from 

multiple different search engines. The idea is simple: with good statistics, the protein 

identification coverage should be increased and the protein quantification should be more 

accurate if multiple search engines are used. MSblender is one of these platforms can statistically 

integrate results from multiple search engines (Kwon et al., 2011). MSblender use mixture of 

multivariate distributions to account for the correlation between different database search scores 

and convert them into one probability score for every possible peptide spectrum match. In this 

thesis work, we used MSblender as the major protein-search platform. Meanwhile, we compared 

the performance of identifying co-complex PPIs from CF-MS data using different search and 

quantification approaches from several other protein-searching tools. 

Apart from the efforts mentioned above, many computational tools are also being developed to 

accompany new proteomics technology developments. For example, data-independent 

acquisition (DIA) is an emerging mass spectrometry technique, in which, all peptide precursors 

within predefined mass-to-charge ratio and retention time range are fragmented and all the 

tandem mass spectral information is stored for further analysis. Compared with traditional data-

dependent acquisition (DDA) approach, DIA is considered to be more unbiased and 

reproducible, but its tandem mass spectra are much more complex with multiple co-fragmenting 

precursors, thus harder to analyze. Many new software tools have been designed to specifically 

process DIA mass spectrometry data (Navarro et al., 2016; Rost et al., 2016; Ting et al., 2017; 

Tsou et al., 2015), which has made DIA based proteomics more popular over the last few years. 

1.1.3.2 Computationally analyzing proteomic data is challenging but 

rewarding 

As discussed before, the development of many different new algorithms, software tools and 

novel technologies have made mass spectrometry based proteomics a robust, powerful and 

popular analytical science. From a pure analytical chemistry point view, robustness, sensitivity 

and efficiency are the major goals of proteomics. But on the biology side, once a large amount of 

data is collected, how to translate the data to help answer biology or clinical questions requires 

effort from both computational and experimental scientists. Many challenging and diverse 

questions are still left in this direction in the proteomics community. For example, scientists are 
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studying clinical cancer samples using proteomics and genomics hoping to use correlation and 

differences between genomic and proteomic data to prioritize the tumor driver genes (Sinha et 

al., 2019; Zhang et al., 2014). Other efforts in proteomics research include spatial proteomics 

mapping (Kislinger et al., 2006; Thul et al., 2017), mitochondrial proteomics dissection (Stefely 

et al., 2016; Williams et al., 2016; Wu et al., 2014), and proteome-scale thermo-stability analysis 

(Leuenberger et al., 2017). Many computational tools have been developed to analyze the 

proteomics data analysis in these studies. Since the major focus of my thesis work is to study the 

protein physical interaction network, I will give a more detailed review of how researchers have 

used different algorithms and models to study the protein network. One of the earliest 

computationally predicted protein networks was published in 1999 (Marcotte et al., 1999). In this 

paper, scientists noticed that many pairs of known interacting proteins have homologs in another 

organism fused into one single protein. Based on this observation, 6,809 and 45,502 putative 

PPIs were predicted in E. coli and yeast, respectively. The computational approach used in this 

work is pioneering as it demonstrates that protein networks can be predicted using gene sequence 

data. Unfortunately, it suffers from a high false positive rate. Another important computational 

PPI prediction method was published in 2003 (Jansen et al., 2003). The authors built a Bayesian 

network to integrate genomic features and previously experimentally determined PPIs to 

generate a more comprehensive protein network in yeast. This work demonstrates that data 

integration can be used to improve the accuracy and coverage of protein networks. 

In addition to studying physical PPIs, scientists also build functional interaction networks that 

represent if genes or proteins are functionally related to each other. The first gene functional 

network was constructed in yeast (Lee et al., 2004). In this work, functional genomics data were 

integrated using a Bayesian approach. Each evidence source was scored by evaluating its ability 

to re-construct known biological pathways. The gene pairs from the known pathway are assigned 

a score calculated by the log-likelihood, conditioned on the functional evidence source. Then 

within each category of functional data (e.g. mRNA co-expression data), all experiments are 

integrated by a rank-weighted sum of log-likelihood score. After that, all functional genomic 

categories, such as mRNA co-expression, co-citation, AP-MS based protein network, are 

integrated by the rank-weighted approach again to derive the final gene functional network. This 

network can be used to predict gene function and for functional module detection. Functional 
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interaction networks have been developed for many other model organisms and continue to be 

updated as more functional genomic data becomes available (Lee et al., 2010a; Lee et al., 2011; 

Lee et al., 2008b; Lee et al., 2010b). Functional interaction networks are easy to access from 

various web search engines. For example, GeneMANIA is a software platform that uses ridge 

regression to integrate multiple sources of input networks to create an integrated functional 

interaction network (Mostafavi et al., 2008). Most functional interaction networks are created as 

a static database. The GeneMANIA algorithm is fast enough to perform the integration at query 

time, such that users can supply their own functional interaction data as input to the algorithm. 

STRING is another integrated network search engine with different evidence sources compared 

to GeneMANIA and coverage of a much wider range of organisms (von Mering et al., 2005). 

STRING uses naïve Bayes to integrate functional genomic data to predict PPIs trained on known 

biological pathways from KEGG. An advantage of GeneMANIA and STRING is they are 

applied to multiple species and all the functional genomic data of these organisms are stored in 

their databases and available for download. The EPIC software developed in this thesis work 

takes advantage of this feature to automatically download functional genomic data from these 

databases and integrate them with co-fractionation data to help predict PPIs (discussed in 

Chapter 2). 

 

1.2 Machine learning meets proteomics in the AI era 

As discussed above, proteomics technology introduced a new approach to study proteins in a 

large scale, and many protein interaction assays provide us powerful platforms to perform PPI 

screening in biological systems. Computationally how to infer, integrate and score PPIs using 

data collected from these assays is a challenge that machine learning can address. In this thesis, I 

used machine-learning classifiers to integrate functional genomic evidence with experimentally 

derived co-fractionation MS data to improve the prediction performance of ‘within complex’ 

PPIs. I also tried to expand the work by using deep neural network to predict PPI directly from 

raw co-fractionation data without performing feature engineering. Thus, in this section, I will 

give a brief introduction to the topic of machine learning, focusing on machine-learning 

algorithms used in this work. 
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1.2.1 Popular machine learning algorithms 

In the following sections, I provide a short introduction to machine learning algorithms used in 

this thesis. I start with introduction of linear regression, the simplest supervised learning machine 

learning algorithm. Then I cover support vector machine and random forest methods, which I 

used in this thesis to predict PPIs. The algorithms of linear regression, support vector machine 

and feed-forward neural network are summarized from the book of Pattern Recognition and 

Machine Learning (Bishop, 2006). The algorithm of random forest is summarized from the book 

of Machine Learning: A Probabilistic Perspective (Murphy, 2012). 

 

1.2.1.1 Linear Regression 

Linear regression is one of the simplest supervised machine-learning algorithms, which is the 

foundation of many other complicated machine learning algorithms. The goal of it is to predict 

the value of one or more continuous target variables given the values of input variables stored in 

an n dimensional vector. A simple form of linear regression is a linear function of input 

variables, for example, polynomial fitting is a typical linear regression problem. To account for 

the non-linear nature of data, we can apply nonlinear functions (basis functions) to the input 

variables to transform the input data. The simplest linear regression model can be formulated as 

the linear combination of the input variables: 

���, �� = �	 + ���� + ⋯ + ���� 

In the formula above, x is the input data, which can be seen as the input vectors of training 

features. The key property of this equation is the parameter vector of w, which can be obtained 

from training the model. The simple linear regression can be extended to consider non-linearity 

in input data by applying nonlinear functions to the input variables. Then linear regression can be 

formulated in the following way: 

���, �� = �	 + Σ�������������� 
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In the equation above, w0 is a fixed offset called the bias parameter of the model. Φj is the 

nonlinear function applied to the data that is known as basis function. To solve for w, an error 

function that measures the difference between the value of function y(x,w) and the target value t 

from the training dataset is minimized. So the goal is to minimize the function: 

12 Σ���� {����, �� − ��}� 

In this equation, xn is the features of nth sample in the training set and tn is the target value of the 

nth sample in the training set. The same result derived from minimizing the above function can 

also be achieved using a maximum likelihood approach under an assumed Gaussian noise model. 

The derived w is: 

�� = �!"!���!"# 

In the formula above, Φ is the N×M design matrix that can be expanded as: 

! = $�	���� … ��������⋮ ⋱ ⋮�	���� … ��������( 

The result derived above has a perfect fitting with the training data, but it suffers from poor 

prediction power on data not taken from the training set. This problem is called overfitting in 

machine learning. To overcome overfitting in linear regression, a regularization term is usually 

added to the error function. Then the error function becomes: 

12 Σ���� {����, �� − ��}� + )2 �*� 

λ is the coefficient of regularization that controls the importance of the regularization term. The 

new cost function with added regularization term can be minimized to obtain the following 

result: 

�� = �)+ + !"!���!"# 
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1.2.1.2 Random forest 

Random forest is another popular machine learning algorithm used in this thesis work, which is 

known to have good prediction accuracy over a wide range of applications. The basic unit of a 

random forest is a decision tree (another machine learning method) that is defined by partitioning 

the input space recursively to define a local model of each individual region after partitioning. To 

represent the whole partitioning process efficiently, a tree data structure is used, by which the 

leaf of the tree structure represents the defined region after partitioning. Given the input data, 

how to optimally partition the data to grow a tree structure is NP-complete. The common 

practice of this process is to use a greedy procedure for local optimal maximum likelihood 

estimation. There are several popular ways to implement this, and they all use a split function to 

choose the best feature and the best value for that feature. The process can be formulated in the 

following equation: 

�,∗, �∗� = argargargarg min�∈{�,…,�} min5∈67 89:�;<�=, �=: �=� ≤ �@ + 89:�<�=, �=: �=� > �@B 

If we assume all inputs are real values, then we can compare a feature xij to a numeric value t. 

The thresholds 6�  for feature j is usually defined by sorting unique values of xij. During the 

splitting process, multi-way splits (non-binary trees) are usually avoided, as this might result in 

too little data falling into each sub-tree that could lead to overfitting. Several stopping criteria 

can be used to determine whether a node will be split or not: the cost function reduction is too 

small; the depth of the tree exceeds the maximal value; the distributions of two sub-trees are 

sufficiently homogeneous; the number of data points in each sub-tree is too small. It is important 

to specify a cost function that helps decide a proposed node splitting and the choice of the cost 

function depends on whether the goal is regression or classification. In the regression set-up, the 

cost function is usually defined as: 

89:��C� = D��= − �E��
=∈C  

In the formula above, �E = �|C| ∑ �==∈C  stands for the mean response of the variables in the 

specified set of data. The other set-up for random forest is classification, in which, there are 
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several ways to measure the splitting quality. For the data in the leaf satisfying a test condition 

(i.e. xj < t), a multinoulli model could be fit to estimate the class-conditional probabilities: 

HIJ = 1|C| D Ι��= = 8�
=∈C  

In the formula above, C is the data in the leaf. Several different metrics (e.g. misclassification 

rate) can be used to measure the common error during tree partitioning. In this case, the most 

probable class label is defined as: 

�IJ = LMNOL�P HIP 

Using the result above, the error rate can be calculated as: 

1|C| D Ι��= ≠ �I�
=∈C = 1 − HISI  

Another popular error measure is entropy, which can be defined as: 

Η�UV� = − D HIP W9NHIP
J

P��  

Minimizing the entropy is same as maximizing the information gain. In other words, given a 

splitting test xj < t and class label Y, the information gain can be defined as: 

infoGain;�� < �B = \�]� − \;]|�� < �B
= $− D ^�� = 8� log ^�� = 8�

P ( + $D ^;� = 8|�� < �B log ^;8|�� < �BP ( 

The Gini index can also be used to measure the error, which is defined as: 

D�HIP��1 − HIP�J
P��  
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The Gini index is basically the expected error rate, as HIP is the probability that a random value in 

a leaf belongs to class c, and 1 − HIP is the probability that misclassification happens. 

Once a full tree is grown, governed by the splitting error measurements defined above, pruning is 

usually performed to prune the branches contribute the least error increase to prevent overfitting.  

The common practice of reducing variance of an estimate is to perform many estimates and 

compute the average. This is how random forest developed based on decision trees. In this case, 

many different trees on different subsets of the data are trained to get an ensemble, where the 

subsets of the data are chosen randomly with replacement. The ensemble can be calculated using 

the following formula: 

`��� = D 1a b̀����
b��  

In the formula above, fm is the mth individual tree. One issue of the ensemble approach is that 

predictors might be highly correlated with each other after re-running many times on different 

subsets of the input data, thus the initial goal of reducing variance is limited. The random forest 

model is implemented to eliminate this weakness by de-correlating the base learners. It tries to 

learn trees by using randomly chosen subset of input variables and randomly chosen subsets of 

data cases. 

 

1.2.1.3 Support vector machine 

Support vector machine (SVM) is a type of kernel-based machine learning. This machine-

learning algorithm is attractive due to its explainable mathematics, as the model training process 

can be treated as a convex optimization problem, thus the local optimum is always the global 

solution. It is also good at handling sparse, high dimensional data. The mathematics of SVM is 

elegant with an analytical solution. To understand how this algorithm works, let’s first define a 

two-class classification problem using a linear model: 

���� = �"Φ��� + d 
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In the formula above, w is the parameter vector, x is the input vector, Φ is the transformation in 

the feature space and b is the bias parameter. The training matrix has input vectors: x1, …, xN, and 

each vector has associated target values: t1, …, tN, in which, the value of ti is either 1 or -1. A new 

data point can be assigned to a class based on the sign of y(x). To explain how the SVM 

algorithm works, let’s first assume all data points in the training data set are linearly separable in 

the feature space, thus there exists at least a set of values of parameter w and b to make all 

training data points clearly distinguished into two groups, which means y(xn) > 0 for all points 

with the target value is 1 and y(xn) < 0 for all points with the target value is -1. There may be 

many values of parameter w and b that can make the separation possible, in which case the 

optimal solution would be the ones that give the smallest generalization error. SVM uses the 

concept of a margin to approach this classification problem. The margin is defined as the 

smallest distance between a decision boundary and any sample in the training set. The SVM 

algorithm aims to find the decision boundary that maximizes the value of margin. On the 

decision boundary, y(x) = 0, thus this decision boundary is also called a hyper-plane. If we set 

the linear model to have the form of y(x), the perpendicular distance of a point x from the hyper-

plane is given by |y(x)| / ||w||.  For all correctly classified points, tny(xn) > 0 as discussed before. 

Thus, the distance of a point xn to the hyper-plane is: �����e�‖�‖ = ����"Φ��e� + d�‖�‖  

The margin is defined as the perpendicular distance to the closest data point xn from the training 

data set. The goal of the SVM algorithm is to maximize the distance by optimizing the value of w 

and b. This can be represented as: 

arg max�,h i 1‖�‖ min� j����"Φ��e� + d�kl 

To directly solve this optimization problem is rather complicated. We could first rescale the w 

and b without changing the distance from any point xn to the hyper-plane (as the perpendicular 

distance of a point x from the hyper-plane is given by |y(x)| / ||w||). We could first set the point 

that is closest to the hyper-plane to have the following constraint: ����"Φ��e� + d� = 1 

In other words, all data points in the training set will have the following property: ����"Φ��e� + d� ≥ 1 



 

 

26

This re-scaling procedure is known as canonical representation of the decision hyper-plane. If the 

equality is held, the constraints are called to be active, otherwise, they are said to be inactive. 

Clearly there is at least one active constraint, since there is always at least a closest point. Once 

the maximized margin is achieved, there are two active constraints (as there are two target 

values). Then the SVM optimization problem has been transformed to maximize ‖�‖�� that is 

equivalent to the optimization problem of: 

arg min�,h
12 ‖�‖� 

This is a typical optimization problem of minimizing a quadratic function subject to a set of 

linear inequality constraints. To solve this, Lagrange multipliers (an) are introduced to give the 

Lagrangian function as below: 

L��, d, o� = 12 ‖�‖� − D L�{����"Φ���� + d� − 1}�
���  

By setting the derivatives of the above formula with respect to w and b to zero, we obtain the 

following equations: 

� = D L���Φ�����
���  

p = D L���
�

���  

By substituting the above equations into the Lagrangian function, we then get the following 

equation to maximize: 

Lq�o� = D L�
�

��� − 12 D D L�Lb���br���, �b��
b��

�
���  

In which, a is subjected to the constraints: L� ≥ 0 

D L��� = 0�
���  

 

The kernel function is defined as: r��, �t� = ����"���t� 
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It is evident that the kernel function is positive definite, so the Lagrangian function Lq�o� is 

bounded below. According to Karush-Kuhn-Tucker (KKT) condition, the following three 

properties hold: L� ≥ 0 ������� − 1 ≥ 0 L�{������� − 1} ≥ 0 

Also, by substituting w obtained from Lagrangian function into the original linear model, we get: 

���� = D L���r��, ��� + d�
���  

The third property from the KKT condition tells us that for each data point, it is either an = 0 or 

tny(xn) = 1. But the above formula indicates that an = 0 will not participate in making a decision 

for new data points. All the data points associated with an ≠ 0 are called support vectors and lie 

on the maximum margin hyperplane in the feature space as they have the property:  tny(xn) = 1. 

Up to now, we have solved the optimization problem and found the value for a. However, at the 

beginning of this section, we have assumed that all data points in the training space could be 

separated in the feature space. If misclassifications are not avoidable in the training data set, we 

introduce slack variables u� = |�� − �����| into the optimization problem, so we try to 

minimize the following term instead: 

v D u� + 12 ‖�‖��
���  

In the formula above, C > 0 can be set to control the weight of slack variables. The following 

update procedures to solve this optimization are similar to the ones we described before. 

 

1.2.1.4 Deep Learning 

According to a review paper written by Y. LeCun and his co-workers, deep learning refers to 

“computational models that are composed of multiple processing layers to learn representations 

of data with multiple levels of abstraction” (LeCun et al., 2015). For many decades, traditional 

machine learning approaches required careful feature engineering to extract informative features 

from the raw data, and then the machine-learning models could learn, detect and classify patterns 
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based on the carefully engineered features. Deep learning approaches overcome this problem by 

learning representations directly from raw data without extensive feature engineering. With 

multiple layers of representation, deep learning models take the raw data as the input layer and 

compose simple but nonlinear modules to transform the raw data into successively more abstract 

representation in each level. Highly complex functions can be learned after enough such 

transformations. Deep learning based approaches have demonstrated superior performance that 

beat conventional machine learning methods in many areas including speech recognition (Hinton 

et al., 2012) and image recognition (Alex et al., 2012). In recent years, deep learning methods 

have been introduced into biology studies and achieved great success including the predictions of 

sequence specificities of RNA- and DNA- binding proteins (Alipanahi et al., 2015), noncoding-

variant effects (Zhou and Troyanskaya, 2015) and splicing patterns in human tissues (Xiong et 

al., 2015). Recently, deep learning based approaches have been successfully introduced into 

proteomics research to predict tandem mass spectra for peptides (Gessulat et al., 2019; Tiwary et 

al., 2019). 

For most deep learning methods, feed-forward neural network is the fundamental architecture. 

The simplest unit of the feed-forward neural network architecture is the linear combination of 

fixed nonlinear basis functions �����: 

���, �� = ` wD ��������
��� x 

In the above formula, f stands for a nonlinear activation function and {wi} are the coefficients or 

weights to be adjusted during training. In the feed-forward neural network, each basis function ����� is a linear combination of the inputs. In other words, the basic neural network could be 

described as a series of transformations. From the input data, M different linear combinations 

could be built by linear combinations of the input data points (x1, ... , xD) using the following 

form: 

L� = D ��=����=
�

=�� + ��	���
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In the formula above, j = 1, …, M, which means there are M units or neurons in the second layer. 

The superscript (1) indicates that the coefficients are in the first layer of the neural network. In 

many neural network literature, ��=���
 is referred as weights, thus we will follow this 

nomenclature in the following discussions. The term aj is called activation. Usually all 

activations will be transformed by a differentiable and nonlinear activation functions h(.): 

y� = ℎ;L�B 

zj is called a hidden unit in neural network. There are many options for the nonlinear activation 

function. Among those, the most popular one nowadays is the rectified linear unit (ReLU): 

`;L�B = OL�;L� , 0B 

An advantage of using ReLU compared with other nonlinear activation functions is that ReLU 

always have a high gradient that makes training neural network with many layers much faster 

than other activation functions. The hidden unit values after the transformation of nonlinear 

activation functions are linearly combined again to generate output unit activations: 

L{ = D �{����y�
�

��� + �{	���
 

Since this transformation corresponds to the second layer of the neural network, k = 1, …, K 

refer to the units or neurons in the third layer in the neural network. Again this activation ak is 

transformed by the activation function h(.): y{ = ℎ�L{� 

The layers of neural network can be further expanded by the process shown above to construct a 

very deep neural network. To make the discussion simpler, we assume there are only four layers 

with two hidden layers in the neural network architecture. Following the third layer, the hidden 

units are linearly combined again to give the output unit activation: 

L| = D �|{�}�y{
~

{�� + �|	�}�
 

In the formula above, l = 1, …, L, which refer to the output units. The activation functions of the 

output layer can be varied according to the nature of data and different scientific questions. For 
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example, regression problem could take the identity function yl = al as the activation function. 

For binary classification problem, the usual choice is the logistic sigmoid function: 

�| = ��L|� = 11 + ���� 
In the problem of multi-class classification, the softmax activation function could be used: 

�| = ��L|� = ���∑ �������  

All the layers can be combined to give the overall neural network that could be summarized by 

the following formula: 

 

�|��, �� = � wD �|{�}�ℎ~
{�� wD �{����ℎ�

��� $D ��=����
=�� �= + ��	���( + �{	���x + �|	�}�x 

It is noted that in the formula above all the weights and bias parameters can be grouped together 

by a vector w, and all the input data points are grouped into a vector x. In other words, neural 

network is a nonlinear function based transformation from an input vector x to an output vector y 

parameterized by an adjustable weight vector w. Like most other machine learning methods, the 

learning process of feed-forward neural network is an iterative procedure to minimize an error 

function by optimizing parameters within the model through a series of steps. In each step, there 

are two stages of computation. The first one is about evaluating the derivatives of the error 

function with respect to weights. Backpropagation is the major technique for computing the 

gradient of the error function for a multi-layered neural network. The second step is using the 

computed gradient to adjust the weights in the multi-layered neural network. Backpropagation is 

considered as one of the most important algorithms developed in the deep learning community 

(Rumelhart et al., 1986), which enables efficient evaluation of derivatives within multi-layered 

neural networks. Let’s define an error function constructed by the sum of error terms, in which 

each error term comes from corresponding data point in the training set: 

���� = D ������
���  

The backpropagation algorithm basically helps evaluate ∇����� in the above formula. Recall 

from discussion in the section of linear regression, in the case of simple linear model, the value 

of output yk is basically the linear combination of input data point set {xi}: 
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�{ = D �{=�==  

For a particular input pattern n and the target value t, the error function can be defined by the 

following way: 

�� = 12 D���{ − ��{��
{  

Thus, the derivative of this error function with respect to a weight wji is: ������= = ;��� − ���B��= 
In the case of feed-forward network, each neuron in the network calculates the weighted sum by: 

L� = D ��== y= 
And then the weighted sum aj is transformed by a nonlinear activation function: y� = ℎ;L�B 

Now, we try to evaluate the gradient of En with respect to a weight wij. It is noted that En is 

dependent on wij through the summed aj to unit j. Chain rule can be used here to get the partial 

derivative: ������= = ����L�
�L����= 

From the formula of weighted sum, it is noted that: �L����= = y= 
For simplicity, we can write: 

�� = ����L�  

Thus, it is easy to see: ������= = ��y= 
In the last layer, for the output units, we can see: �{ = �{ − �{ 

The evaluation of � for each hidden unit is based on partial derivatives again: 
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�� = ����L� = D ����L{
�L{�L�{  

In the formula above, units ks are all the units that unit j sends connections to, in other words, 

these units are located on the outer layer of unit j in the neuron network. This formula also 

indicates that the variations in the error function contributed by aj are only through variables ak. 

To combine all the equations above, we can derive the final backpropagation formula: 

�� = ℎt;L�B D �{��{{  

The value of � can be obtained by the above formula by propagating � backwards from units in 

outer layer in the network. Since the values of � for output layer are always known from training 

data (�{ = �{ − �{), we can apply this formula to evaluate � for all the hidden units in a feed-

forward neural network recursively. Once the derivative of error function is computed by 

backpropagation algorithm, we move to the second stage to adjust the weights w. There are many 

different optimization algorithms have been developed for this stage. A simple but efficient 

algorithm called stochastic gradient descent that updates the weights vector w using one training 

point at a time: ������ = ���� − �∇�;����B 

In which, � > 0 is the learning rate. The update is usually performed by randomly selecting 

points from the data and repeated for many times. Recently, a method built upon stochastic 

gradient descent named Adam has been became popular in deep learning community and 

reported to outperform other optimization algorithms in many papers (Kingma and Ba, 2014).  

 

1.3 Aims and objectives 

As discussed above, a large amount of effort has been invested to map physical interactions in 

biological systems. The traditional AP-MS and yeast two-hybrid approaches require tremendous 

effort on genetic engineering for individual genes and the introduced tag or fusion to another 

protein may affect protein structure, which could affect PPIs. The tagless co-fractionation 

approach is a new approach to map PPIs that is more efficient than traditional ones in terms of 

setup work required to run the experiment. However, the co-fractionation approach to detect PPIs 

requires much computational effort for post experimental analysis, which could be challenging 
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for most biology labs. There is no state-of-art and standard protocol or software to guide how to 

perform co-fractionation experiments and analyze the data. We close this gap by developing a 

software workflow, named EPIC, to automatically analyze co-fractionation based proteomics 

data to predict PPIs and protein complexes and automate the whole process from raw data 

scoring to visualizing the prediction results (Chapter 2). To demonstrate the practicability of 

EPIC, we performed co-fractionation experiments on a popular model organism Caenorhabditis 

elegans and applied EPIC to predict its protein complexes map (WormMap, Chapter 3). We 

validated both known complexes with novel components and totally novel complexes from 

WormMap using an independent orthogonal approach (AP-MS). WormMap is the first global 

scale biochemistry based protein complex map in nematode species and will serve as a useful 

resource for the worm research community. I also explored a relatively new machine learning 

approach (deep learning) to predict protein complexes using co-fractionation raw data without 

performing any feature engineering, in an effort to improve on the EPIC workflow (Chapter 4). 
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CHAPTER 2 

EPIC: a software toolkit for elution profile-based inference of 

protein complexes 

A paper has been published in Nature Methods (Hu et al., 2019), partially based on the content of 

this chapter. The work presented in this chapter was done by a close collaboration with previous 

postdoctoral fellow Dr. Florian Goebels in Emili and Bader labs. I wrote the initial Perl scripts. In 

EPIC, I wrote the training set collection, functional evidence integration and results benchmark 

parts. The co-fractionation data was collected by previous postdoctoral fellow Dr. Cuihong Wan and 

myself. Prof. Andrew Emili and Prof. Gary Bader co-supervised the project. 
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 EPIC: a software toolkit for elution profile-based 

inference of protein complexes 

2.1 Introduction 

Systematic mapping of multi-protein complexes formed by PPIs is critical to understand the 

mechanistic basis of cellular processes. Affinity purification coupled to mass spectrometry 

(AP/MS) (Rigaut et al., 1999) is a powerful method for identifying such assemblies and has been 

applied widely (Babu et al., 2012; Gavin et al., 2006; Gavin et al., 2002; Hein et al., 2015; Ho et 

al., 2002; Hu et al., 2009; Huttlin et al., 2015a; Krogan et al., 2006), but is difficult to scale up or 

apply to non-model organisms. Biochemical co-fractionation coupled to mass spectrometry 

(CF/MS) is a more efficient and flexible alternate strategy for examining native macromolecules 

on a global scale (Havugimana et al., 2012; Wan et al., 2015). CF/MS is based on biophysical 

(typically chromatographic) co-purification of stable-associated proteins starting from cell-free 

mixtures (e.g. tissue lysates). However, sophisticated data processing is needed to define genuine 

interactions, which can be challenging to implement. 

To facilitate such studies, a simplified, standardized and fully automated CF/MS data analysis 

software toolkit, EPIC, was developed, which enables routine scoring and interpretation of large-

scale CF/MS data regardless of sample source. Using supervised machine learning EPIC 

integrates experimentally derived CF profiles and complementary functional evidence from 

public databases to create probabilistic PPI networks, which are then clustered to define high-

confidence complexes. In the following sections of Chapter 2, I will first describe how to 

experimentally generate co-fractionation data using a coupled system of high performance liquid 

chromatography (HPLC) and liquid chromatography tandem mass spectrometry. And then I will 

discuss the details of how to computationally score PPIs and predict protein complexes using the 

generated co-fractionation data. 

2.2 Experimentally generate co-fractionation data 

CF/MS is based on extensive experimental separation of native macromolecular mixtures under 

non-denaturing conditions. While there is no universally optimal protocol, ion exchange high-
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performance chromatography (IEX-HPLC) is efficient at resolving stable endogenous 

complexes. The entire experimental workflow of CF/MS is shown as in Fig. 2-1 below: 

 

Figure 2-1: CF/MS experiments have three main steps: biochemical fractionation, MS 

analysis, and protein profile scoring. 

In the following sections, I will describe each experimental step of generating co-fractionation 

data in detail. 

 

2.2.1 Materials and methods 

In this thesis work, we applied CF/MS experiments and the EPIC software tool to chart PPIs in 

C. elegans. In the following sections, C. elegans will be used as an example to demonstrate how 

to perform CF/MS experiments. 

 

2.2.1.1 Protein extract preparation 

Mixed-staged N2 strain C. elegans were collected in M9 buffer (standard recipe (Stiernagle)), 

and re-suspended into lysis buffer (50 mM HEPES pH7.4, 1 mM MgCl2, 1 mM EGTA, 100 mM 

KCl) plus protease inhibitor cocktail (Roche). Worms were lysed by 3 rounds of 10 sec 

sonication on ice (Branson Sonifer 450, output 6.0, duty cycle 60%). Soluble protein lysate [~2 
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mg/ml] was collected by filter centrifugation (Ultrafree®-MC-HV, 0.45 μm). Bradford assay was 

used to determine protein concentration. 

 

2.2.1.2 Pre-enrichment before HPLC fractionation 

Commercial differential affinity capture beads (NuGel PROspector; BSG) were used to pre-

enrich the worm lysate according to the manufacturer’s protocol. After removal of lipids and 

insoluble biomass, extract incubated with different reagent beads (PRO-A, PRO-B, PRO-C, 

PRO-L, PRO-N, PRO-R). The suspensions were mixed for 10 min at 4 °C, centrifuged using 

Spin-X filters, and the filtrate was collected as ‘flow-through’ fractions. Bound proteins were 

eluted with 200 ul elution buffer (0.2 M Tris, 0.5 M NaCl, pH 9.0). The buffer was exchanged 

for HPLC loading buffer by Zeba desalt spin column (Thermo) before HPLC fractionation. 

 

2.2.1.3 HPLC separation 

C. elegans lysate and affinity enriched eluates (plus flow-through fractions) were individually 

fractionated by ion-exchange liquid chromatography using a quaternary pump 1100 HPLC 

system (Agilent Technologies). Whole proteome lysate was resolved into 120 fractions on a 

PolyCATWAX mixed-bed ion exchange column (200 x 4.6 mm id, 12 μm, 1500 A) over a 240 

min salt gradient (0.15 to 1.5 M NaCl). Enriched eluates were separated on a PolyCATWAX 

mixed-bed ion exchange column (200 x 4.6mm id, 5 μm, 1000A) into 60 fractions using a 120 

min salt gradient (0.15 to 1.5 M NaCl). 

 

2.2.1.4 LC-MS/MS analysis 

Proteins from the HPLC fractions were acid precipitated, re-dissolved and digested by 

sequencing grade trypsin overnight at 37 °C. The resulting peptides were dried and solubilized in 

5% formic acid. Data-dependent LC-MS/MS was performed using a nano-flow HPLC System 
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(EASY-nLC, Proxeon, Odense, Denmark) coupled to an LTQ Orbitrap Velos Mass Spectrometer 

(Thermo Fisher). After loading onto a 2.5 cm C18 trap column (75 mm inner diameter) packed 

with 100A Luna 5u C18 beads (Phenomenex) using an auto-sampler, peptides were separated on 

a 10 cm analytical column (75 mm i.d.) packed with 2 mm Zorbax 80XDB C18 reverse phase 

beads (Agilent). A 60 min gradient consisting from 5% to 35% ACN in water (with 1% formic 

acid) was used to elute peptides. Electro-spray ionization was performed using at 2.5kV spray 

voltage, and the instrument was operated in a data dependent mode (one full MS1 ion survey 

scan directing consecutive MS2 acquisition scans on the top 10 most prominent precursor ions). 

Collision induced dissociation (CID) directed peptide fragmentation was performed by 35% 

normalized collision energy. 

 

2.2.1.5 Protein identification and label-free quantification 

Raw spectral files were converted into mzXML format using the ReAdW software. A canonical 

FASTA file for protein searching was downloaded from the UniProt database and appended with 

common contaminants and reverse decoy sequences to assess the false-discovery rate (FDR). 

The peptide-spectrum matches from three different searching engines (comet, MSGF+ and 

X!Tandem) were integrated probabilistically using MSblender (Kwon et al., 2011), setting the 

FDR to less than 1% for peptide and protein identifications. Parameter settings and detailed 

search protocols are available online (http://www.marcottelab.org/index.php/MSblender). 

MaxQuant (Cox and Mann, 2008) (Version 1.6.0.16) search was performed at a fragment ion 

mass tolerance of 20 pp., maximum missed cleavage of 2 and a 1% false discovery level 

(controlled by target/decoy approach). SEQUEST (Version 2.7) search was performed at 20 pp. 

fragment ion mass tolerance and one missed cleavage allowance. The STATQUEST (Kislinger 

et al., 2003) model was used to assign confidence scores to all putative matches of peptides and 

proteins and a false discovery rate was controlled  at 1% for all identifications. 
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2.2.2 Results 

Applying the experimental strategies described, in total 1,380 HPLX worm lysate fractions were 

collected from an HPLC machine. All the fractions were processed by the LC-MS/MS system, in 

which 10,525 worm proteins were identified. Pre-enrichment benefited the process by increasing 

the coverage of detected proteome and helping detect more low-abundant proteins that results in 

more diverse GO term representation (Fig. 2-2). The results from a CF/MS experiment can be 

summarized as a matrix of biochemical fractions versus protein identities containing MS-derived 

protein amounts for each fraction (e.g. summed precursor ion intensities or spectral counts; an 

example of CF/MS derived result matrix is shown in Fig. 2-3). The collection of these CF/MS 

matrices could be used to infer protein complex membership using sophisticated computational 

approaches as documented in the following sections. 
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Figure 2-2: Pre-enrichment improves the dynamic range of CF/MS studies. a) Schematic 

workflow of bead-based sample pre-enrichment. b) Venn diagram showing improved 

proteome coverage by pre-enrichment. c) Bar chart showing improved detection of low 

abundance proteins. d) Bar chart showing improved detection of small (low molecular 

mass) proteins. e) Bar chart showing the distribution of identified proteins across top 8 

biological processes in GO. f) Bar chart showing the distribution of identified proteins 

across top 13 cellular localizations in GO. g) Bar chart showing distribution of identified 

proteins across top 13 molecular functions in GO. 
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Figure 2-3: An example of real co-elution data from one of the co-CF/MS experiment. In 

total, 120 fractions were collected and 5,991 proteins were identified and quantified. 
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2.3 Computationally predict protein complexes from co-

fractionation data 

The computational workflow of EPIC can be summarized into three major parts: performing 

feature engineering to calculate different correlation coefficients between pairwise protein 

elution profiles; using machine learning classifier to integrate co-fractionation data and predict 

within-complex PPIs; segmenting the resulting protein network to generate protein complexes. 

The workflow can be summarized in Fig. 2-4. 

 

Figure 2-4: Automated computational analysis using EPIC takes CF/MS data as input and 

consists of three main steps: (i) calculation of co-elution profile similarity using correlation 

metrics; (ii) co-complex PPI scoring using machine learning-based integration of 

experimental and functional evidence; (iii) prediction, clustering, and benchmarking of 

derived complexes. 

In the following sections, I describe the computational components of the EPIC workflow that 

use machine learning methods for prediction with the goal of identifying as many PPIs as 

possible, while minimizing the ‘chance co-elution’ problem using CF/MS based protein profiles. 
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2.3.1 Material and methods 

2.3.1.1 EPIC software environment 

EPIC employs python scripts to score CF/MS data, with modules to (i) process protein co-elution 

profiles, (ii) optionally download supporting functional association information from public 

databases (CORUM (Ruepp et al., 2010), UniProt (UniProt, 2015), IntAct (Orchard et al., 2014), 

GO (The Gene Ontology, 2017), GeneMANIA (Zuberi et al., 2013), STRING (Szklarczyk et al., 

2017), InParanoid (Sonnhammer and Ostlund, 2015)), (iii) predict and benchmark predicted 

associations versus curated reference assemblies (CORUM, IntAct and GO, Fig. 2-5), and (iv) 

cluster and visualize the resulting PPI network using Cytoscape (Shannon et al., 2003). Given 

suitable experimental CF/MS data and a standard taxonomy identifier for the organism under 

study, the software collects required information from online sources and automates all data 

processing from raw data scoring to visualizing the results. 
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Figure 2-5: Schematic workflow for generating training set of macromolecules. Previously 

reported protein complexes, collected from the CORUM, GO and Intact curation 

databases, are first mapped to a target species protein complexes based on InParanoid 

orthology predictions. Redundancy is minimized to generate a final set of reference 

assemblies. 

 

2.3.1.1.1 Reference dataset 

Our goal is to make EPIC a generic tool for surveying protein complexes in different species. To 

facilitate standardization, we decided to use the CORUM database (Ruepp et al., 2010) as the 

source of the gold standard set, as it is the largest manually curated protein complex database 

available. EPIC utilizes human protein complexes for generating the necessary reference data, 

since protein complex information is typically sparse for the majority of species and as CORUM 

itself mainly curates human protein complex information. EPIC automatically downloads the 

current CORUM version and retains only those complexes that are annotated for human or 

mammals. Further, only protein complexes defined based on biochemical approaches are 

retained in the reference dataset, as protein complexes defined based on non-biochemical 
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methods might not be expected to co-elute by chromatographic separation. As an added set, 

EPIC downloads all human protein complexes from the IntAct database, for which again only 

complexes detected by biochemical methods are retained. Additionally, EPIC automatically 

downloads a set of curated protein complexes in the Gene Ontology (GO) database, annotated 

based on biochemical evidence for relevant target species (e.g. C. elegans). 

We then generate an extracted set of positive and negative PPIs for both the training and holdout 

protein complexes, respectively. PPIs are defined as positive if they are observed in the same 

protein complex. If proteins exist in the protein complex dataset but never appear in the same 

protein complex, then these two proteins are defined as negative PPIs. 

For mapping human proteins to the input species (test sample), we integrated the InParanoid 

database, which is also automatically downloaded for each EPIC run. We only consider one-to-

one orthologous protein mappings between human and the test species with an InParanoid 

confidence score of 100%. In this manner, curated human protein complexes are projected on to 

corresponding orthologous protein complexes in a target species of interest. To avoid bias, 

protein complexes with less than three members and large assemblies with more than 50 proteins 

are removed, because these would dominate the machine learning process. Further, to remove 

redundancy in our data set, highly overlapping protein complexes (high fraction of shared 

components) are merged. We evaluate the overlap of two complexes A and B as follows, where 

|A| denotes the number of proteins in A: 

9��MWL^��, �� =  |� ∩ �|�|�| ∗ |�| 
Protein complexes are merged if they have an overlap score of at least 0.8. This automatic 

process for generation of reference data set currently only supports UniProt identifiers because 

they are used by GO, IntAct, InParanoid and CORUM. 
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2.3.1.2 Data processing 

Once the protein elution data was acquired from CF/MS experiments. Several steps are required 

to pre-process the raw mass spectrometry co-elution table in order to improve the quality of the 

predicted network. Data processing and machine learning prediction (discussed in the next 

section) are the two cores of EPIC. The details of these two parts are summarized in the figure 

below. 

 

Figure 2-6: Detailed overview of the EPIC computational pipeline of data processing and 

machine learning prediction. 

 

2.3.1.2.1 Removing “one-hit-wonders” 

EPIC is based on the guilt-by-association principle, which posits that proteins that are physically 

associated tend to elute at the same time. However, to meaningfully evaluate fractionation data, 

EPIC requires the proteins to be present across multiple biochemical fractions within the same 

experiment. Thus, proteins measured in exactly one fraction are deemed ‘one-hit-wonders’ and 

removed from further analysis. The reason for discarding such proteins is not because we assume 

they were falsely measured, but rather that EPIC measures co-elution profile similarities based 

on correlation metrics that evaluate similarity over the entire elution profile, which is not 

effective for singletons. Some proteins may be identified in only one fraction in multiple 
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experiments. However, if we predict PPIs in this way, overall performance is markedly 

decreased (data not shown). Hence, each experiment is processed individually in EPIC, followed 

by merging/concatenating all the resulting co-elution correlation metric scores into a single 

unified matrix for machine learning. From the initial raw MS data, we observed that MSblender 

is highly sensitive and identifies the largest amount of peptides of which many are one-hit-

wonders. However, even after removing one-hit-wonders, MSblender still has the largest amount 

of identified peptides compared with single search engines, resulting in the highest predicted 

quality protein complexes (Fig. 2-7). 
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Figure 2-7: Comparison of peptides identified using different search tools. a) Number of 

Peptides before and after removing “one-hit-wonders” for each used searching tools 

identified in one co-fractionation experiment. There are 16 co-fractionation experiments (n 

= 16). b) Percentage of one-hit-wonders for each search engine. There are 16 co-

fractionation experiments (n = 16). In each box plot, the middle line is the median, the 

lower and upper line of the box indicates the first and the third quartile. The upper and 

lower whiskers extend to the largest value less than the third quartile plus 1.5 times the 

interquartile range (IQR) and smallest value greater than first quartile minus 1.5 times the 

IQR, respectively. All data points beyond the whiskers are plotted as individual points. 

 

2.3.1.2.2 Elution data normalization 

Before calculating correlation coefficient metrics, the protein elution profile matrix is normalized 

column-wise to correct for slight sample injection variation. The protein elution profile matrix 

for each co-fractionation experiment consists of ion intensity or MS2 spectral counts for M 

proteins across N fractions. Thus, before calculating protein elution profile similarities, the raw 

data of each protein in each fraction is normalized by dividing the amount of the particular 
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protein (either MS1 ion intensity or MS2 spectral counts) by the total amount of proteins in 

corresponding fractions. So given a protein elution matrix A of the size M × N, where each Ai,j 

denotes the value of MS1 intensity or MS2 spectral counts of a particular protein i in fraction j, 

the column-wise normalized protein elution profile matrix Bi,j is calculated as: 

�=,� = �=,�∑ �=,�=  

Some similarity score metrics (i.e. Euclidean distance score) require row-wise normalization 

after column-wise normalization to make sure the sum of each row equal 1. So the final 

normalized protein elution profile matrix Ci,j is calculated as: 

v=,� = �=,�∑ �=,��  

 

2.3.1.2.3 Creating candidate protein pairs 

In previous work (Wan et al., 2015), we first created all possible pairs of proteins for each 

experiment, followed by calculating their corresponding co-elution scores and then removed all 

protein pairs without co-elution correlation scores equal or more than 0.5. However, this 

approach is computationally demanding and requires high-performance computational resources 

to perform all calculations in a reasonable amount of time. Thus, we decided to apply a pre-

filtering step: instead of calculating all possible protein pairs for each experiment we first 

generate a super-set of all possible protein pairs across all experiments and remove those pairs 

for which the two proteins do not overlap (never occur in same fraction across all experiments). 

Usually, this filtering-step removes a substantial (up to 60%) of possible candidate pairs, 

significantly reducing computational time. In the subsequent step, we calculate co-elution scores 

for each candidate protein pair across each experiment and then summarize the results into 

matrices, and then we remove all protein pairs whose co-elution score is below 0.5 across all 

experiments. The rationale is explained in the next section. 
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2.3.1.2.4 Cut-off for correlation coefficient 

We plotted the histogram of maximal correlation scores for all positive PPIs among all seven 

different correlation coefficients (apex score is not included, since it is either 0 or 1) across all 

experiments performed (Fig. 2-8). We noticed there is a clear cut-off at 0.5, which suggests we 

can retain protein pairs with a co-elution correlation score over 0.5 for machine learning 

prediction, as pairs without any co-elution score over 0.5 are not likely to be positive 

interactions. 

 

Figure 2-8: Correlation score cut-off setting. Histogram of maximal correlation scores of 

positive PPI pairs among all seven different correlation metrics across all 16 co-

fractionation experiments. The red line indicates the cutoff chosen for EPIC. 
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2.3.1.2.5 Similarity metrics 

Proteins that belong to the same protein complex should co-elute in the same or adjacent 

fractions, and thus should have similar elution profiles. In EPIC, we deploy several methods for 

measuring the similarity of two protein elution profiles. We treat each elution profile as a vector 

consisting of the observed MS2 spectral counts or MS1 ion intensities for a particular protein 

across the corresponding biochemical fractions, and a complete co-fractionation experiment is 

stored as a matrix where rows and columns represent proteins and fractions, respectively. To 

measure the co-elution profile similarity between two proteins, we employ various correlation 

metrics that range from simple scores, such as Euclidean distance, to more sophisticated metrics 

based on information theory. Some co-elution scores use normalized data Bi,j while some use raw 

data Ai,j. In the following formulas: pa and pb denote protein a and protein b in the same co-

fractionation experiment, N denotes the total number of proteins and M the total number of 

fractions. 

 

 Euclidean distance 

Euclidian distance denotes the distance between two vectors (or two points) in a high-

dimensional space (also known as 2-norm). The two points, for which the distance is calculated, 

represent a protein pair while the number of fractions is the dimension of space that the 

Euclidean theorem applies to. This Euclidean distance feature uses normalized counts and lies 

between 0 and 1, where identical elution profiles have a distance of 0 and elution profiles that 

differ greatly have a distance closer to 1. 

 

 Jaccard score 

Jaccard score computes the ratio of how often proteins elute in the same fractions and how often 

proteins are detected in all fractions. Thus, the Jaccard score between two proteins is calculated 
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by counting the number of fractions that contain both proteins and dividing by the number of 

fractions that have at least one of the two proteins. The formula is as follows: 

�L88LM��^L, ^d� = |{⋕ ^_L > 0}⋂{⋕ ^_d > 0}||{⋕ ^_L > 0} ∪ {⋕ ^_d > 0}| 
 

 Bayes correlation 

We integrated a novel method that utilizes a Bayesian probabilistic framework for calculating 

correlation scores between two MS2 spectral counts based vectors. Originally, this method was 

proposed (Sanchez-Taltavull et al., 2016) to process RNA-seq gene expression data that is based 

on sequence counts for various genes under different conditions. Here, we applied the same 

method for peptide counts for various proteins across the biochemical fractions. The main 

advantage of Bayesian statistics over Pearson correlation is that it considers both measured signal 

magnitudes and associated uncertainties in those magnitudes. Thus, Bayesian correlation will 

returns high correlation values if measurement confidence is high and prevents high correlation 

values when the measurement confidence is low. To integrate Bayesian correlation, we 

integrated a public R script (http://www.perkinslab.ca/sites/perkinslab.ca/files/Bayes_Corr.R) 

into our python pipeline using the rpy python package that allows the import of R code into 

python. Bayesian correlation calculation scores support three different assumptions of how the 

priors are distributed: uniform, Dirichlet-marginalized and zero count-motivated. We used zero 

count for this work, as it performed best (Fig. 2-9). 
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Figure 2-9: Different Bayes correlation priors comparison. Precision-recall (PR) curves (a) 

and Receiver-operating-characteristic (ROC) curves (b) for different Bayes correlation 

priors: uniform (Bayes1), Dirichlet-marginalized (Bayes2) and zero count-motivated 

(Bayes3). 

 

 Apex score 

Most proteins tend to elute with a specific retention time, and thus the fraction that contains the 

largest amount of a particular protein is typically also the most critical fraction for that protein. 

Thus, two proteins are considered to be more likely to interact with each other if the fractions 

having the largest recorded amount across all fractions are the same. Based on this premise, 

previous co-fractionation experiments introduced the apex score (Havugimana et al., 2012), 

which scores protein co-elution profiles highly if their respective peak fractions are the same 

(apex score = 1) or else penalizes them (apex score = 0). 
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 Pearson correlation coefficient (PCC) 

Pearson correlation is used to measure the similarity of two protein co-elution profiles. In order 

to calculate PCC, we used the scipy package in python. PCC was calculated by using the vector 

of raw peptide counts or intensities obtained for each protein. From experience, PCC works well 

for proteins with high signal but not well for proteins with low peptide counts. Nevertheless, we 

decided to integrate this correlation metric into EPIC as it is a frequently used similarity metric, 

thus is also useful for benchmarking and evaluating other correlation metrics. 

 

 Pearson correlation coefficient plus noise (PCCN) 

The Pearson correlation coefficient is relatively good at determining protein co-elution based on 

normalized protein elution profiles. However, proteins with low signals (low MS2 values) are 

more likely to co-elute by chance. To avoid this issue, the PCCN metric introduces a low level of 

random artificial signal on the raw co-elution data in the form of Poisson noise to each protein 

across all fractions, followed by co-elution matrix normalization and co-elution score calculation 

via Pearson correlation. This process is repeated n-times, and the resulting PCCN score is the 

average of those n runs. The same strategy has been used in creating previous co-elution 

networks (Havugimana et al., 2012; Wan et al., 2015), but here we systematically investigated 

the iteration parameter n. 

 

 Weighted cross correlation (WCC) 

One of the issues of detecting eluting protein complexes from a liquid-chromatography based 

system is that the component subunits might show some residual retention time shifts. Unlike 

PCC, Weighted Cross Correlation (WCC) considers this small variance between otherwise 

similar co-elution profiles. To avoid promiscuity, stringent parameters are used to tolerate a 

small shift of roughly only one fraction when comparing two proteins. The WCC calculation is 

performed using the wccsom R package (Wehrens et al., 2005), which we integrated into our 



 

 

55

python pipeline using the rpy2 python R interface package. WCC similarity is measured between 

0 and 1. 

 Mutual information (MI) 

Mutual information considers both linear and nonlinear dependencies between vectors. The 

initial step in calculating MI is to binarize the spectral count vector elements into ‘with protein’ 

and ‘without protein’, since mutual information measures statistical dependence between the two 

given proteins based on their relative co-elution frequency (% co-eluted fractions) and each 

protein’s individual relative frequency (% fractions containing the respective protein). The 

elution matrix was binarized by temporarily changing each protein spectral count to 1 (if there 

were spectral counts observed in the fraction) or to 0 (if not present). Thus, P(pa =1) denotes the 

individual relative frequency of pa, which is calculated by dividing the total number of fractions 

with value 1 for protein pa by the total number of fractions in the corresponding co-fractionation 

experiment, whereas the joint relative co-elution frequency of protein pa and pb named P(pa =1, 

pb =1) is calculated by counting the total number of fractions that contain both pa and pb and 

dividing this number by the total number of fractions. MI is calculated as follows: 

a��^�, ^h� =  \�^�, ^h� − \�^�� − \�^h� 

In the formula above, H(pa) denotes the entropy of protein a and H(pa , pb) the joint entropy with 

following formulas: 

\�^�� =  − D ��^� = �� ∗ log����^� = ���{	,�}
=  

\�^�, ^h� =  − D D ��^� = �, ^h = ,� ∗ log����^� = �, ^h = ,��{	,�}
=

{	,�}
�  
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2.3.1.3 Predict PPIs and protein complexes with the aid of machine learning 

In the last step of the data pre-processing, EPIC generates a co-elution matrix, which contains 

rows for each protein pair and columns for each co-elution score across all co-fractionation 

experiments. In cases where a protein pair was not present in one of the experiments, I set all of 

its co-elution scores for the given experiment to zero. In the subsequent sections, I will describe 

how EPIC creates a co-elution PPI network and the set of protein complexes. How to evaluate 

the prediction results from EPIC on both PPI and complexes levels is also discussed. 

 

2.3.1.3.1 Train machine-learning classifier and predict PPIs 

The machine learning classifier is trained on the sets of positive and negative PPIs as we defined 

before based on CORUM, IntAct, and GO. We create the union of training set by merging the 

training set obtained from the above three databases, in which only the protein pairs have at least 

one elution profile similarity score larger than 0.5 (among all co-fractionation experiment and 

among all correlation metrics) are retained. We then train the classifier on this reduced set of 

negative and positive interactions with correlation metrics scores from different co-fractionation 

experiments as input features. Because the classifier is trained to distinguish true-positive co-

complex membership with high co-elution score from non-interacting protein pairs including 

false-positive chance co-elution associations that also have high co-elution scores, we decided to 

additionally integrate functional evidence data (i.e. GeneMANIA, STRING and WormNet) into 

the machine learning method. However, to reduce circular reasoning in the machine learning 

step, functional evidence derived from “physical interaction”, “protein complexes” and 

“predicted interactions” are excluded from input features. For example, the final set of worm 

complexes prediction used functional evidence data from WormNet, and the lines of evidence 

are shown in the table below: 
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Data Organism Description 

CE-CX C.elegans Inferred links by co-expression pattern of two genes (based on high-

dimensional gene expression data) 

CE-GN C.elegans Inferred links by gene neighbourhoods of bacterial and archaeal orthologs 

CE-GT C.elegans Inferred links by genetic interactions 

CE-PG C.elegans Inferred links by similar phylogenetic profiles 

DM-

CX 

D.melanogaster Inferred Links by co-expression pattern of two genes (based on high-

dimensional gene expression data) 

DR-CX D.rerio Inferred Links by co-expression pattern of two genes (based on high-

dimensional gene expression data) 

HS-CX H.sapiens Inferred Links by co-expression pattern of two genes (based on high-

dimensional gene expression data) 

SC-CC S.cerevisiae Inferred links by co-citation 

SC-CX S.cerevisiae Inferred Links by co-expression pattern of two genes (based on high-

dimensional gene expression data) 

SC-GT S.cerevisiae Inferred links by genetic interactions 

SC-TS S.cerevisiae Inferred Links by protein tertiary structure 

Table 2-1: Lines of functional evidence taken from WormNet for worm complexes 

prediction. 

 

EPIC generates a set of PPIs using the classifier trained on experimental data with an option to 

include functional evidence. Then a set of PPIs are predicted by the classifier trained on 

experimental data or optionally experimental data integrated with functional data. A protein 

elution profile correlation score cut-off was applied to ensure all PPIs have experimental 

evidence support (see above). 
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2.3.1.3.2 Predict protein complexes from the PPI network 

In the final step, EPIC generates a set of putative complexes from the predicted protein 

interaction network. As with our previous work, we use the ClusterONE clustering method, and 

it has been shown to provide excellent performance among several different clustering 

algorithms for predicting protein complexes from PPI networks (Havugimana et al., 2012; 

Nepusz et al., 2012; Wan et al., 2015). Novel protein complexes are identified by comparing the 

predicted set of complexes and the curated protein complexes from the major databases 

(CORUM, IntAct and GO) by setting a liberal overlap score cut-off at 0.25. 

 

2.3.1.3.3 PPI prediction metrics and evaluation 

We utilize different measurements to evaluate EPIC performance based on its capabilities of 

predicting both PPIs and multi-protein complexes. Most of the evaluation metrics that we apply 

for measuring how well EPIC can predict PPIs are commonly used throughout the machine-

learning field and are briefly mentioned in this section. 

One first needs to define criteria of what is true for a predicted interaction. The summary of 

positive training protein complexes sets from reference databases is shown in the table below. 
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Pre-

processing 

step 

CORUM IntAct GO All 

Raw 1866 280 65 2211 

Ortholog 

mapping 

1342 135 65 1513 

Size 

filtering 

548 26 33 610 

After 

merging 

401 24 32 451 

Table 2-2: Summary of reference protein complex datasets (CORUM, GO, IntAct). The 

numbers indicate the number of complexes for each dataset after each processing step. 

 

With EPIC, evaluation of PPIs prediction is done by comparing the predicted interactions to the 

above mentioned generated reference data set of positive and negative protein interactions. Based 

on this concept, one defines precision, recall, and F-measure (also known as F1 score) as 

follows: 

Precision: 

�M�8�:�9� = ���� + �� 

Recall: 

��8LWW = ���� + �� 

F-measure: 
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�_O�L:�M� = 2 ∗  ^M�8�:�9� ∗ M�8LWW^M�8�:�9� + M�8LWW 
Additionally, we evaluate performance using the precision-recall (PR) and the receiver operating 

characteristic (ROC) curve. We use the area under the PR curve (auPR), and the area under the 

ROC curve (auROC) to give single value performance, which can be used to compare different 

methods or parameter settings. 

 

 Precision recall curve 

The PR curve is created by first sorting the list of predicted protein interactions by their 

confidence scores and then iteratively removing the top element from that list while calculating 

the resulting precision and recall value for the updated list. The PR curve is the line that results 

by plotting those generated precision recall values. This line shows the trade-off between 

precision and recall, and area under precision recall curve measures the average precision of the 

classifier. It can be used to compare multiple models, since a better classifier will lead to a higher 

PR-curve and thus results in a larger auPR value. 

 

 Receiver operating characteristic curve 

The ROC is generated analogously to the PR curve, but instead of plotting the resulting precision 

and recall values, the ROC plots true positive rate against the false positive rate. The auROC 

curve describes the probability of the classifier of scoring a positive interaction higher than a 

negative interaction, which means it shows how well the classifier can separate positive and 

negative PPIs. Thus, in a two groups classification problem, an auROC score of 0.5 means the 

classifier cannot differentiate between a positive interaction and a negative interaction, whereas a 

score of 1 means the classifier can perfectly predict the class labels. 
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2.3.1.3.4 Cluster prediction evaluation 

Training a classifier on PPIs to determine whether or not a prediction is true is straightforward, 

as it only involves comparing the set of predicted PPIs against a set of pre-defined positive and 

negative protein interactions (see previous sections). However, in the case of predicting protein 

complexes that typically consist of three or more members, this comparison is more difficult. 

First, we describe a simple measurement for determining the precision of the predicted protein 

complexes based on the overlap of the predicted complexes to a given set of reference 

complexes. However, an important issue here is when one should consider two protein 

complexes as a match. Several protein complex prediction studies have investigated how to 

evaluate cluster overlap, and essentially all their measurements are based on how to evaluate the 

overlap between the set of proteins within complex A and the set of proteins within complex B. 

The overlap score between protein complexes are calculated as below (note that |A| denotes the 

number of proteins in complex A): 

 ��, �� =  |� ∩ �|�|�| ∗ |�| 
It is suggested to consider two protein complexes to be matching when the overlap score between 

them is greater than 0.25, since two clusters of the same size would have this score if the 

intersection set is half of the complex size. 

Additionally, we calculate prediction sensitivity, accuracy, positive predictive value, and cluster 

separation (Brohee and van Helden, 2006). For the following scores we consider a1,…,ai,…,am 

predicted complexes which we compare to a set of b1,…,bj,…,bn reference complexes, and Ti,j 

denotes the number of proteins that are found in both complex i and j. 

Sensitivity (Sn): fraction of proteins in predicted complexes that are found in reference 

complexes. 

¡� = ∑ OL����b �=,��=��∑ |d=|�=��  
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Positive predictive value (PPV): indicates how specific and complete the predicted complexes 

match the reference complexes. A score of 1 indicates that each predicted complex only overlaps 

which exactly one reference complex, and a low score indicates low or redundant overlap with 

the reference. 

��¢ = ∑ OL�=��� �=,�b���∑ ∑ �=,��=��b���  

 

Accuracy (Acc): shows the trade-off between PPV and Sn. 

�88 = √¡� ∗ ��¢ 

 

Maximum matching ratio (MMR): The MMR was developed to cope with some of the limitations 

of the PPV. PPV tends to be lower if there is substantial overlap in the reference data (Nepusz et 

al., 2012), but those overlaps are common in biological data sets such as CORUM. Our merging 

step only removes highly overlapping clusters, but smaller overlaps are still present. Thus, even 

if EPIC perfectly predicts the reference complexes it will not achieve a score of 1 for PPV and 

Sep (clustering-wise separation score suggested by Brohée and Van Helden (Brohee and van 

Helden, 2006)). MMR can cope with this problem: 

aa� = ∑ OL�=��b  ;�= , O�B�=��|OL�=���  ��=, O� > 0| 
 

As established by others (Nepusz et al., 2012), we summarize MMR, overlap score, and accuracy 

to create the composite score (the sum of MMR, overlap score and accuracy), and we consider 

the parameter combination with the highest composite score to be the best combination. 
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2.3.1.4 Optimizing EPIC performance 

We extensively benchmarked EPIC and optimized parameters for each step of the EPIC pipeline 

on our worm data to define the final protein network. In an ideal scenario, we would evaluate the 

complete space of all possible parameters, however the space for searching the optimal 

parameter configuration grows exponentially (2|parameters|) with the number of parameters we want 

to configure. Thus, to make the benchmarking of EPIC feasible, we investigated only one 

parameter at a time while keeping the remaining parameters fixed. First we will describe 

benchmarking statistics and evaluation criteria followed by the results of benchmarking. 

 

2.3.1.4.1 Feature parameters 

In this part, we evaluate the optimal parameter settings for co-elution scores (if any parameter 

setting is involved). From the total of eight correlation features, two of them have parameters to 

optimize: the prior used for the Bayes correlation and the number of noise iterations for Pearson 

correlation plus noise (PCCN). We evaluated those parameters based on how well they can 

predict PPIs (i.e. precision, recall, F1, auROC, auPR). To be consistent, all the evaluations were 

performed using elution data generated by the MSblender search engine, as it is the search 

engine that generated the largest data set with the most identified proteins. The results for 

number of noise iterations can be found in the figure below and we observed optimal scores 

obtained for five noise iterations. 
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Figure 2-10: Number of Poisson noise iteration comparison. Precision-recall (PR) curves 

(a) and Receiver-operating-characteristic (ROC) curves (b) for different iterations of 

Poisson noise added in the Pearson correlation coefficient feature. 

After analyzing the three possible Bayes priors, we observed no significant differences between 

the three different priors based on ROC and PR curves (Fig. 2-11). 
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Figure 2-11: Different Bayes correlation priors comparison. Precision-recall (PR) curves 

(a) and Receiver-operating-characteristic (ROC) curves (b) for different Bayes correlation 

priors: uniform (Bayes1), Dirichlet-marginalized (Bayes2) and zero count-motivated 

(Bayes3). 

 

However, if we analyze the evaluation metrics for predicted protein complexes we see the best 

composite score for the zero-count prior (Bayes3) (Table 2-3). Thus, we use the zero-count prior 

for EPIC. 
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Category Bayes1 Bayes2 Bayes3 

# 

Predicted 

PPIs 

1360 2310 681 

# 

Predicted 

clusters 

134 204 96 

Maximum 

matching 

ratio 

(MMR) 

0.08 0.07 0.08 

Overlap 

score 

0.01 0.01 0.05 

Accuracy 

score 

0.17 0.18 0.29 

Composite 

score 

0.26 0.25 0.42 

Table 2-3: Evaluation of three different available Bayes priors. The three priors are uniform 

(Bayes1), Dirichlet-marginalized (Bayes2), and zero count (Bayes3). 

 

2.3.1.4.2 EPIC parameter optimization by nested cross validation 

It is not possible to provide globally optimal parameters for all data sets. In EPIC, we developed 

a nested cross validation strategy to optimize parameters for our worm data and used the 
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optimized set of parameters to generate our WormMap. As described in Fig. 2-12, we first 

collected and merged all worm protein complexes from CORUM, GO and IntAct. We first used 

k-means clustering and an overlap score as the measurement metric to divide the whole set of 

reference protein complexes set into two distinct sets of complexes. We then balanced the two 

sets while minimizing the overlap by iteratively moving the most distinct protein complex from 

the set with more complexes to the set with fewer complexes. The first half is used for training 

(based on our co-fractionation data) while the second half is used as the ‘holdout’ set for 

evaluation (2-fold cross validation at the protein complex level). In our study and in the EPIC 

software, we implement two machine-learning classifiers, support for four protein 

searching/quantification tools and eight different correlation scores, which gives us 2,040 total 

parameter combinations. We trained machine-learning classifiers with our worm co-fractionation 

data to predict PPIs and protein complexes for each of the 2,040 different parameters 

combinations. The resulting 2,040 predicted protein complex sets were then benchmarked with 

the held out “test” half of the curated protein complexes using composite score (see above) as the 

evaluation metric. 
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Figure 2-12: Computational procedures for protein interaction and co-complex prediction, 

driven by global optimization of classifier performance. The best combination of features 

was obtained using a nested cross-validation procedure. 

 

Random forest in general outperformed support vector machine for predicting protein 

complexes. MSblender gives the best composite score compared with other protein 

search/quantification tools. To get a relatively good prediction, at least three different correlation 

scores are required. The results are shown in the figure below. 
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Figure 2-13: EPIC parameters global optimization by nested cross-validation. (a). Boxplot 

showing the complex prediction performance (composite score) from two different 

machine-learning classifiers (random forest n = 1014 vs. support vector machine n = 945). 

(b). Boxplot showing the complex prediction performance (composite score) based on the 

234 results from each four different protein search/quantification tool. (c). Boxplot showing 

the relationship between different numbers of correlation scores and complex prediction 

performance (i.e. composite score). n = 28, 110, 224, 280, 224, 112, 32 and 4 are the number 

of composite score results with various correlation scores used (from 1 to 8). Red arrow 

indicates the set of (five) correlation scores producing the highest composite score. In each 

box plot, the red line is the median, the lower and upper line of the box indicates the first 

and the third quartile. The upper and lower whiskers extend to the largest value less than 

the third quartile plus 1.5 times the interquartile range (IQR) and smallest value greater 

than first quartile minus 1.5 times the IQR, respectively. All data points beyond the 

whiskers are plotted as individual points. 
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The optimized set of parameters (machine-learning classifier: random forest, protein 

searching/quantification tool: MSblender, correlation scores: mutual information, Bayes 

correlation, Euclidean distance, weighted cross correlation and apex score) for generating 

WormMap is the combination that gives the highest composite score. Functional evidence data 

was then added to the matrix formed by the optimal set of correlation scores for predicting PPIs. 

Since extensive computational resources are required for this optimization, we performed this 

analysis on the SciNet supercomputing platform (https://www.scinethpc.ca/). We provide a 

parameter optimization function in the EPIC software and encourage users to optimize their 

parameters using their own data if a super computing resource is available, but otherwise, we 

recommend using the default EPIC parameters, which are the ones that were found optimal for 

WormMap using the above procedure. 

 

2.3.1.5 Exploring the value of additional experiments 

After nested cross validation, the selected optimal correlation score combination and random 

forest machine learning classifier was used for evaluating if a pre-enrichment step improves 

protein complex prediction and what is the most economic way to perform experiments. We 

performed the analysis using data collected from pre-enrichment, non-pre-enrichment (IEX) and 

the combination of both (all experiments), individually. Similar to the step of nested cross 

validation, we benchmarked the predicted protein complexes using composite score, based on 

our 2-fold cross-validation strategy. For each specific number of experiments, we considered all 

combinations and reported the average of the evaluating metrics. For example, for the first point 

in the plot indicating use of one experiment, we analyzed each of our seven IEX experiments 

individually to predict complexes, evaluated the composite score and then calculated the average 

of number predicted complexes and composite scores over the seven experiments. We observed 

a positive correlation between composite score and the number of experiments (Fig. 2-14a). 

After five experiments, using IEX alone performed much better than using all experiments. 

Similarly, a sharp increase is observed for the last point of the “all experiments” line (red line). 

We then asked if the sharp increase of IEX performance is the result of sacrificing the coverage 

of predicted protein complexes. To balance the coverage of predicted protein complexes and 
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composite score, we then plotted “composite score × the number of predicted complexes” vs. 

“number of experiments” (Fig. 2-14b). In this plot, we noticed the “all experiments” line reached 

its stationary phase at nine experiments. We also noticed a dramatic decrease of the “IEX” line at 

seven experiments, which shows that the sharp increase of composite score for “IEX” is due to a 

decrease in the number of predicted protein complexes. Also, when using all 16 experiments, the 

composite score is maximized. Thus, the general guideline would be to use as many experiments 

as possible and that pre-enrichment will help protein complex prediction in terms of both 

composite score and coverage, however, if mass spectrometry time is limited, a reasonable lower 

bound is to run four IEX experiments. 

 

 

Figure 2-14: Exploring the value of additional experiments. (a). Line plot of the number of 

experiments and corresponding averaged composite score. (b). Line plot of the number of 

experiments and the corresponding averaged value of composite score times the number of 

predicted protein complexes. 
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2.3.1.6 Comparison of EPIC with PrInCE 

PrInCE is a software tool that is recently introduced by Foster group to analyze co-fractionation 

data (Stacey et al., 2017). To objectively compare the performance of the two tools (PrInCE vs. 

EPIC), we downloaded the example SILAC co-fractionation data available from the PrInCE 

website (condition1.csv and condition2.csv) and used this as input data to predict protein 

complexes using both PrInCE and EPIC. We then compared the results (predicted complexes) 

with a benchmark set of reference assemblies (i.e. CORUM) using the multifactor composite 

score as the stringent evaluation metric. The resulting set of protein complexes predicted by 

EPIC with the SILAC data alone produced a substantially higher composite score than PrInCE 

achieved (Table 2-4) and that EPIC also predicted up to five times as many complexes (with 

comparable or higher reliability) than PrInCE (Table 2-4). 

 

 EPIC PrInCE 

Composite score 1.014 0.658 

Maximum matching 

ratio (MMR) 

0.267 0.059 

Overlap score 0.327 0.369 

Accuracy score 0.42 0.23 

# Complexes 333 65 

Table 2-4: Performance comparison with an existing approach (PrInCE) 

 

2.3.2 Results 

Since stably-associated components within a complex are expected to co-fractionate together, 

EPIC first computes pairwise protein profile similarity using up to eight correlation metrics 
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(Euclidean, Jaccard, Apex, Pearson, Pearson with Poisson noise, weighted cross correlation, 

mutual information, and Bayes correlation that emphasize different profile features. Positive  and 

negative reference co-complex PPIs display distinct correlation distributions as shown below. 

 

 

Figure 2-15: Co-elution profile similarity predicts PPIs. Plots showing the Pearson 

correlation coefficients (distribution density curves) obtained for a representative worm 

protein co-fractionation experiment; positive (CORUM derived; blue) and negative 

(randomized; orange) co-complex interactions, as well as the positive/negative ratio (green), 

are shown. 

 

While it is not possible to pre-define a universally optimal combination of correlation metrics for 

all possible CF/MS experiments, EPIC provides default parameters tuned on comprehensive 

CF/MS data (described below), and can optimize settings for any given data set. To reduce 

computational time, proteins observed in only one fraction and protein pairs with co-

fractionation correlation scores less than 0.5 are removed before generating a scored co-complex 

PPI vector for each input experiment. Multiple correlation vectors are then combined and input 

into a supervised machine-learning model that is both trained to predict new PPIs and 

benchmarked against reference positive (annotated) PPIs (i.e. co-complex relationships curated 
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in the CORUM, IntAct and GO databases) and negatives (i.e. combinations of proteins in distinct 

complexes). 

To generate a comprehensive reference (gold standard) set for both training and benchmarking, 

EPIC retrieves species-specific complexes from the IntAct and GO complex databases. Since 

positive examples are limited for certain species, like C. elegans, the benchmark is supplemented 

by mapping annotated human protein complexes from the CORUM database based on stringent 

one-to-one orthology (InParanoid). To minimize redundancy and bias, complexes with the 

majority of subunits in common (overlap score >0.8) are merged, while large assemblies with 

50+ members (e.g. ribosome) that could dominate learning are eliminated. 

EPIC uses support vector machine (SVM) and random forest (RF) classifiers by default, but 

other algorithms can be substituted programmatically. Since CF/MS data is often incomplete 

(e.g. due to proteome under-sampling) or noisy (e.g. chance co-elution of unrelated proteins), 

EPIC can integrate additional supporting evidence (e.g. functional interactions inferred from co-

expression, domain co-occurrence, and co-citation) from public sources such as GeneMANIA or 

STRING, thereby producing richer and more accurate interaction networks. To avoid circularity, 

functional interactions based on published PPIs are excluded. To ensure all complexes have 

CF/MS experimental support, those complexes inferred based solely on functional evidence are 

removed. Prediction performance is evaluated by 2-fold cross-validation (i.e. against an 

independent ‘holdout’ set of reference protein complexes). 

Finally, EPIC applies network-partitioning to define complex membership. ClusterONE (Nepusz 

et al., 2012) is used by default, though other algorithms can be evaluated to optimize complex 

definition (Wiwie et al., 2015). Each cluster is compared to annotated complexes curated in 

CORUM, GO and IntAct, and overall performance is measured by three complementary 

evaluation metrics (maximum matching ratio, accuracy, and overlap score; as documented 

above), from which a single summary composite score is calculated to assign prediction quality 

(Nepusz et al., 2012) 

We evaluated EPIC performance using a novel data set of 1,380 IEX-HPLC fractions generated 

for soluble worm protein extracts from mixed stage C. elegans cultures. Co-eluting proteins were 

acid-precipitated, alkylated and trypsin digested, and the resulting peptide mixtures analyzed by 
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precision Orbitrap MS. To optimize major EPIC parameters (MS search tool, set of profile 

correlation metric and machine learning classifier), we compared predicted complexes from each 

parameter setting (2,040 parameter combinations) against an independent benchmark of known 

complexes compiled from CORUM, IntAct and GO using composite score as the evaluation 

measure (as described in Fig. 2-12). Optimized parameters substantially improved the resulting 

composite score compared to previously used parameters (Havugimana et al., 2012; Wan et al., 

2015) (Fig. 2-16). 

 

 

Figure 2-16: Bar chart shows predicted worm complex scores (maximal matching ratio, 

overlap and accuracy, the sum of which forms the composite score) using different 

combinations of experimental (CF/MS) data, functional evidence (WormNet) and 

correlation scores. “Original features” indicates results from the set of correlation metrics 

(parameters) used in previous publications, and “optimized features” indicates our newly 

optimized EPIC parameters. 

 

We evaluated the performance benefit of integrating functional interactions with the CF/MS data, 

again based on composite score, and found that including GeneMANIA, STRING, or WormNet 

(Cho et al., 2014b) clearly improved performance (Fig. 2-17). 
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Figure 2-17: Composite score comparison for original and optimized features integrated 

with different sources functional evidence. Composite score analysis demonstrates that for 

predicting complexes, based on EPIC analysis of CF/MS data, integration of functional 

associations from WormNet outperforms STRING and GeneMANIA evidence. The 

analysis also shows an optimized set of EPIC-derived co-elution scores better predicts 

protein complex memberships than were reported previously. 

 

It is also noted that functional evidence was not effective when used alone as input to predict 

complexes and PPIs (Fig. 2-17 and Fig. 2-18). 

Maximum matching ratio Overlap score Accuracy score
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Figure 2-18: ROC curve and Precision-recall curve for co-complex PPI prediction from 

different input data. The plot demonstrates that the best co-complex interaction predictions 

were obtained after integrating experimental data with supporting functional evidence data 

(i.e. WormNet). 

 

Since CF/MS studies consume considerable resources (e.g. LC/MS run time), we used EPIC to 

explore the ‘cost/benefit’ ratio of repeat biochemical fractionations by evaluating the relationship 

between prediction accuracy and the number of experiments performed. We calculated the 

average composite score by randomly sampling different numbers of co-fractionation 

experiments. Notably, while performance steadily improved as more data was acquired, 

prediction performance grew fastest over the first 2-4 separations (Fig. 2-14), suggesting an 

efficient lower bound (i.e. ~4 IEX-HPLC experiments) for study design. 

 

2.3.3 Discussion 

Current knowledge of the physical networks of cells and tissues remains limited for many 

species, particularly non-traditional animal models. The majority of known/curated protein 
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assemblies are annotated to mammals, whereas inference based on homology may not be the 

ideal for more distant organisms. CF/MS is an ideal experimental technology to address this, as it 

can be applied directly to any biological sample. However, CF/MS data is complex and 

challenging to process. We have developed the EPIC software to facilitate routine CF/MS 

analysis of native macromolecular assemblies in diverse contexts. EPIC provides optimized 

computational workflows, does not require expert computational skills to run, automates the 

entire data analysis process, and is applicable to diverse model systems. In practice, EPIC 

enables users to process their own data and supply their own manually curated reference protein 

complexes to optimize classifier training. 

We have shown that EPIC predicts complexes with high accuracy, particularly if four or more 

biochemical separations are available. While transient or unstable macromolecules may not be 

efficiently detected by CF/MS, chemical cross-linking can potentially be beneficial (Liu et al., 

2015), while other gentle separation techniques, such as isoelectric focusing (Pourhaghighi et al., 

submitted) and size-exclusion chromatography (Olinares et al., 2010), can provide 

complementary data. Regardless, to mitigate the false discovery rate, EPIC implements 

customizable data filtering procedures and can optionally integrate supporting independent 

functional evidence. 

EPIC is both open source (https://github.com/BaderLab/EPIC) and compatible with disparate 

proteomic sampling techniques, including 'top-down' analysis of intact proteins (Tran et al., 

2011) and sample multiplexing (isotopic labeling) (Werner et al., 2014) to map differential 

networks across conditions (Ideker and Krogan, 2012). To facilitate broader uptake, we provide 

an automatically executable Jupyter-based notebook along with a Docker container 

(https://hub.docker.com/r/baderlab/bio-epic/) encompassing all necessary scripts and packages, 

enabling easy installation, deployment and optimization on any operating system. The distributed 

version of EPIC has step-by-step instructions and a user-friendly interface that enables uploading 

of local user defined CF/MS data files and the graphical display of results. 
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Chapter 3 

WormMap: a comprehensive map of soluble protein 

complexes in C. elegans 

A paper has been published in Nature Methods (Hu et al., 2019), partially based on the content of 

this chapter. The work presented in this chapter was done by collaboration between Fraser and 

Emili labs. I received technical assistance from Dr. June Tan on C. elegans transgenic line 

generation. Mr. Eric Wolf helped on AP-MS experiments. Prof. Andrew Emili and Prof. Gary 

Bader co-supervised the project. 

 

  



 

 

80

 

 WormMap: a comprehensive map of soluble protein 

complexes in C. elegans 

3.1 Introduction 

Caenorhabditis elegans was first introduced as a model organism by Sydney Brenner for the 

study of developmental biology in the 1960s (Riddle et al., 1997). Decades later, it became a 

widely used experimental system with numerous advantages.  It is easy to culture, and has a 

quick life cycle (~3 days), such that a single culture dish seeded with E. coli can generate 

thousands of worms (Riddle et al., 1997). Ideal for microscopic observation, C. elegans has 

transparent body, fixed cell lineages and defined tissues, and consistent cell positions, making it 

useful for the study of multicellular development. The complete ~97 Mb genome of C. elegans, 

comprising six chromosomes (5 autosomes and 1 sex chromosome) and around 19,000 genes, 

was published in 1998 (Consortium, 1998). In addition to its hermaphroditic reproductive mode, 

well suited to genetic screens, another special advantage is susceptibility to RNA interference 

(RNAi), in which E. coli expressing double-stranded RNAs targeting genes of interest are fed to 

C. elegans to disrupt function (Fire et al., 1998). This technique has been extensively used to 

study the roles of genes and pathways during development in C. elegans. These data are 

available via public databases, like WormBase (Harris et al., 2014) and modENCODE (Gerstein 

et al., 2010), which also collect sequence and expression data and other genomic information. 

C. elegans has multiple developmental stages: embryogenesis, four postembryonic 

developmental larval stages (L1 to L4) and adult (Riddle et al., 1997). When food is diminished, 

C. elegans enters a quiescent dauer larval stage after the second larval molt (Riddle et al., 1997). 

Gene functional association networks have been generated for C. elegans. For example, 

WormNet (Cho et al., 2014a) is a probabilistic gene function network generated for C. elegans 

based on  Bayesian integration of high-throughput genomic datasets (e.g. gene co-expression, 

genetic interactions, etc) (Lee et al., 2008a). Likewise, GeneMANIA (Montojo et al., 2014) 

couples linear regression and Gaussian field label propagation to integrate genomic datasets into 
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a composite network to predict gene functional associations for multiple model organisms 

(including C. elegans) (Mostafavi et al., 2008). Yet far fewer physical interactions have been 

reported in worm. Co-IP and AP-MS are generally too laborious for large-scale application to 

higher eukaryotes with multiple developmental stages and tissues. Surprisingly, bioinformatic 

predictions of physical interactions among worm proteins are also limited. To date, the largest 

PPIs study in C. elegans, by the Vidal group in 2009, used Y2H technology to assess only 

around one fourth of the predicted C. elegans proteome, yielding 3,864 putative binary PPIs 

(Simonis et al., 2009). Few of these interactions have supporting biochemical evidence or define 

the membership of protein complexes. 

In this thesis work, a more complete map of the physical organization of protein complexes in C. 

elegans is generated using data collected from CF/MS experiments with the aid of EPIC, named 

as WormMap. WormMap is fully supported by direct biochemical evidence. WormMap contains 

612 putative complexes from a network of 16,098 high-confidence PPIs that encompassed 3,855 

worm proteins, most of which have never been reported before. The resulting ‘WormMap’ 

reveals assemblies with links to disparate lineage-restricted processes, conserved animal systems 

and human disease. WormMap included novel subunits and assemblies unique to nematodes that 

we validated using orthogonal methods. 

 

3.2 Material and methods 

3.2.1 Perform co-fractionation experiments on worm lysate 

The experimental details of performing CF/MS experiments on C. elegans have already been 

documented in section 2.2.1. In the following sections, only the extra validation experiments will 

be described. Computational functional enrichment analysis of protein complexes on WormMap 

will also be discussed. 
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3.2.2 Generating GFP tagged worm strains for AP/MS 

To create GFP-tagged proteins for AP/MS experiments, C. elegans strains were grown and 

maintained at 20 °C on nematode growth media (NGM) plates seeded with E. coli strain OP50. 

Some strains (wild-type N2 and RW1596: myo-3 (st386) stEx30 [myo-3p::GFP::myo-3 + rol-

6(su1006) (Campagnola et al., 2002)) were ordered from the CGC (https://cgc.umn.edu/). Extra-

chromosomal array strains containing a C-terminal GFP translational fusion construct of 

F26E4.4, Y34B4A.6 and F13H8.2 were also generated in this study. For instance, the open 

reading frame and 617 bp promoter region of F26E4.4 (Dupuy et al., 2004) were amplified and 

cloned into the pPD95.75 vector (Fire Lab Vector Kit). The construct was then injected at 20 

ng/µl along with pRF4 as a co-injection marker. Roller positive F2 animals were isolated and 

imaged to confirm the GFP expression (rol-6 was used as a co-injection marker). Mixed stage 

worms were harvested for AP/MS validation studies. All other GFP-tagged strains (Y34B4A.6 

and F13H8.2) are generated in a similar fashion. 

 

3.2.3 Affinity purification mass spectrometry validation 

Affinity purification was performed essentially as described (Kwan et al., 2016) with minor 

modifications. Briefly, frozen cell pellets were re-suspended in high-salt NP-40 lysis buffer (10 

mM Tris-HCl pH 8.0, 420ml NaCl, 0.1% NP-40) with protease and phosphatase inhibitors 

(Roche). After 3 freeze-thaw cycles, each lysate was briefly sonicated, treated with nuclease 

(Thermo Scientific Cat #88700), followed by centrifugation at 14,000 rpm. The resulting soluble 

protein extract was split for technical replicate purifications. Each lysate was incubated at 4 °C 

on a rotator with 1 µg of rabbit anti-GFP antibody (Thermo Scientific Cat #G10362) for 2 hrs, 

followed by incubation with 25 µl of Protein-G Dynabeads slurry for 1 hr. The beads were 

washed twice with low-salt buffer (10mM Tris-HCl pH 8.0, 100 mM NaCl) and bound proteins 

subsequently eluted (X 4) with 1% ammonium hydroxide pH 11. Recovered protein samples 

were dried, re-suspended in 50 mM ammonium bicarbonate, reduced with 5 mM DTT at 56 °C 

for 45 min and alkylated with 10 mM iodoacetamide at room temperature for 45 min in the dark. 

Trypsin digestion was performed overnight at 37 °C. Peptide samples were de-salted and re-
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suspended in 1% formic acid and then analyzed by data dependent (top-15 MS2) acquisition on a 

Q Exactive HF mass spectrometer (Thermo Scientific) using a 90-minute gradient on the same 

HPLC system described above. The resulting MS spectra were searched with MSblender. 

 

3.2.4 Disease and phenotype enrichment analysis 

Since there is a lack of information available for Worm gene disease associations, we combined 

several human resources and mapped human gene names to worm gene names via 1:1 orthology 

using InParanoid. Gene disease associations were retrieved from the Online Mendelian 

Inheritance in Man (OMIM), UniProt, and ClinVar databases. However, OMIM only provides 

gene-disease associations, and thus we retrieved a mapping from gene name to UniProt identifier 

via the UniProt identifier mapping web service. Moreover, OMIM does not provide a 

classification system for their diseases and different OMIM IDs might describe the same disease 

(e.g. Alzheimer has multiple identifiers depending on the types). Thus, we mapped each OMIM 

disease identifier to their corresponding disease ontology identifier (DOID). In the final step, we 

combined the resulting data set with a set of DOID annotations for Worm genes from the 

WormBase database. For phenotype analysis, we annotated our protein complexes with 

phenotype information taken from WormBase. Statistical enrichment for both phenotype and 

disease was determined by Fisher exact test, and Benjamini-Hochberg procedure was applied for 

multiple testing corrections. 

 

3.2.5 GO Enrichment 

The Gene Ontology (GO) is a controlled vocabulary that describes genes by using three 

categories: molecular function, cellular component and biological process. We inferred enriched 

GO terms using the g:Profiler R package (Reimand et al., 2016). To ensure we only get 

significant hits we only considered GO terms with less than 500 proteins annotated to them, and 

the p-value was corrected by the conservative Bonferroni correction procedure. 
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3.3 Results 

Using all 16 C. elegans co-fractionation experiments with optimized parameter settings and 

including functional interactions, EPIC predicted 16,098 high-confidence co-complex PPIs 

among 3,855 worm proteins (~25% of the nematode proteome), each directly supported by 

CF/MS data (at least one co-elution correlation score >0.5). Most (13,547) of these PPIs have not 

been reported before (compared to iRefWeb (Turner et al., 2010), BioGRID (Chatr-Aryamontri 

et al., 2017) or our previously generated Metazoan Complex Map  (Wan et al., 2015)) (Fig. 3-1; 

The complete listing is available at https://static-

content.springer.com/esm/art%3A10.1038%2Fs41592-019-0461-

4/MediaObjects/41592_2019_461_MOESM3_ESM.txt). 

 

Figure 3-1: Pie chart showing overlap of predicted co-complex interactions with PPIs from 

BioGRID, iRefIndex and previously reported conserved metazoan complex map. 

 

Partitioning the network using ClusterONE predicts 612 complexes (Fig. 3-2a) of which only 

150 map to known assemblies in CORUM, GO, and IntAct. Most of the novel complexes appear 

to be clade-specific as only 89 are also found in the Metazoan Complex Map (The complete 

listing is available at https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-019-

0461-4/MediaObjects/41592_2019_461_MOESM4_ESM.txt). 
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Figure 3-2: a) EPIC-derived WormMap. The left side shows the global overview of 

WormMap. Complexes validated using AP/MS are circled and AP/MS results are shown 

on the right, including novel components of the RNA polymerase III complex, as well as 

two novel complexes. Protein nodes are coloured according to complex assignments, with 

novel assemblies and components highlighted with red circles. Grey lines between proteins 

indicate interactions that are supported by strong co-elution evidence. Bait proteins are 

shown as stars, prey proteins as circles and undetected proteins as squares. Novel 
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components are indicated by a red node outline. AP/MS spectral counts are summarised in 

Supplementary Table 4. b) Pie charts showing the overlap of predicted worm complexes 

found by EPIC with previously known macromolecules (from CORUM, GO, IntAct, and 

the metazoan protein complex map (Wan et al., 2015)) and enrichment of putative novel 

assemblies for select biological function (GO terms), phenotype and/or disease associations. 

 

We used multiple independent approaches to assess the accuracy of the predicted worm protein 

complexes. Experimentally, we used an established, orthogonal biochemical approach (AP/MS; 

see Online Methods) to validate both entirely novel assemblies as well as previously reported 

assemblies for which EPIC predicted unexpected new components (Fig. 3-2a and Table 3-1). 
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APMS BaitAPMS BaitAPMS BaitAPMS Bait    F13H8.2F13H8.2F13H8.2F13H8.2    F26E4.41F26E4.41F26E4.41F26E4.41    Y34B4A.6Y34B4A.6Y34B4A.6Y34B4A.6    

 Complex (AP/MS Complex (AP/MS Complex (AP/MS Complex (AP/MS 

validation)validation)validation)validation)    

 replicate replicate replicate replicate 

1111    

replicate replicate replicate replicate 

2222    

replicate replicate replicate replicate 

1111    

replicate replicate replicate replicate 

2222    

replicate replicate replicate replicate 

1111    

replicate replicate replicate replicate 

2222    
protein protein protein protein name/descriptionname/descriptionname/descriptionname/description    

RNA polymerase III RNA polymerase III RNA polymerase III RNA polymerase III 

(WormMap #153)(WormMap #153)(WormMap #153)(WormMap #153)    
F26E4.4F26E4.4F26E4.4F26E4.4    0 0 18181818    17171717    0 0 

Uncharacterized protein 

 

W06E11.1W06E11.1W06E11.1W06E11.1    0 0 11111111    9999    0 0 Uncharacterized protein; predicted to have DNA-directed 5'-3' RNA polymerase activity 

 

rpcrpcrpcrpc----1111    0 0 36363636    29292929    0 0 DNA-directed RNA polymerase subunit (EC 2.7.7.6) 

 

M106.7M106.7M106.7M106.7    0 0 1111    1111    0 0 Uncharacterized protein; predicted to have catalytic activity and nucleotide binding activity 

 

rpcrpcrpcrpc----25252525    0 0 3333    3333    0 0 RNA Polymerase, Class III (C) 

 

rpcrpcrpcrpc----2222    3 2 26262626    22222222    0 0 DNA-directed RNA polymerase subunit beta (EC 2.7.7.6) 

 

letletletlet----611611611611    0 0 10101010    5555    0 0 an ortholog of human POLR3C (RNA polymerase III subunit C 

 

W09C3.4W09C3.4W09C3.4W09C3.4    0 0 7777    3333    0 0 an ortholog of human POLR3F (RNA polymerase III subunit F) 

Novel Protein Complex Novel Protein Complex Novel Protein Complex Novel Protein Complex 

#201#201#201#201    
F13H8.2F13H8.2F13H8.2F13H8.2    84848484    83838383    4 1 1 2 

Uncharacterized protein; an ortholog of human WDR3 (WD repeat domain 3) 

 

B0280.9B0280.9B0280.9B0280.9    5555    4444    0 0 0 0 U3 small nucleolar RNA-associated protein 18 homolog 

 

F55F8.3F55F8.3F55F8.3F55F8.3    38383838    33333333    0 0 0 0 Periodic tryptophan protein 2 homolog 

 

C48B6.2C48B6.2C48B6.2C48B6.2    4444    7777    0 0 0 0 Putative 40S ribosomal protein S4-like 

 

Y39A1A.14Y39A1A.14Y39A1A.14Y39A1A.14    10101010    10101010    0 0 0 0 
Ribosomal RNA small subunit methyltransferase nep-1 (EC 2.1.1.-) (18S rRNA (pseudouridine-N1)-

methyltransferase) (Ribosome biogenesis protein nep-1) 

 

Y45F10D.7Y45F10D.7Y45F10D.7Y45F10D.7    18181818    22222222    0 0 0 0 Uncharacterized protein; an ortholog of human WDR36 (WD repeat domain 36) 

 

Y75B8A.7Y75B8A.7Y75B8A.7Y75B8A.7    15151515    17171717    0 0 0 1 U3 small nucleolar ribonucleoprotein protein MPP10 

 

Y53C12B.1Y53C12B.1Y53C12B.1Y53C12B.1    54545454    55555555    0 0 0 0 Uncharacterized protein; an ortholog of human TBL3 (transducin beta like 3) 

 

krrkrrkrrkrr----1111    3333    2222    0 0 0 0 KRR1 small subunit processome component (KRR-R motif-containing protein 1) 

Novel Protein Complex Novel Protein Complex Novel Protein Complex Novel Protein Complex 

#147#147#147#147    
Y34B4A.6Y34B4A.6Y34B4A.6Y34B4A.6    0 0 0 0 3333    0000    

Uncharacterized protein 

 

Y34B4A.9Y34B4A.9Y34B4A.9Y34B4A.9    0 0 0 0 2222    2222    Uncharacterized protein 

 

F56C9.7F56C9.7F56C9.7F56C9.7    0 0 0 0 0000    1111    Uncharacterized protein 

 

F19C7.1F19C7.1F19C7.1F19C7.1    0 0 0 0 0000    1111    Uncharacterized protein 

 

LLC1.2LLC1.2LLC1.2LLC1.2    0 0 0 0 1111    1111    Uncharacterized protein 

 

irgirgirgirg----7777    0 0 0 0 15151515    18181818    Protein irg-7 (Infection response protein 7) 
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T25C12.3T25C12.3T25C12.3T25C12.3    0 0 0 0 22222222    16161616    Uncharacterized protein 
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Table 3-1: Results of AP/MS validation experiments. Table of spectral counts recorded in 

follow up AP/MS experiments, all performed in duplicate, for all co-purifying proteins 

identified with each bait protein (as indicated in header). A red protein name indicates 

either novel components assigned to a known complex (RNA polymerase III) or totally 

novel complexes (Complex 201 and 147). Bold numbers are spectral counts obtained for 

subunits predicted by EPIC that were also detected by AP/MS. 

 

For example, we verified three new nematode-specific components (F26E4.4, W06E11.1 and 

M106.7) of the worm RNA polymerase III machinery, one of which (M106.7) has DNA and 

nucleotide binding activity (Mulder et al., 2003) (Fig. 3-2a). We also validated unc-15 as part of 

a large myosin complex, an association not reported in a public database or our training set, but 

has been observed in previous work (Kagawa et al., 1989).  Likewise, we verified a predicted 

novel 10-member complex (Fig. 3-2a), for which most components have limited functional 

annotation in WormBase(Harris et al., 2010), suggesting an overlooked biological role. Two of 

the subunits (B0280.9 and krr-1) are orthologs of human small-subunit processome components 

involved in ribosomal biogenesis, suggesting a related function in nematodes. Intriguingly, 

another subunit, Y45F10D.7, is an ortholog of human WDR36, which is linked to primary open-

angle glaucoma type 1G (GLC1G) (Monemi et al., 2005), potentially providing a mechanistic 

connection. We also confirmed another putative novel complex with eight protein components 

(Fig. 3-2a) containing mostly uncharacterized components according to UniProt (UniProt, 2015) 

and WormBase (Harris et al., 2010). Irg-7 is the only annotated subunit, with links to innate 

immunity and expression in the intestine (Yunger et al., 2017), suggesting a potential role in the 

host response to animal pathogens. Some interacting proteins identified by AP/MS with low 

counts, indicating a weak MS signal, were nonetheless consistent with co-elution evidence. 

To assess the physiological significance of the putative worm assemblies, we analyzed the 

network of complexes for coherent biological functions (based on GO annotations), mutant 

phenotypes (based on information from WormBase (Harris et al., 2010)), or disease associations 

(based on orthology to human proteins in genetic disorder databases such as OMIM (Amberger 

et al., 2015) and HGMD (Stenson et al., 2014)). Strikingly, almost half of the novel complexes in 

WormMap were enriched for associations to essential processes, phenotypes or diseases (Fig. 3-

2b). For example, knockdown of components of dozens of complexes either cause embryonic 
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lethality or sterility, and have links to cancer in humans, reinforcing the utility of EPIC for 

gaining fundamental mechanistic insight into large CF/MS data. 

The GO term enrichment result is available at: https://static-

content.springer.com/esm/art%3A10.1038%2Fs41592-019-0461-

4/MediaObjects/41592_2019_461_MOESM4_ESM.txt 

The phenotypic enrichment result is available at: https://static-

content.springer.com/esm/art%3A10.1038%2Fs41592-019-0461-

4/MediaObjects/41592_2019_461_MOESM7_ESM.xlsx 

The disease enrichment result is available at: https://static-

content.springer.com/esm/art%3A10.1038%2Fs41592-019-0461-

4/MediaObjects/41592_2019_461_MOESM7_ESM.xlsx 

 

3.4 Discussion 

The nematode C. elegans is a powerful model organism that has been extensively used to study 

different fundamental biological questions. However, knowledge of the physical interaction 

network supporting the development and cell biology of this animal is currently limited. The 

work I proposed here closes this gap by comprehensively identifying protein complexes present 

in C. elegans. In this chapter, we described how to use EPIC to map protein complexes in C. 

elegans based on CF/MS data, which has classically been studied using genetic methods, thereby 

revealing nematode-specific biochemical network adaptations. We integrated functional 

evidence with co-fractionation experimental data into EPIC to minimize co-elution and finalize 

the final network. It is argued that integrating functional evidence will reduce false negative 

PPIs, but may introduce bias towards well-studied proteins (Skinnider et al., 2018). While it is 

difficult to evaluate this bias, we note that many WormMap complexes, including those validated 

by AP/MS, contain uncharacterized proteins or proteins with diverse functional annotations, 

which suggests that EPIC is not strongly affected by this bias. Regardless, we believe WormMap 

will serve a valuable public resource for worm community. 
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CHAPTER 4 

Applying deep learning to predict PPIs 

All the work conducted in this chapter was done by myself. Prof. Andrew Emili and Prof. Gary 

Bader co-supervised the project. 
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 Apply deep learning to predict PPIs 

4.1 Introduction 

The original implementation of EPIC requires calculating eight different correlation scores for 

each set of elution profiles between two different proteins. Additionally, optimizing the results of 

the final predicted protein complexes map across a range of parameters is computationally 

intensive. A deep neural network (or deep learning) approach may be able to overcome this 

problem by automatically learning patterns from elution profiles to make predictions without any 

feature engineering (correlation score calculations). In this chapter, I will use deep learning to 

perform PPI prediction using raw co-fractionation experimental data collected from our worm 

samples. Similar to most deep learning work, efforts are required for hyperparameter 

optimization before achieving satisfying results. In this work, a tree-structured Parzen Estimator 

Approach (TPE) (Bergstra et al., 2011) was used for optimizing hyperparameters 

(negative/positive ratio, PPI score cut-off, optimizer, learning rate, drop out probability and 

activation function). Briefly, the TPE algorithm randomly samples hyperparameters from an 

initial uniform distribution, and evaluates the loss function for each random set of inputs. And 

then the initial uniform distribution is replaced by a new distribution based on the results from 

regions of the sampled distribution that minimize the loss function. The advantage of using a 

deep neural network based approach to predict protein complexes is that we skip the feature-

engineering step, which is time consuming to create and optimize. The downside is that the 

hyperparameter optimization step is time consuming and requires high performance computing 

resources with GPU hardware. However, the result generated by deep learning is not as good as 

EPIC judging by the composite score evaluation introduced before. Regardless, through our 

work, we introduce and provide a framework for using deep learning to predict protein 

complexes using co-fractionation data, and hopefully this work can serve as a good starting point 

for others to adopt this approach into their own research work. 
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4.2 Material and methods 

4.2.1 Applying neural network to predict PPIs 

The general workflow of using deep learning to predict protein complexes is very similar to the 

EPIC pipeline (Fig. 4-1). Instead of performing pair-wise correlation metric computation of 

protein elution profiles in individual CF/MS experiments for feature engineering, all CF/MS data 

are directly concatenated to form a master matrix for input into the learner. For example, if 

protein A has the vector reading m (protein elution profile) from the first CF/MS experiment and 

has another vector reading n from the second CF/MS experiment, we concatenate the two vectors 

as m + n, then the concatenated vector from all proteins are stacked row by row to form the 

master matrix. If multiple CF/MS experiments are performed, all the vector readings from 

protein A are concatenated first. In the case where protein A is not detected in one CF/MS 

experiment, a zero vector (the length of the zero vector is the same as the number of fractions 

collected in that particular CF/MS experiment) is used to represent the vector reading. The 

training set and evaluation sets of PPIs are generated in the same manner as the EPIC pipeline 

discussed in the previous chapters. The difference in the second part of this workflow is that a 

deep neural network is used as the machine learning classifier instead of random forest or 

support vector machine, and the input of the deep learning classifier is the raw CF/MS output of 

the two proteins from the master matrix instead of correlation scores after feature engineering. 

Also, functional evidence is not incorporated into the machine learning prediction, as we try to 

predict PPIs purely based on CF/MS experimental data using deep learning. The last step is the 

same as in the EPIC workflow – the predicted network is segmented using a clustering algorithm 

to generate protein complexes. 
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Figure 4-1: A modified computational workflow using deep-learning takes CF/MS data as 

input to predict protein complexes: (i) concatenate individual elution profile from 

individual co-fractionation experiment into a master elution profile (a master matrix); (ii) 

co-complex PPI scoring using deep learning model; (iii) prediction, clustering, and 

benchmarking of derived complexes. 

 

Inspired by previous work of applying deep learning in computational biology to predict specific 

gene patterns (Alipanahi et al., 2015; Xiong et al., 2015) I started with the 1D convolutional 

neural network architecture ranging from three to five layers and using Max Pooling layers to 

reduce dimensionality and control overfitting. However, the accuracy of predictions from the 

convolutional neural network was low. I decided to switch to the standard multilayer perceptron 

(MLP) neural network to predict PPIs from CF/MS profile sequence data. In this work, the input 

data are elution profile vectors of two proteins across all CF/MS experiments, which are 

sequence data. After testing, we built our MLP model with the architecture as shown in the 

figure below: 
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Table 4-1: The architecture of the MLP model used in our prediction. In this architecture, 

the input layer is followed by six dense layers. Between each two dense layers, there is a 

batch normalization layer. The last dense layer uses sigmoid activation function to give a 

probabilistic output of prediction.  

 

In this architecture, I also introduced a batch-normalization layer that performs normalization for 

each training mini-batch to minimize the internal covariate shift problem, so a higher learning 

rate and more flexible initialization parameters are permitted (Ioffe and Szegedy, 2015). In this 

thesis work, we have collected 1,380 IEX HPLC fractions in total for the WormMap dataset. To 

input this data to the MLP, we concatenate the protein elution profiles from two proteins formed 

by two 1,380 long numeric vectors to give a combined vector with the length of 2,760. The 

training set of data was generated as in the EPIC work (Chapter 2), with the positive data labeled 

as “1”, and the negative data labeled as “0”. 

 

4.2.2 Hyper-parameter optimization by tree-structured Parzen Estimator 

Approach (TPE) 

To achieve good results for deep learning, hyper-parameter tuning is a necessary step. In this 

work, a tree-structured Parzen estimator (TPE) is used to optimize the hyper-parameters for the 

deep neural network architecture described above (Bergstra et al., 2011). This Bayesian based 

optimization algorithm has been shown to perform better than other popular optimization 

algorithms in efficiency and accuracy, especially for deep neural networks (Bergstra et al., 

2013). Like in any optimization problem, an objective loss function L is defined as shown below: 

¤�¥� = −L��MLN� ¦D;�§��v¨,�B©
��� ª 

In the above formula, θ is the set of hyper-parameters used in the deep neural network model. 

AUPRC is the area under the PR curve for the nth fold under a five-fold cross validation scheme. 

The average of the AUPRCs for the five-fold cross validation is the value we try to maximize, 
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and the negative of the average of the AUPRCs is taken as the loss function. We pick AUPRC 

instead of area under ROC curve, because we used all available labeled training data (much more 

positive ones), as deep learning model training requires lots of data. The way I coded cross 

validation makes sure that the portion of positive and negative data in each fold is the same as 

the one in the original training data set. In general, a Bayesian optimization algorithm tries to 

follow the probability model for a surrogate function and pick the most likely set of parameters 

evaluated by the true loss function. The TPE algorithm first randomly initializes the set of hyper-

parameters based on the pre-defined distribution of each parameter. Using a sequential model-

based global optimization (SMBO) scheme, TPE replaces the initial distribution by a newly 

defined one using the formula defined below: 

^��|�� = i W���;  �` � < �∗N���;  9�ℎ�M��:� 

In the formula above, x is the set of parameters and y is the value of the objective function that is 

L as defined above. In the TPE algorithm, y* is set as some quintile γ of the observed values of y, 

thus ¬ = ^�� < �∗�.  The TPE algorithm optimizes Expected Improvement (EI) that is defined 

as: 

��S∗��� = ­ ��∗ − ��^��|��S∗
�® �� = ­ ��∗ − �� ^��|��^���S∗

�® �� 

since ¬ = ^�� < �∗�, and we know: 

^��� = ­ ^��|�� ^����� = ¬W��� + �1 − ¬�N��� 

The formula of EI could be transformed as: 

��S∗��� = W���^��� ­ ��∗ − ��^����� = ¬�∗W��� − W��� ¯ �^�����S∗�®¬W��� + �1 − ¬�N���S∗
�® ∝ $¬ + N���W��� �1 − ¬�(��

 

To maximize the value of EI, the ideal x should be sampled with high probability under l(x) and 

low probability under g(x). The TPE algorithm uses an Adaptive Parzen Estimator to yield 

models of l(x) and g(x) by placing density based on previously sampled K observation over 



 

 

99

iterations. Each continuous hyper-parameter is pre-defined by a prior distribution specified by 

the user. In this work, we choose to optimize the following parameters: 
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Parameters Prior 

optimizer for training Adam, Nadam, RMSprop 

learning rate Loguniform (-0.5, 0.5) 

dropout rate Uniform (0.35, 0.65) 

activation functions relu, elu, tanh, sigmoid 

# non-zero fractions Range (2, 10) 

random seeds Range (0, 5) 

  

Table 4-2: Hyper-parameters optimized by TPE in this work. Note that this is a selection 

among many possible hyper-parameters that can be optimized. 

 

4.3 Results 

We used the TPE algorithm to optimize hyper-parameters as described above for 100 iterations. 

The set of parameters that achieved the highest average of the AUPRCs after five-fold cross 

validation is shown in Table 4-3. 
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Parameters Prior 

optimizer for training Nadam 

learning rate 0.828 

dropout rate 0.45 

activation functions elu 

# non-zero fractions 9 

random seeds 0 

 

Table 4-3: The optimized set of hyper-parameters after 100 iterations of TPE optimization. 
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With the optimized set of hyper-parameters, the ROC and PR curves based on the five-fold cross 

validation are shown in the figure below: 

  

Figure 4-2: ROC and PR curves of the optimized set of hyper-parameters based on five-

fold cross validation. 

Based on the figure above, it is found that average AUPRC is about 0.70. The values of area 

under PR curves are consistent across all folds based on the cross validation results that suggest 

the deep learning model is robust The results are also consistent for area under ROC curves, 

although we didn’t use it as the metric for hyper-parameter optimization. However, I noticed that 

the performance of the deep learning model is highly sensitive to hyper-parameter settings 

during parameter tuning. We then used the optimized set of hyper-parameters and all available 

training data to train the model. The trained deep learning model was applied to predict PPIs 

using all the available CF/MS data. If we set recall cutoff at 0.36, in total we obtained 56,189 

PPIs and 752 protein complexes. The composite score for the resulting protein complexes is 

0.4766 that is lower than the one obtained by EPIC (0.636). The results are briefly summarized 

in the table below: 
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Number of PPIs 56,189 

Number of complexes 752 

Maximum matching ratio 0.0806 

Overlap score 0.0173 

Accuracy score 0.3787 

Composite score 0.4766 

Table 4-4: The clustering results of overlapped PPIs between deep learning results and 

WormMap. 

However, after checking the newly predicted list of PPIs, I found many well-known PPIs are 

only detected by the deep learning approach. A good example is the interaction between two 

subunits (cra-1 and natb-1) of N-terminal AceTyltransferase B (NatB) complex. Although the 

overlap between deep learning and EPIC is small (~2,200 PPIs), the preliminary result here 

already suggests deep learning and EPIC seem to predict different subsets of PPIs. A natural way 

to think of this problem is to treat the PPI prediction problem as an ensemble approach to 

combine the most confident PPIs from EPIC and deep learning and throw away the less 

confident ones. Ideally, in the future, more different deep learning architectures could be 

explored to generate a more comprehensive set of PPIs that covers both EPIC and deep learning. 
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 Thesis summary and future directions 

5.1 Thesis summary 

Mapping PPIs or protein complexes is important to help us understand the cellular processes in a 

biological system. Through the guilt-by-association principle, the knowledge of protein 

complexes also helps annotate the functions of uncharacterized genes. Until now, using a 

systematic AP-MS approach, protein complexes have been mapped in many different biological 

systems including unicellular prokaryotic/eukaryotic model organisms, multi-cellular model 

organisms, human cell lines, diseased samples and host-pathogen infectious systems, which 

answered many important biological questions. However, the AP-MS approach is laborious and 

can only be applied to genetically tractable biological systems. CF/MS based protein complexes 

detection method has recently been developed, which requires no tagging on individual protein. 

The tagless CF/MS approach is fast, which makes charting an interactome map of a novel 

organism in a few months possible. However, bioinformatics analysis of CF/MS data to infer 

protein complexes while eliminating false positive PPIs is the key of this type of tagless 

screening method. The computational analysis part of this method is not trivial and requires large 

efforts consisting of feature engineering, training data preparation, machine learning inference 

and complex prediction. In this thesis work, we united all the computational steps and developed 

a new software tool named EPIC to automatically score, predict and evaluate protein complexes 

using CF/MS data. We also used EPIC to analyze CF/MS data collected from C. elegans to 

generate the first biochemically supported nematode protein complex map, termed WormMap. 

To demonstrate the reliability of this prediction, we used an orthogonal approach, AP-MS, to 

validate novel protein complexes from this map. We also showed that by using a deep neural 

network approach, we could infer PPIs without performing feature engineering, which provides a 

new direction for analyzing CF/MS data. 

Chapter 1 starts with a brief introduction of how a mass spectrometry machine can be used in 

proteomics research. The major historical breakthrough is the development of liquid 

chromatography coupled with tandem mass spectrometry (LC-MS/MS) that makes peptide 

separation and protein identification much easier. Protein quantification methods in proteomics 

including both isotopic labeling and label-free approaches are also discussed in this chapter. I 
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also introduced the two most widely used large-scale PPI screening assays, Y2H and AP-MS, 

and reviewed how the AP-MS approach can be applied to study PPIs and complexes in different 

types of samples to answer different biology questions. In the second part of Chapter 1, I 

introduced the development of computational analysis methods in proteomics. There are two 

directions of computational research in proteomics. The first direction focuses on data 

acquisition: how to develop better algorithms and software tools to more efficiently detect and 

quantify proteins from the mass spectrometry machine signal. The second direction is how to use 

“smart” computational methods, including machine learning, to extract useful information from 

collected proteomics data to answer biological questions. In the end of Chapter 1, I documented 

mathematical details of the machine learning algorithms used in this thesis work. Chapter 2 can 

be divided into two parts: the CF/MS experimental procedures and the EPIC computational 

workflow. A CF/MS experiment consists of three main steps: fraction collection, LC-MS/MS 

analysis and co-fractionation profile generation. Using C. elegans as an example, I described the 

details of the cell lysate preparations, the setup of HPLC fractionation and the parameters of the 

LC-MS/MS detection system. I explored a pre-enrichment approach to capture a sub-proteome 

using affinity beads and showed it both improves proteome coverage and benefits the detection 

of low abundance proteins. The computational part of Chapter 2 (the software development of 

EPIC) is the major focus of this thesis, which includes elution profile correlation metric 

calculation, PPI inference by machine learning and protein complex prediction. EPIC uses many 

public databases to download supporting information automatically. For example, it 

automatically collects gold standard protein complexes from CORUM, IntAct and GO by 

mapping orthologous proteins to a target species using InParanoid with a stringent cutoff. 

Heavily overlapping protein complexes are removed or merged to minimize redundancy. Feature 

engineering is used for machine learning-based co-complex PPI prediction. Before calculating 

protein elution profile co-elution scores, several filtering steps were used to remove suspicious 

and weakly associated protein pairs to reduce computational cost. EPIC contains eight different 

similarity metrics to compute protein elution profile similarity to capture different aspects of co-

elution patterns. It can also combine functional evidence data with co-fractionation experimental 

data to help increase prediction accuracy, where the functional evidence data can either be 

supplied by users or automatically downloaded from two popular databases (GeneMANIA and 

STRING) by supplying the target species taxonomy identifier. EPIC evaluates its prediction 
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performance at PPI and protein complex levels. In Chapter 2, I discussed how different 

evaluation metrics can be used to assess PPI and protein complex prediction using reference 

data. There are many parameters used in our prediction task. For example, in the WormMap 

project, we used multiple proteomics search and quantification methods, eight different 

correlation metrics to calculate protein elution profile similarity and two different machine-

learning classifiers. We used a nested-cross validation approach to select the optimal 

combination of parameters to derive the final worm protein complex set. We also did some extra 

analysis to see how many co-fractionation experiments are needed to derive a protein complex 

map with an acceptable quality. Unsurprisingly, we found that using more co-fractionation 

experiments leads to better protein complex prediction, but four IEX experiments are a 

reasonable lower bound if resources (i.e. mass spectrometry time) are limited. EPIC is also 

compared with similar software (PrInCE) and we found that EPIC predicted more complexes at a 

higher quality judged by the composite score. Chapter 3 is about WormMap, the first 

biochemically supported protein complexes map derived by CF/MS experiments and EPIC. We 

mapped 612 putative protein complexes and 16,098 PPIs in this work. We benchmarked our 

WormMap with previously published or curated worm PPIs and protein complexes. We found 

that the majority of co-complex PPIs and complexes in WormMap are novel. To demonstrate the 

reliability of WormMap, we tagged three genes (F26E4.4, Y34B4A.6 and F13H8.2) in C. 

elegans with GFP and performed AP-MS on these three GFP-tagged strains. Through AP-MS 

experiments, we successfully validated two novel components in the well-known RNA 

polymerase III complex. We also validated two novel protein complexes with components 

mostly uncharacterized or annotated with diverse functions. In the end of Chapter 3, we 

performed enrichment analysis on the novel complexes set from WormMap and found many of 

them are related to phenotypes and diseases, which demonstrates the richness of biology 

captured by WormMap. Chapter 4 is about applying deep learning to predict protein complexes 

using CF/MS data without performing extensive feature engineering. I built a MLP based deep 

learning architecture and applied the TPE algorithm to optimize its hyper-parameters. The set of 

optimized hyper-parameters are used to finalize the deep learning model to predict PPIs using all 

available CF/MS data. The predicted PPIs network does not have a comparable quality to the one 

predicted by EPIC, but the overlapped set of PPIs between EPIC and deep learning gives very 
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high composite score after clustering, which suggests this set of PPIs are highly confident co-

complex PPIs. 

 

5.2 Future directions 

5.2.1 Experimental advances on CF/MS pipeline 

One of the goals of a co-fractionation MS experiment is to maximize the coverage of proteome 

detection to maximize the protein complexes identification. Meanwhile, the integrity of protein 

complexes should be well preserved during chromatographic separations. To achieve these goals, 

several additional experimental techniques can be explored in future research. For example, non-

ionic detergents could be added to solubilize hydrophobic complexes (Babu et al., 2012), 

chemical cross-linkers can be used to stabilize labile assemblies (Liu et al., 2015), and organelle 

compartments can be enriched prior to HPLC co-fractionation. The chemical cross-linking 

strategy is one of the most promising directions for CF/MS pipeline. It is known some of the 

unstable complexes or transient interactions will not be preserved during chromatographic 

separation. Chemical cross-linking could solve this problem by stabilizing native protein 

complexes. However, most chemical cross-linking approaches nowadays suffer from a low 

labeling efficiency, which hinders its application in large-scale PPIs or protein complexes 

mapping (Liu et al., 2015; Walzthoeni et al., 2015). In other words, if more efficient cross-

linking chemistry is developed, the combination of CF/MS and cross-linking could be a very 

powerful tool for mapping protein complexes. The current EPIC pipeline uses label-free 

technique (MS1 ion intensity or MS2 spectral counts) to quantify proteins from hundreds of 

fractions, which could be expensive on mass spectrometry machine time. As discussed in 

Chapter 1, TMT based quantification approach can provide attractive multiplexing advantage. 

With advanced mass spectrometry machine, TMT multiplexing can allow quantification up to 10 

or 11 different conditions in one mass spectrometry run (Werner et al., 2014). In this way, 

fractions generated by the EPIC pipeline could be individually labeled but analyzed in one mass 

spectrometry run, which will dramatically reduce mass spectrometry machine time. 
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5.2.2 Protein complex map for other biological systems. 

One of the most attractive properties of CF/MS and EPIC platform is it provides a standardized 

and unified pipeline to map protein complexes across different biology samples, especially for 

those genetically intractable systems. We expect biologists from other laboratories can adopt this 

pipeline and software into their own research to map protein complexes in diverse animal 

species. Meanwhile, tissue specificity plays a central role in human disease and physiology, thus 

mapping tissue specific protein network can help us to understand how genes change functions 

across different tissues and their relationship among different diseases (Greene et al., 2015). 

Coupled with gentle tissue separation technique, CF/MS and EPIC can be utilized to map tissue 

specific protein complexes in an efficient manner. Indeed, our laboratory has already started 

mapping brain specific protein complexes map in mouse that may be the first study of this kind. 

The preliminary results have already shed light on its importance in neuron disease related 

biology.  Protein complexes closely related to Autism have been identified and functionally 

validated. 

 

5.2.3 Protein network dynamic by CF/MS and statistical inference 

Most available protein interaction networks capture the overall static landscape of biological 

systems. However, the structure and architecture might be dramatically re-wired under different 

biological conditions (Ideker and Krogan, 2012). To derive a differential protein network 

accurately and efficiently is a proteomics “dream”. But this work is very difficult and only very 

few works have been published, with many limitations (Collins et al., 2013; Lambert et al., 

2013). Our CF/MS pipeline provides an attractive approach to tackle the differential network 

problem, however, how to automatically and rigorously detect how the interactome (or 

complexes) changes under different conditions is challenging. Furthermore, since mass 

spectrometry machine time is expensive, the straightforward hypothesis test based approach that 

fits a known distribution based on central limit theorem and large number theorem and 

normalizes using the pooled variance to detect sample difference (Listgarten et al., 2007) might 

be resource consuming (experimentally, it needs multiple co-fractionation runs) and not very 

applicable. Thus, it is necessary to develop new high-dimensional interaction statistical models 
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to track how protein complexes change under different conditions using CF/MS data without 

multiple runs while preserving the statistical power.  

 

5.2.4 Using Natural Language Processing (NLP) techniques to annotate 

protein complexes 

The combination of CF/MS and EPIC software described in this thesis work can be used to map 

protein complexes across many different biological systems. Although the knowledge of protein 

complexes is important, linking physical associations of proteins (complexes) to related 

phenotypes is not easy. Previous papers have attempted to use a Bayesian predictor to assign 

diseases to human protein complexes (Lage et al., 2007). However, this work only focuses on 

human protein complexes, and the generated dataset is static. Expanding this work to multiple 

model organisms to relate the richness of mapped protein complexes and their associated 

phenotypes would be very useful for the biology community. Inspired by the many techniques of 

NLP and previous applications in system biology (Jurafsky and Martin, 2009; Kveler et al., 

2018), a statistical NLP model/software could be made to extract useful information from 

PubMed to statistically assign phenotypes to complexes. Also, since most annotated protein 

complexes are human complexes nowadays, EPIC uses a stringent orthologous mapping strategy 

to map human protein complexes to protein complexes of target species. This works well for 

most species but can be problematic in some cases. For example, if the organism under study is 

evolutionally distant from human, the direct orthologous mapping might generate inaccurate 

complexes. An automated NLP pipeline could also help solve this problem by collecting protein 

complex information for target species from literature. Our group has published a deep learning 

based NLP pipeline that could extract useful biochemical information from large amount of 

literature can be potentially useful for protein complexes generation in EPIC (Giorgi and Bader, 

2019). 
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5.2.5 Large scale directed signaling protein-protein interaction network 

So far all the networks discussed are undirected, which means the proteins are known to interact 

with each other either physically or functionally, but the direction or the causality is unclear or 

missing. Understanding directions in protein network is informative: many protein interactions 

represent components in signaling pathways and adding direction or causality information to a 

protein network can help us classify activators and inhibitors in a pathway and better understand 

the signaling pathway architecture. Building a protein network is not a trivial task, and causality 

inference in a network is an even more difficult task. In 2005, a small causal signaling network 

derived from single cell measurements was published (Sachs et al., 2005). In this paper, the 

levels of 11 different phospho-proteins and phospho-lipids were recorded using flow-cytometry 

under different conditions. All the data were collected and used to train a Bayesian network (a 

type of graphical probabilistic network). A Bayesian network is a powerful machine learning 

technique and can combine protein-signaling information as a joint probability distribution over 

proteins. The interaction direction is encoded as conditional probability in the joint distribution. 

Many of the established directed protein interactions were confirmed by previous publications or 

validated by new experiments performed by the authors. This work is promising in that it 

demonstrates an approach to modeling directed PPI networks using a probabilistic graphic 

model. An interesting extension to this work would be to scale up the phosho-signalling protein 

measurement using quantitative mass spectrometry based proteomics experiments, by which we 

could measure thousands of signaling proteins simultaneously across different conditions to 

build a much more comprehensive causal protein network. 
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