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A single-nucleus and spatial transcriptomic

atlas of the COVID-19 liver reveals topological,
functional, and regenerative organ disruption
In patients
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TGFp signaling cell-cell communications network. Integrated analysis and com-
parisons with healthy controls reveal extensive changes in the cellular composition
and expression states in COVID-19 liver, providing the underpinning of hepatocellular
injury, ductular reaction, pathologic vascular expansion, and fibrogenesis characteristic
of COVID-19 cholangiopathy. We also observe Kupffer cell proliferation and erythrocyte
progenitors for the first time in a human liver single-cell atlas. Despite the absence

of a clinical acute liver injury phenotype, endothelial cell composition is dramatically
impacted in COVID-19, concomitantly with extensive alterations and profibrogenic
activation of reactive cholangiocytes and mesenchymal cells.

Conclusions: Our atlas provides novel insights into liver physiology and pathology
in COVID-19 and forms a foundational resource for its investigation and understanding.

Keywords: SARS-CoV-2, COVID-19, Spatial transcriptomics, Single-nucleus sequencing,
Liver, Single-cell sequencing

Background

COVID-19 exhibits a wide phenotypic spectrum with potential multi-organ involvement
during its acute phase [1], including liver-related pathology. Abnormal liver biochemis-
try is reported in 15-65% of SARS-CoV-2 infected individuals [2—4] and is often associ-
ated with poorer clinical outcomes [3, 4]. To date, there are few studies of human liver
tissue from COVID-19 patients, hindering in-depth investigations of COVID-19-related
liver injury, its main causes, and potential long-term effects, especially post-acute seque-
lae of SARS-CoV-2 infection (PASC), such as the patient-coined term “long COVID” [5]
and post-COVID cholangiopathy, an emerging entity that may require liver transplanta-
tion [6]. In our previous work [7, 8], we assembled a multi-tissue COVID-19 cell atlas
across lung, heart, kidney, and liver, collected at autopsy from patients who succumbed
to the disease and captured both parenchymal and non-parenchymal cell populations
in epithelial tissues at high fidelity with single-nucleus RNA-seq (snRNA-seq). While
we have investigated the COVID-19 pathobiology of the acute respiratory distress syn-
drome (ARDS) lung in depth, including by spatial -omics in situ, the impact in other
organs, including the liver, have not yet been deeply explored.

Multiple factors may underlie the COVID-19 liver phenotype, including the impact of
direct infection given the expression of SARS-CoV-2 entry factors in major hepatic cell
classes [3, 9, 10], systemic inflammation, drug-induced injury, and hypoxia [3, 11]. Some
studies suggest the presence of subclinical liver damage, especially in the liver vascula-
ture [12], with short- and potentially long-term implications.

Metabolic, vascular, and biliary alterations in COVID-19 patients could result from
direct or indirect viral damage to the liver [3], while it was recently shown through bulk
RNA sequencing and proteomics that bulk gene and protein profiles of livers identified
as positive with SARS-CoV-2 present similarities to the signatures associated with mul-
tiple other viral infections of the human liver [4]. This further increases the importance
of identifying its effects on infected cells and their interactions with their microenviron-
ment. The spatial manifestation of COVID-19 phenotypes in the liver could especially be
of interest due to its distinct architecture. The liver is organized in the hexagonal-shaped
repeating anatomical units of the liver lobules, radiating into spatially distinct lobular
zones that span from the portal triad to the central vein. The oxygen and nutrition gra-
dients between the portal and central vein dictate liver development and define cellular
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function. While cellular expression programs are affected by zonation in both health and
disease [13, 14], most spatial and zonation information to date has been derived from
selected markers or by concordance with animal models [13].

Here, we created an integrated liver COVID-19 atlas of 80,808 snRNA-seq profiles
from liver samples collected at autopsy from 17 patients who succumbed to severe
COVID-19, as well as whole transcriptome spatial profiling of 62 regions of interest
(ROIs) from four concordant livers. By comparison with healthy controls (n=4), we
generated a high-resolution map of the cellular landscape of the COVID-19 liver as well
as determination of the viral impact on cell subsets, their activation states, and cell—cell
communication. We used these to assess clinically relevant changes in hepatocytes and
hepatic non-parenchymal cells in response to viral infection.

Results

A liver cell and spatial atlas in severe COVID-19

To construct a COVID-19 liver atlas, we leveraged an autopsy cohort of 17 COVID-19
patients (6 males, 11 females, ages from 30-35 to >89 years) across four medical cent-
ers from the Northeastern United States (Table 1, Fig. 1a) [7, 8, 15]. All samples were
obtained postmortem using either ultrasound-guided needle biopsy or surgical dis-
section by following stringent protocols established previously [7] (Additional file 1:
Table S1, Methods). Most patients had multiorgan failure at the time of death. While
liver function serum markers within 24 h of death showed varying degrees of transami-
nitis, no patient had clinical or laboratory signs of liver failure or ongoing liver injury
(Additional file 1: Table S2).

We used snRNA-seq to collect 80,808 high-quality profiles from 17 COVID-19 patient
autopsies (Methods) and integrated them computationally with snRNA-seq profiles
from four healthy controls, prepared using a comparable protocol [16]. Following ambi-
ent RNA removal, quality control (QC), and preprocessing (Methods), we implemented
a batch correction pipeline to generate corrected unique molecular identifier (UMI)
counts per cell [17-19], which facilitated marker detection and cell type identification
(Methods). The COVID-19 nucleus profiles were partitioned into five major compart-
ments: hepatocytes (k=51,605 cells; 63.8% of all nuclei); immune/blood (k=12,346;
15.3%); endothelial (k=9278; 11.5%), mesenchymal (k=4647; 5.8%), and biliary epithe-
lial cells (BECs) (k=2932; 3.6%) (Fig. 1b—d, Additional file 2: Fig. S1a,b), spanning 50 cell
subsets in distinct clusters (Additional file 3: Cluster Dictionary).

In parallel, we generated a spatial transcriptomic atlas from 62 Regions of Inter-
est (ROIs) from lobular zones 1, 2, and 3, and the portal triad across four patient
autopsies using the NanoString GeoMx Digital Spatial Profiling (DSP) Whole Tran-
scriptome Atlas (WTA) platform (Fig. 1a, Methods). We first performed multiplexed
immunofluorescence (Pan-cytokeratin (PanCK), CD45, CD68, Syto 83) on the same
slides to define the lobular structure by identifying the portal triad and central vein as
landmarks, as well as RNA in situ hybridization (RNA ISH) performed on a serial sec-
tion against ACE2, TMPRSS2, and SARS-CoV-2 RNA to take also into account local-
ized viral presence (Fig. 2a, Additional file 2: Fig. S1c, Methods). We then selected
62 ROIs, corresponding to lobular zones 1, 2, and 3, and the portal triad, by the con-
sensus opinion of an expert panel of pathologists (J.H., S.R.), hepatologists (Z.G.J.,
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Fig. 1 A Sample processing pipeline depicting sample acquisition, preparation for snRNAseq and spatial
transcriptomic profiling, data generation, integration, and in silico functionalization. B Uniform manifold
approximation and projection (UMAP) for all cells passing quality control (n= 80,808, Hepatocytes, n=51,605;
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compartments. D UMAP plots depicting gene marker expression for each compartment

Y.P, G.S.), and technology specialists (L.P.,, Y.L., Y.P-]., L.T., L.S.V.). We captured the
expression of over 18,300 genes on the WTA, including 27 SARS-CoV-2-relevant
probes (Additional file 1: Table S2). We further developed and applied an optimized
pipeline for NanoString DSP WTA data normalization and preprocessing (Meth-
ods). The snRNA-seq and spatial profiles were interpreted and integrated using
batch-corrected markers, a streamlined method for assigning pathway activity scores
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pathology and viral infection
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(PAS) (Methods), and by spatial registration of snRNA-seq profiles and signatures to
decipher the localized interactions of cell types in the context of liver architecture
(Fig. 2b, Methods). Finally, to evaluate whether rare cell types identified in COVID-19
patient liver samples were present in healthy liver tissue, as well as their localization,
we interrogated 306,524 cells from a control liver sample using 1000-plex single-
cell resolution spatial transcriptomics assay with the NanoString CosMx platform
(Methods).

Distinct zonal expression programs and their alterations in the COVID-19 liver

Each of the spatial transcriptomic ROI classes—three lobular zones and the portal
triad—exhibited distinct expression profiles, with differential engagement of hepatic
cellular pathways across the liver lobule, demonstrating the expected zonal division of
hepatocellular function in the healthy liver [13] as well as its alteration in COVID-19.
Principal component analyses (PCA) of the spatially defined expression profiles cap-
tured expression segregation between the portal triad and all lobular zones as well as
among the three lobular zonal ROIs 1, 2, and 3 (Fig. 2c). Each region class was character-
ized by the differential expression of distinct region-specific markers and of functional
gene sets [13, 20-22] (Fig. 2d). Based on a pathway activity score (PAS) analysis (Fig. 2d,
Additional file 2: Fig. S1d,e, Methods), Zone 1 exhibits high activity of transcriptional
programs for lipid and glutathione metabolism, urea cycle, fatty acid and steroid bio-
synthesis, and lipoprotein assembly, all commonly associated with liver-specific func-
tions. Zone 2 follows similar patterns, but with higher activity of triglyceride catabolism
and fucose biosynthesis. In contrast, Zone 3 exhibited high activity of drug catabolism
programs. These processes are concordant with our current functional understanding
of the zonated liver and have implications for chronic liver diseases. For instance: (1)
hepatic steatosis typically starts in Zone 3 [23] in metabolic dysfunction associated fatty
liver disease (MAFLD) and alcohol-related liver disease likely due to the lower meta-
bolic activity; (2) drug-induced liver injury is most significant in the pericentral area as a
result of drug catabolism; (3) disease related to impaired metabolism may manifest pref-
erentially in Zone 1; and (4) Zone 1 predilection of pediatric NAFLD may in part be
driven by genetic variants impacting lipid and lipoprotein metabolism, such as PNPLA3
[24].

In COVID-19, we found evidence of a spatially orchestrated COVID-19-specific liver
phenotype, including hepatocyte proliferation in Zone 1 as well as hypoxia and stress
response pathways in Zone 3, which has not been reported in healthy liver. The pheno-
type was reflected by high activity scores of specific pathways across liver zones and the
portal triad (Additional file 1: Table S3, Table S4, Additional file 2: Fig. S1d). Nonparen-
chymal cells showed distinct zonation of cellular physiology in the COVID-19 liver. For
instance, among endothelial expression programs, differentiation programs were strong-
est in portal ROIs, programs for regulation of endothelial barrier establishment were
highest in Zone 1, and endothelial cell chemotaxis in Zone 2 (Additional file 2: Fig. S1d).
Among immune cells, portal ROIs exhibited high activity of monocyte activation and
differentiation, as well as lymphocyte differentiation, whereas Zone 1 was characterized
by Kupfter cell (KC) and natural killer (NK) cell proliferation, and lymphocyte migration
and activation (Additional file 2: Fig. S1d). Among mesenchymal cells, portal ROIs had
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the highest activity of fibrogenic hepatic stellate cell (myofibroblast) activation, includ-
ing response to platelet-derived growth factor (PDGF), fibroblast growth factor recep-
tor (FGFR), and collagen/extracellular matrix production and organization pathways.
Finally, Zone 3 exhibited the highest inflammation signals, including inflammasome
activation, signaling by interleukins, response to cytokines, interferon-gamma binding,
and inflammatory cell apoptotic processes (Additional file 2: Fig. S1d), which may be
associated with SARS-CoV-2 infection and are not expected to be pronounced in Zone 3
in healthy livers. Thus, Zone 3 seems to be most severely affected by COVID-19.

A spectrum of hepatocyte subsets from progenitors to functionally mature cells suggest
plasticity of liver cells during injury

Hepatocytes were the most populous compartment in the COVID-19 snRNA-seq atlas
(63.8%) (Fig. 3a, Additional file 3: Cluster Dictionary) thanks to the ability of single-
nucleus sequencing to capture this often underrepresented cell type in single-cell assays.
Hepatocytes partitioned into seven subsets that spanned a continuum between two
dichotomous ends: (1) primary essential liver functions, such as production of blood
proteins, and (2) cell differentiation and replenishment, along with response to stress
(Fig. 3a, Additional file 2: Fig. S2a,b). Regarding liver function, HEP2 cells (21.7% of
hepatocytes) highly expressed genes encoding circulating blood proteins, including albu-
min, coagulation factors, and apolipoproteins (Fig. 3b), suggesting that only a fraction of
all hepatocytes carry out conventional essential liver functions. HEP6 and HEP7 cells
had similar profiles to those in the HEP2 subset but with high expression of acute phase
proteins in HEP7 (e.g., CRP, C3, C4a, SAA1, and FTHI; a COVID-19 specific cluster;
below) or apoptosis and cellular senescence pathways in HEP6 (Fig. 3b, Additional file 2:
Fig. S3a). In contrast, cells in the HEP1, HEP3, and HEP4 subsets (Fig. 3a) exhibited
lower levels of liver metabolic or synthetic function genes, but higher levels of cellular
differentiation, wound healing, and signal transduction pathways (Additional file 2: Fig.
S3a,b), such as the HNF4A/HNF4B, YAP/TAZ, PPRA/B/G, and GHR signaling pathways.
HEP4 cells also expressed collagen-modifying enzymes (P4HA1, PLOD2; Fig. 3b) and

(See figure on next page.)

Fig. 3 A Uniform manifold approximation and projection (UMAP) for Hepatocytes (HEP1 n=13,951, HEP2
n=11,187, HEP3 n=9956, HEP4 n=9241, HEP5 n =4056, HEP6 n= 1612, HEP7 n=1602). B Heatmap
capturing the expression of marker genes across the hepatocyte and the biliary epithelial cell compartments.
C Slingshot pseudotime values (left) projected on the 2 primary harmony embeddings across 5 lineages

for hepatocyte and biliary epithelial cells from COVID-19 and healthy liver nuclei. The starting and ending
lineage points are represented with green and red, respectively. Slingshot-derived lineages (right), coupled
with cell composition fold-change differences between healthy and COVID-19 liver samples on a log2 scale.
D Cell proportion differences between COVID-19 and healthy liver samples. Significantly different proportions
are marked in red (higher in COVID-19), in blue (higher in Controls), and denoted with * (* FDR <0.05, **
FDR<0.01; Binomial Generalized Linear Mixed Model). COVID-19-specific clusters are denoted with dark

red. E Abundance of SARS-CoV-2 RNA+ nuclei in the snRNAseq clusters. The bars are colored by the scaled
viral enrichment score estimated per cluster. Significantly enriched clusters are marked in red and denoted
with * (* FDR < 0.05, ** FDR < 0.01; Viral enrichment test). F Uniform manifold approximation and projection
(UMAP) plots depicting the average expression of different heat shock proteins (HSPATA, HSPATB, HSPAS,
HSPAE, HSPA9, HSPB1, HSPDT) in hepatocytes (upper left), pathway activity scores for GO term “regulation

of type | interferon-mediated signaling pathway" (GO:0060338, bottom left), the viral load in all the cellular
compartments (upper right), in hepatocytes (lower middle), and the average expression on NFKBT in
hepatocytes (lower right)
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pro-angiogenic factor VEGF-A, indicating potential regulation of hepatocyte-endothelial

cell interactions. Overall, the human liver demonstrates a balance between metabolic

and proliferative dynamics, as also reported in mouse liver regeneration models [25].

Trajectory analysis of epithelial cells (hepatocytes and cholangiocytes) from both
healthy and COVID-19 livers (Methods, Fig. 3c) suggests a differentiation path from
HEP3 cells, a cell population with the highest pathway activities related to cell replica-
tion and expressing WNT and NOTCH signaling pathway genes (e.g., TCF7L1, TCF7L2,
FZD6, RBPJ, NOTCH?2; [26]) to the highly differentiated HEP2 cells, through HEP4, 1,
and 5 intermediates, with HEP6 and HEP7 cell populations directly derived from HEP2.
The hepatocyte population is known to be maintained both through mitosis of mature
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hepatocytes and differentiation from hepatic progenitor cells (HPCs) [27]. As HPCs
give rise to both BECs and hepatocytes [28], and injured hepatocytes can transition into
HPCs [29], we included both epithelial (hepatocyte and BEC) compartments, finding
that HEP1 cells were an intermediate across hepatocytes and cholangiocytes (Fig. 3c).
BEC differentiation trajectories are further discussed below.

Hepatocyte composition and differentiation are altered in COVID-19

Contrasting healthy and COVID-19 cellular landscapes (Methods, Additional file 1:
Table S5) reveals extensive remodeling of the hepatocyte compartment in COVID-19
(Fig. 3d), as well as the emergence from HEP2 cells of a COVID-19-specific HEP7 clus-
ter, expressing acute phase proteins (Fig. 3b—d). The proportion of HEP3, a population of
cells with less differentiated phenotypes, was reduced (FDR=3.63 x 1074, OR=0.352,
Binomial GLMM) whereas proportions of HEP2, HEP4, HEP5, and HEP6 cells were
identified as increased (HEP2,4,5,6: FDR=8.50x 1072°, 2.37 x 107%, 8.60x 107°,
2.22 x 107%;, OR=1.82, 1.26, 3.04, 3.52; Binomial GLMM; respectively) or only present
in COVID-19 samples in the case of HEP7 (Fig. 3c,d). Comparing the COVID-19-spe-
cific HEP7 cells to the closely related HEP6 cells, shows an inverse CEBPA/CEBPB ratio,
demonstrating a metabolic vs. acute phase regulation expression program [30]. Of note,
pathways such as fatty acid biosynthesis, insulin signaling, and glucose metabolism were
less active in the HEP7 cluster compared to HEP2 (Additional file 2: Fig. S3c). HEP7 cells
showed significant upregulation of pathways involved in immune responses and cellu-
lar stress, reflecting a shift in function from typical metabolic processing to response to
infection and inflammation [31].

Notably, HEP4 hepatocytes also exhibit low HNF4A, APOB, and high SCARBI,
STAT3, and HIFIA, a phenotype identified using bulk proteomics on severe COVID-
19 patient livers, and hypothesized to be driven by the combination of hypoxia and
activation of STAT3, leading to a reduction of the differentiated hepatocyte pathways
orchestrated by downregulation of HNF4A [32]. The trajectory analysis reveals not only
a reduction of lineages concordant to the differential cellular proportions observed, such
as the increase of cells in the stressed HEP4 state, but also COVID-19-specific line-
ages, with high proportion of cells in the terminally differentiated HEP2 state and in the
COVID-19-specific acute response HEP7 cluster (Fig. 3c, Additional file 2: Fig. S3d-e).
HEP4 cells presented high expression of NF-kB, type 1 interferon signaling, and heat
shock proteins, as well as an elevated autophagy activity. HEP4 cells highly expressed
autophagy-related pathways and genes, such as ATG2B, ATG7, ATG10, ATGS, ATG4C,
ATGI14, and MAPILC3B, which is an essential factor for the autophagosome formation,
protein kinase AMP (PRKAA2), RPTOR, and ULK2 which is involved in autophagy ini-
tiation (Fig. 3b).

COVID-19-specific lineage clusters, i.e., HEP2, HEP6, and HEP7, were character-
ized by high expression of acute phase protein genes (SERPINA1, FGA, FGB, FGG, HP,
SAAIL, CRB FTHI, C3, Fig. 3b, Additional file 2: Fig. S2a) and by an upregulation of
the unfolded protein response pathway (Additional file 2: Fig. S3a), which may predis-
pose them to an increased response to viral infection phenotype. On the other hand,
we observe an increase also in HEP2 cells which could represent a dynamic response to

maintain liver function [31].
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SARS-CoV-2 RNA+ cells are enriched in hepatocyte subsets and associated with specific
expression changes
We analyzed the donor- and cell type-specific distribution of SARS-CoV-2 sequenc-
ing reads to determine the presence of viral transcripts in liver cells. Specifically, we
called each nucleus profile as SARS-CoV-2 RNA+or SARS-CoV-2 RNA—by compar-
ing the observed viral unique molecular identifier (UMI) counts to the ambient pool
(a potential source of viral RNA contamination) and then tested for the enrichment of
SARS-CoV-2+ nuclei in each cell type (Methods). Hepatocytes were the most enriched
for SARS-CoV-2 RNA+nuclei, particularly within the least differentiated (HEP3, 4:
FDR=1x 1078 1x 1075 viral enrichment test; respectively) and most differentiated
clusters (HEP6, HEP7: FDR =0.040, 0.066; viral enrichment test; respectively) (Fig. 3e).
Viral RNA levels were positively associated with the expression of multiple heat
shock proteins (HSPA1A, HSPA1B, HSPAS, HSPA6, HSPA9, HSPB1, HSPD1), which
were highest in cells in clusters HEP3, 4, 6, 7 (Fig. 3f, Fig. 4a,b), suggesting activation
of unfolded protein response to cellular stress in these subsets. Heat shock protein
expression was identified as localized majorly pericentrally in the matched spatial
transcriptomic data (Additional file 2: Fig. S3f). In HEP4, profiles with higher viral
UMIs also exhibited high NF-kB expression (Fig. 3f) suggesting an activation of an
inflammatory response, concomitant with epithelial cell SARS-CoV-2 infection [33].
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Fig.4 A Abundance of SARS-CoV-2 RNA+ nuclei in the snRNAseq data for each donor. The bars are colored
by the scaled viral enrichment score estimated per donor. Only donor L1 has a significant viral enrichment
score (* FDR <0.01; viral enrichment test). B Distribution of the NanoString GeoMx DSP SARS-CoV-2 probe
enrichment score across donors. Donor L1 has a significantly higher enrichment score (FDR=0.037, t-test)
compared to the rest of the donors (L2-4). C Uniform manifold approximation and projection (UMAP) for
biliary epithelial cells BEC1 n=736; BEC2 n=687; BEC3 n=457; BEC4 n=373; BEC5 n=371; BEC6 n=281;
BEC7 n=27)
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Infected cells also overlapped with high pathway activity scores (Fig. 3f, Methods)
for the gene ontology (GO) term “regulation of type I interferon-mediated signaling
pathway” (GO:0060338). Interferon signaling pathways were identified as enriched in
a bulk RNA-seq analysis of 5 samples from SARS-CoV-2 positive livers, as character-
ized by PCR, when compared against 5 SARS-CoV-2 negative liver samples [4]. Path-
way activity comparisons between SARS-CoV-2 positive and negative hepatocytes
(Additional file 2: Fig. S3g) revealed a significantly increased activity in SARS-CoV-
2-positive cells of the TNF pathway, which was also identified as enriched in infected
lung epithelial cells in Delorey et al. [7]. However, despite these similarities, infected
hepatocytes showed increased activity of the IL-1 pathway, which was not observed
in the lung single-cell atlas, as well as increased activity of the MYC and oxidative
phosphorylation pathways. MYC is involved in hepatocellular proliferation [34], and
overexpression in hepatocytes leads to increased liver fibrosis [35]. Regulation of oxi-
dative phosphorylation in hepatocytes is crucial for suppressing inflammation and
proliferation [36—38]. Pathways related to bile acids were identified as significantly
downregulated in infected hepatocytes. Secondary bile acids play a role in modulat-
ing inflammatory responses [39].

SARS-CoV-2 RNA+cells and viral UMIs also varied across patients. Donor L1
cells were significantly (FDR<0.01, viral enrichment test) enriched for SARS-CoV-2
RNA+nuclei (ninefold higher proportion of enriched nuclei vs. average of all other
donors) (Fig. 4a). Since the ability to detect viral UMIs can be affected by the total num-
ber of UMI counts and the number of genes detected (Additional file 2: Fig. S4), we also
tested for enrichment in SARS-CoV-2 viral-specific probes in the extended NanoString
GeoMx DSP WTA assay (Methods). Donor L1 has a significantly higher enrichment
score (FDR=0.037, t-test) for viral probe counts compared to the other donors (Fig. 4b).
The significant enrichment in donor L1 for SARS-CoV-2 RNA in both the snRNA-seq
and GeoMx DSP assays was consistent with the viral abundance estimated by quantita-
tive RT-PCR using liver tissue from the same samples (Additional file 1: Table S6). Inter-
estingly, the higher viral load detected by snRNA-seq, GeoMx, RT-PCR, and RNA ISH
(Additional file 2: Fig. S1c) was not associated with gross abnormality of the liver tissue
by conventional H&E staining. Consistent with previous reports [7, 40, 41], we found a
negative, but not statistically significant correlation between the duration from symptom
start to death, and the enrichment score for SARS-CoV-2 (p-value =0.2852, Spearman
r= —0.336) (Additional file 1: Table S7).

Pathological expansion of the cholangiocyte compartment in COVID-19

BECs (3.6% of COVID-19 patient liver nuclei, Supplement) expressed the lineage mark-
ers CFTR, KRT7, and KRT19, and spanned a broad spectrum, partitioning to six main
subsets (Fig. 4c): two subsets of differentiated cholangiocytes (BEC1, 2), three of reac-
tive cholangiocytes/HPCs (BEC4,5,6), and one minor subset of cholangiocyte with mes-
enchymal features (BEC7). BEC3 expressed highly MT genes and hepatocyte-specific
markers CPS1, ALB, HNF4A, C3, ABCB4, which could potentially be doublets. BEC1
and 2 were closely related fully differentiated small cholangiocytes lining small caliber
bile ducts [42], expressing secretin receptor SCTR, BCL2, and primary cilia genes (e.g.,
BICCI1, PKHDI, DCDC2, CTNND2, PKD2, but not CYP2EI; Fig. 3b), while BEC1
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expressed lower levels of PDGFD, ZNF19, PAK3, ONECUT]I, and CD133 compared to
BEC2.

BEC4, 5, and 6 subsets each had a distinctive profile, consistent with either “reactive”
cholangiocytes/hepatic progenitor cells (HPCs) or with a pro-fibrogenic “ductular reac-
tion” in chronic liver diseases [43]. BEC4 cells comprised osteopontin-positive reac-
tive cholangiocytes/hepatic progenitor-like cells (HPCs), expressing SPP1, SOX9 [44],
LYPD6, CASR, HNF1B, ONECUTI/2, and GABRP, as well as progenitor cell response
genes (ITGB6, FN14/TNFRSFI12A, LTBR). BEC5 were NCAM1 * immature, reactive
cholangiocyte/HPCs [45], co-expressing ITGA2, progenitor cell markers (SOX4, CKI19,
TROP2, CD133), and potent pro-fibrogenic mediators (FGFI13, PPARD, PDGFC, and
TGFB2). BEC6 were a neuroendocrine subset of cholangiocytes [46], expressing neu-
ral markers (TMEM 132D, GRM7, HYDIN, NRXN3, LRRC4C, NTM). Trajectory analysis
suggests that BEC6 cells may form a potential transition state between hepatocytes and
cholangiocytes (Fig. 3c), consistent with previous findings [28]. BEC7 comprised a minor
subset of activated cholangiocytes co-expressing both epithelial and mesenchymal genes
(IGFBP7, THBS2, CCBEI, COL1A2, ACTA2, EDNRA) and many cell-cell communica-
tion genes, especially with the endothelial compartment (FGF, PDGF, VEGF ligands/
receptors) (Additional file 2: Fig. S5a-c), and is connected to BEC6 in the trajectory anal-
ysis (Fig. 3c).

Compared to normal liver (Fig. 3c,d), BEC4 (and BEC3s) were reduced (BEC
4,3: FDR=2.36x107% 1.32x 107! OR=0.318, 0.162; Binomial GLMM. respec-
tively) and BEC1, 2, 5, and 6 increased in COVID-19 liver samples (BEC1,2,5,6:
FDR=3.80 x 107", 2.22 x 10E™°, 7.74 x 107", 2.21 x 10~% OR=16.577, 2.736, 10.413,
11.482, Binomial GLMM), showing an extensive pathological restructuring of the chol-
angiocyte compartment. Spatial transcriptomics revealed that while BEC1,2 and 4 sig-
natures mapped to portal tracts as expected (Additional file 2: Fig. S6a), HPC-like BEC6
and 7 had mixed lobular and portal distribution in COVID-19 liver, consistent with
pathological “ductular reaction” expansion into the hepatic lobule [43]. We validated this
observation by CK19 staining and morphometry in these livers, which revealed a pres-
ence of ductular reaction in all samples, ranging from minimal to extensive multifocal
ductular proliferation extending well into the liver lobule, with up to twofold difference
in CK19 + duct counts among individual livers (Donors L1-4, Additional file 2: Fig. S6b,
S8).

Kupffer cell proliferation and emergence of an erythrocyte progenitor population
in COVID-19
The immune and blood cell compartment of COVID-19 livers (15.3% of COVID-19
patient liver nuclei) spanned monocytes/macrophages/Kupffer (KCs), T cells, B cells,
natural killer (NK) cells, and mast cells in diverse cellular states (Fig. 5a, Supplement).
Both the myeloid and T cell compartments were remodeled in the COVID-19
liver compared to healthy controls (Fig. 3d). Naive CD8+ T cells with high expres-
sion of LEF1 and TCF7 (TC1) were significantly decreased in COVID-19 liver
(FDR=1.45 x 107%, OR=0.629, Binomial GLMM), while cytotoxic effector/mem-
ory T cells (TC3), expressing IFNy, CX3CR1, TGFBR3, GNLY, and GZMH, and the
apoptotic naive T cell-like (TC4) population were both significantly increased in
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the COVID-19 liver (TC3, TC4: FDR=1.69 x 107 2.59 x 10~% OR=4.127,1.969,
respectively, Binomial GLMM). In the myeloid compartment, there were no differ-
ences in classical Kupffer cells (KCs) (MAC1) or inflammatory KCs (MAC3) (MACI,
MAC3: FDR=0.231, 0.154; OR=0.925, 0.873, respectively, Binomial GLMM), but an
increased proportion of MAC2 cells was observed in COVID-19 (FDR =1.86 x 1072,
OR =1.182, Binomial GLMM), an intermediate phagocytic macrophage phenotype
with lower expression of MARCO and CDI164 but increased expression of phago-
cytic markers (C5AR1, CPVL, CD206). None of the macrophage subsets expressed
high levels of chemokine receptors (CCR2, CCRS5, CXCR3), indicating a deficiency
of infiltrative monocyte derived macrophages, which potentially reflects a degree of
immune exhaustion and/or pulmonary tropism.

The atlas also captured several proliferating cell populations that have not been pre-
viously identified in human liver single-cell studies, were nearly exclusive to COVID-
19 samples, and may play important roles in regeneration. In particular, a small
subset of proliferating Kupffer cells (MAC4), were significantly increased in COVID-
19 livers (FDR=7.19 x 10, OR=3.395, Binomial GLMM) (Fig. 3d). Kupffer cells
can replicate following tissue injury and were recently reported as the first cell type
to enter a proliferating program in mouse liver regeneration [47], but have not been
until now reported in human samples. MAC4 cells in COVID-19 liver samples reca-
pitulate the scRNAseq signature identified in mouse liver following injury (Additional
file 2: Fig. S6¢c-d, Methods). Moreover, erythrocyte precursors (ERY-P) were detected
almost exclusively in the COVID-19 liver (FDR =2.37 x 107, OR = 12.554, Binomial
GLMM), expressing a combination of hemoglobin and glycophorin genes, prolif-
eration genes, and additional genes not present in mature red blood cells, such as
CD71/TFRC, which are rarely encountered outside the bone marrow in adults. These
cells may be responsible for extramedullary hematopoiesis in the setting of hypoxia,
modulate immune response in virus infection, and participate in hepatogenesis as
shown in fetal liver [48, 49].

(See figure on next page.)

Fig. 5 A Uniform manifold approximation and projection (UMAP) for the A immune / blood, B endothelial
cell, and C mesenchymal cell compartments (AlImmune: MAC1 n=2798, MAC2 n=2601,TC1 n=1522,TC2
n=388,TC3n=327,TC4n=29,DBLT n=1331, MAC3 n=1038, NKn=2857,PC1 n=397,PC2 n=124, BC
n=124, ERY-P n=359 MAC4 n =222, MAST n=236 DBL2 n=193; BEndothelial: EC1 n=2338, EC2 n=2247,
EC3n=1563,EC4n=1117,EC5,n=795 EC6 n=379,EC7 n=328,EC8 n=166,ECOn=116,DBL3 n=91,
EC11 n=73,EC12 n=65; CMesenchymal: MEST n= 1223, MES2 n= 1065, MES3 n= 1040, MES4 n =374, MES5
n=2328, MES6 n=312, MES7 n=275, MES8 n=30). Heatmaps capturing the expression of marker genes
across the 3 distinct major compartments are displayed. D Heatmap portraying the cell-cell communications
between the cell populations. The color gradient indicates the strength of interaction between any two cell
groups. Recipient/Donor cell-type color is portrayed in a blue (healthy) to red (COVID-19) gradient, relevant
to the cell composition fold-change differences between healthy and COVID-19 liver samples. E Circle plot
portraying the aggregated cell-cell communication network in the TGFb pathway. This analysis includes the
enriched hepatocytes in SARS-CoV-2 reads as a separate population (HEP Inf). Thicker edge lines indicate

a stronger signal, while circle sizes are proportional to the number of cells in each cellular compartment.
Donor edge-line and circle color are portrayed in blue (significantly increased in healthy liver samples), red
(significantly increased in COVID-19 liver samples), and black (no significant difference between COVID-19
and controls in cell proportions), concordantly with the cell composition fold-change differences between
healthy and COVID-19 liver samples
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Disrupted zonation and differentiation of endothelial cells in COVID-19

Cells in the endothelial compartment (11.5% of COVID-19 patient nuclei) spanned 12
subsets, including liver sinusoidal endothelial cells (LSEC) and other endothelial cell
(EC) populations in an 8:1 ratio (Fig. 5b, Supplement).

Endothelial cell composition was substantially impacted in COVID-19 vs. healthy
liver (Fig. 3d). EC1 cells, the largest endothelial subset in COVID-19 liver samples, were
significantly increased in proportion compared to healthy liver (FDR=2.76 x 10723,
OR=38.63, Binomial GLMM). These cells expressed VEGFR1, FGFR1, and A-kinase
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Anchoring Protein 12 (AKAP12), but were VEGFR2 negative. FGFRI is upregulated
in cholestatic liver injury in mice, which provokes maladaptive fibrogenesis [50], while
AKAPI2 deficiency is linked to VEGF-induced endothelial cell migration [51], regu-
lates cell adhesion [52], and supports the integrity of the blood brain barrier during
ischemic injury [53]. In the liver, AKAPI2 also modulates the activity of hepatic stellate
cells (HSC) in liver injury [54]. Thus, EC1 represents a LSEC-derived profibrotic niche
in response to systemic illness, either directly or indirectly from SARS-CoV-2. Con-
versely, EC2s, typical liver sinusoidal endothelial cells (LSEC) with high lymphatic vessel
endothelial hyaluronan receptor (LYVEI) expression, and EC8s with features of classi-
cal vascular endothelial cells and high anti-inflammatory gene C7 expression [55] were
both significantly reduced in the COVID-19 samples (EC2, EC8: FDR=7.10 x 10~}
5.16 x 10~%%; OR =0.378,0.142, respectively, Binomial GLMM) (Fig. 3d). EC3s likely rep-
resented transitional states from EC2 to EC1 and were also increased in COVID-19 liv-
ers (FDR=2.91 x 10~*°, OR=10.571, Binomial GLMM).

Notably, two clusters of rare cell populations were detected almost exclusively in
COVID-19 livers, which may partly reflect the larger number of profiled nuclei. EC11
cells, a rare subset of FLT1 (VEGFRI) negative cells (0.8% of endothelial cell nuclei;
0.09% of all profiled nuclei; FDR=7.61 x 10~!, OR =9.665, Binomial GLMM) are lym-
phatic endothelial cells, which are potentially captured in our COVID dataset due to the
larger number of profiled nuclei. Another rare subset detected primarily in COVID-19
liver were EC12 cells (FDR=1.76 x 10!, OR = 2.864, Binomial GLMM), expressing pro-
liferation and angiogenesis-associated genes. This subset is reminiscent of replicating
endothelial cells observed in mouse lung following influenza injury [56]. Using pathway
activity scores, EC12 cells clearly recapitulated the cell signature observed in influenza
infected mice (Additional file 2: Fig. S6e, Methods).

Fibrogenic activation in the mesenchymal compartment in COVID-19 patient livers

The eight subsets of mesenchymal cells (5.8% of COVID-19 nuclei) represented all
major cell lineages found in the liver, including quiescent and activated hepatic stel-
late cells (HSCs), smooth muscle cells (SMCs), myofibroblasts (MFs), and fibrocytes
(Supplement).

Mesenchymal cell proportions shifted substantially in COVID-19 liver, consistent with
profibrotic HSC activation (Figs. 5¢ and 3d). While the proportions of quiescent HSCs
(qHSCs, MES1)—the largest mesenchymal subset—were unchanged between healthy
and COVID-19 livers (FDR=0.121, OR=0.807, Binomial GLMM), partially activated
HSCs (aHSCs) (MES2) and extracellular matrix (ECM)-associated HSCs (MES3) were
both significantly increased in COVID-19 livers (MES2, MES3: FDR=1.44 x 1075,
9.21 x 10~% OR =2.149, 1.508; Binomial GLMM,; respectively), as were smooth muscle
cells (SMCs) (MES4) (FDR=1.66 x 10~% OR=2.181, Binomial GLMM). Conversely,
both putative bone-marrow-derived fibrocytes [57] (MES5) and a minor subset of acti-
vated myofibroblasts (MES8) were decreased in proportion in COVID-19 vs. healthy
liver (MES5, MES8: FDR=3.28 x 10~%, 1.09 x 10~% OR=0.479, 0.205; Binomial GLMM;
respectively). MES7 cells exhibited high expression of mitochondrial genes and low
nuclear mRNA counts pointing to apoptotic cells or a technical artifact.
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As expected, both MES]1 (quiescent HSCs) and MES2 (activated HSCs) demonstrated
translobular localization in the spatial analysis (Additional file 2: Fig. S6a), indicative of
in situ activation of perisinusoidal qHSCs in response to parenchymal injury. Impor-
tantly, HSC activation was validated by immunohistochemistry for the classical HSC
activation marker alpha-SMA, demonstrating a massive fibrogenic activation of HSCs
across all studied livers (Additional file 2: Fig. S6b, Methods). In contrast, MES3 (ECM-
associated HSCs), MES4 (SMCs), MES5 (fibrocytes), and MES8 (activated myofibro-
blasts) were mapped to the portal tract (Additional file 2: Fig. S6a). Surprisingly, we were
not able to identify portal fibroblasts (PF) in the mesenchymal compartment based on
PF-specific markers reported in the literature [58, 59]. This is consistent with evidence
that collagen-producing myofibroblasts are a progeny of pericyte-like qHSCs, as sug-
gested in fate-tracing studies in mice [60], and does not appear to support the appreci-
able contribution of PFs [58, 59] to the pool of fibrogenic effector cells in the human liver
in the setting of subacute liver injury.

Cellular communication networks reveal active fibrogenesis mediating altered cellular
programs in COVID-19

Cell-cell communication analysis in COVID-19 donor snRNA-seq data (Methods)
revealed a potential multi-cellular hub of interacting mesenchymal cells, endothelial
cells, and hepatocytes (Fig. 5d, Additional file 2: Fig. S5a). The hepatocyte and endothe-
lial compartments demonstrated signaling through the ERBB family of proteins, includ-
ing neuregulin (NRG) and epidermal growth factor (EGF), as well as the TGFp family of
proteins, including the central pro-fibrogenic cytokine transforming growth factor beta
(TGF-B1), and bone morphogenetic protein 5 and 6 (BMP-5, -6) (Additional file 2: Fig.
S5b,¢). This finding, although not reported in COVID-19-related liver pathology, is con-
sistent with their previously reported role in liver tissue regeneration, cellular homeosta-
sis, and extracellular matrix remodeling associated with scarring [61-66].

We identified a robust VEGF signaling network that predominantly emanates from the
hepatocyte compartment. The high contribution by the VEGF-A ligand correlates with
its reported upregulation under hypoxic conditions and its role in maintenance of LSEC
differentiation and of liver regeneration by enhancing liver endothelial cell communica-
tion with neighboring parenchymal cells [66-69]. The LIGHT and CXCL signaling net-
works presented a distinguishable narrow number of cell-cell interactions with strong
communication probability. Tumor necrosis factor superfamily 14 (TNFSF14) was the
main driver of the former network with a markedly strong interaction between sub-
clusters HEP2 and HEP5. This interaction could represent an underlying homeostatic
mechanism between distinct hepatocytes responsible for regulating TGF-f31 expression
in liver fibrosis [70]. Interestingly, TGFf-centric communication was observed between
MES8 and HEP7 cells (a COVID-19-specific subset), suggesting stressed hepatocytes
could be driving fibrogenic HSC activation. In addition, HEP7 also produces CXCL12,
which promotes angiogenesis, inflammation, and has been shown to cause fibrogenesis
in the lung [71] (Additional file 2: Fig. S5b, c).

Finally, we evaluated the role of the infected hepatocytes (HEP Inf) in the cellular com-
munications network. A cell-cell communication analysis was performed following the
selection of the SARS-CoV-2 viral read-enriched hepatocytes as a distinct population
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(Methods). The analysis revealed active autocrine signaling among the HEP Inf cells and
strong interactions with other hepatocyte, mesenchymal, cholangiocyte, and endothe-
lial populations (Additional file 2: Fig. S7a). HEP Inf cells were identified as a dominant
signaling hub for a TGES communications network comprising endothelial, cholangi-
ocyte, and immune cells (Fig. 5e, Additional file 2: Fig. S7b), consistent with previous
reports related to chronic immune reaction [72], and TGF-f implication in inflamma-
tion and liver fibrosis. Likewise, potential susceptibility to live fibrosis was underlined
by additional cell interactions such as through the complement factor C5 (HC) network,
previously discussed for its implication in liver fibrosis in mouse models [73, 74] (Addi-
tional file 2: Fig. S7c-d). This analysis also revealed a dense cell—cell interaction network
between activated immune cell populations and HEP Inf, through the SEMA4A pathway,
which can regulate immune cell activation and differentiation [75].

Overall, the identified cell-cell communication pathways support a diverse source of
fibrogenic activation, involving hepatocytes, cholangiocytes, endothelial and immune
cells, in contrast to an immune cell dominated framework seen in many chronic liver

diseases.

Histopathology validation of an extensive pro-fibrotic cellular phenotype of COVID-19
livers

To validate the insights from our atlas, we performed a liver histopathology survey in the
liver tissue available to us from the four cases (Donors L1-4, Methods), where snRNA-
seq and GeoMx assays were performed. Surprisingly, a common striking pathology
feature of all four COVID-19 livers was the stellate cell activation and sinusoidal fibro-
sis, ranging from moderate in L1 to massive in L4. Upon further review of the medi-
cal records, none of the four donors had a history of chronic liver disease or clinical
evidence of ongoing liver injury in the 72 h prior to death. Three out of four patients
also demonstrated moderate to extensive ductular reaction/cholangiocyte prolifera-
tion (Additional file 2: Fig. S6b, Additional file 1: Table S8). This is consistent with the
increased proportion of activated/transdifferentiated mesenchymal and cholangiocytic
cell subsets identified in our snRNA-seq. Although pro-fibrogenic and HSC activation
pathways were observed in the cell-cell communication analysis, they cannot com-
pletely explain the great extent of HSC activation observed in the histopathological anal-
ysis. Thus, extrahepatic, systemic signals may additionally contribute to the activation of
HSCs and fibrosis in the liver of severe COVID-19. Since severe COVID-19 has features
of an atypical viral sepsis-like condition that goes on for an extended period of time [76],
our findings therefore share features of the low-grade inflammation, stellate cell activa-
tion, ductular reaction, and hepatic fibrosis observed in experimental sepsis in mice [77].

Discussion

We have generated a cellular and spatial atlas of the COVID-19 liver by integrating
snRNA-seq and spatial transcriptomics on autopsy samples obtained from patients
who died from COVID-19. We acquired >80,000 high-quality single-nucleus profiles
with >50% hepatocyte representation, providing us with a rich, granular dataset, even

for rare cell subsets.
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We observed extensive pathological restructuring of the cellular and expression land-
scape in COVID-19 livers, suggesting hepatocellular injury, ductular reaction, neo-
vascular expansion, and fibrogenesis. Based on viral RNA reads, we identified human
hepatocytes infected by SARS-CoV-2 and characterized their expression profiles, while
also capturing indirect and systemic effects of COVID-19 on hepatocyte populations.
The highest number of SAR-CoV-2 viral RNA UMIs was found in hepatocytes, while
a previously proposed cholangiocyte-tropism [78] in the liver was not seen. Viral RNA
UMI-enriched hepatocytes exhibited high expression of acute phase and pro-inflamma-
tory proteins, with increased heat shock protein gene expression, likely a response to
unfolded proteins, secondary to viral replication; and NF-kB expression, consistent with
the [79] available literature for other epithelial cell types [79]. Our results also recapitu-
lated the observation of high Interferon signaling pathway activity, as were suggested in a
bulk RNA-seq analysis of 5 samples from SARS-CoV-2 positive livers compared against
5 SARS-CoV-2 negative liver samples [4]. Elevated proportions of SARS-CoV-2 + hepat-
ocyte populations were also noted, with high abundances of cells in the terminally differ-
entiated states as well as the emergence of a SARS-CoV-2 + -specific cluster (HEP7) with
a shift in function from metabolic processing to response to infection and inflammation.
Terminally differentiated hepatocytes demonstrated both high metabolic activity and
an increased inflammatory response, characterized by high expression of acute phase
proteins, which may enable the increased response to viral infection pathway activity
observed in SARS-CoV-2+cells of these populations [80]. Additionally, the increased
abundance of these cells in COVID-19 patients, along with their elevated typical meta-
bolic processes, may reflect a compensatory mechanism to maintain liver function and
address the increased metabolic demands and detoxification needs during disease pro-
gression [31]. On the other hand, viral-infected hepatocytes not included in the COVID-
19-specific lineage maintained a highly stressed state and elevated autophagy activity.
These populations presented high expression and activity of autophagy-related pathways
and genes, which could represent an effort of the cells to induce clearance of viruses
through viral component encapsulation in autophagosomes, and lysosomal degradation.
However, coronaviruses have been shown to turn autophagy into a double-edged sword,
and through its modulation, they can prevent degradation, further enhancing their repli-
cation and persistence within host cells [81, 82].

Meanwhile, profibrogenic/reactive cholangiocytes were identified as characteris-
tic populations expanding in the COVID-19 liver, representing a pathological “ductu-
lar reaction”—an extensive remodeling and scarring of biliary compartment, secondary
to local as well as systemic liver injury [43]. This striking observation was validated by
connective tissue stains and conventional immunohistochemistry and morphometry
for CK19 +ducts, clearly showing various degrees of ductular reaction and associated
a-SMA + myofibroblast activation, consistent with emerging reports of COVID-19-in-
duced sclerosing cholangitis (fibrotic disease of bile ducts) [83], which in most severe
cases may require liver transplantation [84]. Our high-resolution observations and com-
prehensive molecular characterization of cell-cell interactions in subacute COVID-19
cholangiopathy may provide a unique opportunity to elucidate relevant drivers of other
chronic cholangiopathies of enigmatic nature and currently without effective therapy,
such as primary sclerosing cholangitis (PSC), which is challenging to study due to slow
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progression and scarce opportunities to analyze the liver tissue in early disease stages. In
this respect, we have identified several mediators (TGFbeta, PDGF) that were well stud-
ied in cholangiopathies such as PSC as well as those that are much less explored, such as
VEGE. Since several VEGF inhibitors were developed, rapid functional and therapeutic
validation of this new target is feasible and is an area of our future studies.

We also found extensive changes in the composition and expression programs of non-
parenchymal cells across the liver lobule and portal triad in COVID-19. Endothelial cell
population proportions are significantly altered in COVID-19 livers, with the emergence
of a large population of FGFRI and AKAPI12-positive cells that may contribute to angio-
genesis and promote fibrosis [85, 86]. In the immune compartment of the COVID-19
liver, we observed KC proliferation and erythrocyte progenitors for the first time in a
human single-cell study. We also observed activation of mesenchymal stellate cell/myofi-
broblast cells both in the liver lobule and portal areas, which were validated by immu-
nohistochemistry staining, and an expansion of smooth muscle cell population in the
COVID-19 liver samples. This pattern of fibrosis cannot be explained by underlying
chronic liver disease and is likely caused by a combination of localized and systemic,
sepsis-like effects of severe COVID-19 [77]. These cellular and expression changes
induced by COVID-19, despite an absence of significant tissue injury, point to sub-
clinical yet profound effects of COVID-19 on the human liver, and may carry long-term
health implications for those who recover from acute infection.

Our study captured the complexity of liver biology at high resolution, providing new
insights into cellular plasticity and regeneration in the liver. Based on their RNA expres-
sion profiles, a significant proportion of the hepatocytes do not appear to contribute
directly to liver function by conventional definitions, while reflecting other processes
such as cellular differentiation, growth, and wound healing. Compared to previous sin-
gle-cell studies, we did not observe a strict zonated distribution of hepatocyte clusters;
our spatial data suggest several hepatocyte subtypes may intercalate in a mosaic pat-
tern, which may have biological advantage in liver injury and regeneration. Whether this
can be generalized in healthy liver as well or an observation only specific to COVID-19
needs to be further studied. Similarly, in the BEC compartment, we characterized rarely
identified cells, such as neuroendocrine cholangiocytes, and a bidirectional trajectory
axis between cholangiocytes and hepatocytes with specific cell transition states between
these cell types, not previously reported in human samples. These specific changes in
BEC and MES compartment strongly suggest activation of fibrogenic response, and
appear to be consistent with recently reported sclerosing cholangitis-like sequelae of
COVID-19. Other hematopoietic lineage cells were found to be in a proliferative state,
including erythrocyte progenitors and plasmablasts. The former are not commonly
encountered outside the bone marrow in adults, while the latter further support the
recent observations made by Dominguez Conde et al. [87] showing the presence of this
population along with ITGA8-positive plasma cells in the human liver.

In this study, single-nucleus sequencing was an advantageous modality, support-
ing highly standardized and streamlined sample collection in very demanding circum-
stances as opposed to single-cell sequencing, where fresh samples are required to be
readily processed. Furthermore, it supported the generation of a large dataset with >80 K

nuclei passing QC, with a representation of parenchymal and non-parenchymal cell
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populations resembling more liver physiology as opposed to single-cell sequencing,
where lymphocyte populations are often largely overrepresented [16, 88]. Our study was
limited by including a relatively small number of patients (#=17) with a severe post-
acute COVID-19 phenotype, not enabling us to directly assess moderate and less severe
or acute manifestations of the disease. We plan on building upon the generated informa-
tion with studies comprising a larger and more heterogeneous population.

Furthermore, it is important to note that all analyses were performed in a limited sec-
tion of the patient livers due to the organ’s extensive size and the limitations of current
single-cell and spatial tissue profiling technologies. However, the amount of tissue sam-
pled in our study via 13G core biopsy is comparable to or greater than a standard 1.5-
mm liver needle biopsy used in most studies of human liver pathophysiology. Future
studies expanding the current study design could be very useful to identify further phe-
notypic and mechanistic differences, including liver tissue samples not only from healthy
controls and COVID-19 patients but also from long COVID patients who succumbed
to causes unrelated to COVID-19, as well as from patients with non-COVID-19-related
pneumonia/ARDS. As all samples were analyzed early in the pandemic, they cannot
inform impact from vaccination, and reflect only the very early lineages of the virus.
Nevertheless, this extensive dataset offered unique insights on the sub-clinical COVID-
19 liver phenotype and biology, while its very high granularity and complementary
methods enable it to become the foundation of future meta-analyses and could com-
plement basic, clinical, and translational research efforts. Importantly, this investiga-
tion focused on the generation and in-depth analysis of the single-cell and spatial tissue
profiling data from the collected tissue samples, on the comparisons between healthy
controls and COVID-19 patients, as well as on the transcriptional phenotyping of SARS-
CoV-2-positive cells. However, these observations have not been followed by down-
stream experimental investigations, which is a limitation. Nevertheless, single-cell and
spatial-omic profiling studies of patient tissues have extended our understanding of the
cell- and tissue-specific effects of COVID-19, by providing a highly granular characteri-
zation of the cellular populations, tissue architecture, and interactions in a hypothesis-
free manner, offering novel insights and fueling reverse translation [7, 89-91]. We hope
that the generated data from this atlas of the post-acute severe COVID-19 liver could
enable follow-up mechanistic studies but also the generation of targeted diagnostic and
intervention strategies.

Conclusions

Our study revealed SARS-CoV-2 RNA-positive hepatocytes with an expression pheno-
type similar to infected lung epithelial cells, and central in a pro-fibrotic TGFp signaling
cell-cell communication network. We performed integrated analysis and comparisons
with healthy control that revealed extensive changes in the cellular composition and
expression states in COVID-19 liver. These findings serve as the basis for understanding
the underpinning of hepatocellular injury, ductular reaction, pathologic vascular expan-
sion, and fibrogenesis characteristic of COVID-19 cholangiopathy. Our study identi-
fied several suspected (TGFb, PDGF) and novel (VEGF) potential molecular drivers of
COVID-19 cholangiopathy, with potentially far-reaching translational and pharmacolog-
ical implications for biliary diseases. Moreover, we made a novel observation of Kupffer
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cell proliferation and the presence of erythrocyte progenitors in a human liver cell atlas.
In COVID-19, the endothelial cell composition was dramatically impacted despite the
lack of clinical acute liver injury phenotype. This was accompanied by extensive altera-
tions and fibrogenic activation of reactive cholangiocytes and mesenchymal cells.

This investigation focused on the generation and in-depth analysis of the single-cell
and spatial tissue profiling data from the collected tissue samples, on the comparisons
between healthy controls and COVID-19 patients, as well as on the transcriptional phe-
notyping of SARS-CoV-2-positive cells. However, these observations have not been fol-
lowed by downstream experimental investigations, which is a limitation. Nevertheless,
single-cell and spatial-omic profiling studies of patient tissues have extended our under-
standing of the cell- and tissue-specific effects of COVID-19, by providing a highly gran-
ular characterization of the cellular populations, tissue architecture, and interactions in
a hypothesis-free manner, offering novel insights and fueling reverse translation [1-4].
We hope that the generated data from this atlas of the post-acute severe COVID-19 liver
could enable follow-up mechanistic studies but also the generation of targeted diagnos-

tic and intervention strategies.

Methods

Patient cohorts

An autopsy cohort of 17 COVID-19 patients (6 males, 11 females, ages from 30-35
to>89) was collected from 4 medical centers from the Northeastern United States dur-
ing the first wave of the pandemic (Table 1). For all patients, consent was acquired by
their healthcare proxy or next of kin prior to their inclusion to the study. Exclusion cri-
teria included high post mortem interval (>24 h) and HIV infection. All samples were
obtained post mortem using either ultrasound-guided needle biopsy or surgical dis-
section. All sample collection procedures were reviewed by the IRB of the relevant
hospital. The related protocols were as follows: Beth Israel Deaconess Medical Center
(IRB 2020P000406, 2020P000418), Brigham and Women’s Hospital and Massachusetts
General Hospital (2020P000804, 2020P000849, 2015P002215), New York Presbyterian
Hospital/Columbia University Medical Center (IRB-AAAT0785, IRB-AAAB2667, IRB-
AAAS7370). All patients had confirmed COVID-19 by PCR testing. Consent for autopsy
and research was obtained from the healthcare proxy or the next of kin. Massachusetts
Institute of Technology (MIT) IRB protocols 1,603,505,962 and 1,612,793,224, and/
or the not-involving-human-subjects research protocol ORSP-3635, cover all second-
ary analyses performed at the Broad Institute of MIT and Harvard. No subject recruit-
ment or ascertainment was performed as part of the Broad protocol. Donor identities
and accompanying information were encoded at the relevant hospital site prior to ship-
ping to or sharing with the Broad Institute for sample processing or data analysis. We
also included snRNA-seq data from snap-frozen biopsies from 4 healthy neurologi-
cally deceased donor livers suitable for transplantation (G.B., S.A.M), age 40-49 (F), age
40-49 (M), age 40-49 (F), and age 20-29 (F) (Table 1).
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Sample acquisition

Beth Israel Deaconess Medical Center (BIDMC)

Sample collection for BIDMC samples was performed by an interventional radiologist
via a 13G coaxial guide with a 14G core biopsy and 20-mm sample length under ultra-
sound guidance. All biopsies were conducted within 3 h of confirmed asystole on a gur-
ney in the hospital morgue. All personnel were wearing standard personal protective
equipment prior to removing the body from the bag. Multiple biopsies were acquired by
tilting the coaxial needle a few degrees in different directions. Core biopsies were sepa-
rated in two groups: one for formalin fixing and the other flash-frozen in liquid nitrogen
and stored at — 80 °C until use.

Brigham and Women'’s Hospital (BWH)

Sample collection for BWH was performed in a negative pressure isolation room with
personnel wearing personal protective equipment (powered air-purifying or N95 respi-
rators). Abdominal organs were harvested en bloc and the liver was then subsequently
dissected, weighted, and photographed. Liver samples were collected from the organ and
placed in 25 mL of RPMI-1640 media with 25 mM HEPES and L-glutamine (Thermo
Fisher Scientific) +10% heat inactivated FBS (Thermo Fisher Scientific) in 50-mL falcon
tubes (VWR International Ltd). Tissue samples were transported to Broad in a cooler.

Massachusetts General Hospital (MGH)

Sample collection for MGH was performed in a negative pressure isolation room from
personnel wearing personal protective equipment (N95 or powered air-purifying res-
pirators). As in BWH, organs were removed en bloc, dissected, photographed, and
weighed. Liver samples were placed in collection tubes and subsequently in a cooler for
transport to the Broad Institute.

New York Presbyterian Hospital

Sample collection was performed as in [8]. Tissue samples were collected during rapid
autopsy within hours from time of death. Tissue samples of ~1 cm® were embedded in
Tissue-Tek optimal cutting temperature (OCT) compound (Sakura Finetek USA Inc)
and stored at — 80 °C.

Tissue processing and single-nuclei encapsulation

All samples from all hospitals were snap frozen for the snRNA-seq studies. All sample
handling steps were performed on ice. TST and ST buffers were prepared fresh as previ-
ously described [92, 93]. A 2 x stock of salt-Tris solution (ST buffer) containing 292 mM
NaCl (Thermo Fisher Scientific), 20 mM Tris—HCI pH 7.5 (Thermo Fisher Scientific),
2 mM CaCl, (VWR International Ltd), and 42 mM MgCl, (Sigma Aldrich) in ultrapure
water was made and used to prepare 1xST and TST. TST was then prepared with 1 mL
of 2 x ST buffer, 6 pL of 10% Tween-20 (Sigma Aldrich), 10 pL of 2% BSA (New Eng-
land Biolabs), and 984 uL of nuclease-free water 1xST buffer was prepared by diluting
2 x ST with ultrapure water (Thermo Fisher Scientific) in a ratio of 1:1. One milliliter of
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PBS-0.02% BSA was also prepared with 990 pL UltraPure 1 x PBS ph 7.4 (Thermo Fisher
Scientific) and 10 uL 2% BSA (New England Biolabs) for sample resuspension and dilu-
tion prior to 10 x Genomics chip loading. Single frozen biopsy pieces were kept on dry
ice until immediately prior to dissociation. With clean forceps, a single frozen biopsy
was placed into a gentleMACS C tube on ice (Miltenyi Biotec) containing 2 mL of TST
buffer. gentleMACS C tubes were then placed on the gentleMACS Dissociator (Miltenyi
Biotec), and tissue was homogenized by running the program “m_heart_02” x 2 until tis-
sue was fully dissociated. A 40-um filter (CellTreat) was placed on a 50-mL falcon tube
(Corning). Homogenized tissue was then transferred to the 40-pm filter and washed
with 3 mL of 1xST buffer. Flow-through was transferred to a 15-mL falcon tube (Corn-
ing). Samples were then centrifuged at 500 g for 5 min at 4 °C with brake set to “low”.
Sample supernatant was removed, and the pellet was resuspended in 100-200 pl PBS-
0.02% BSA. Nuclei were counted and immediately loaded on the 10 x Chromium con-

troller (10 x Genomics) for single-nucleus partitioning into droplets.

Single nuclear RNA sequencing

For each sample, 8000—16,500 nuclei were loaded in one channel of a Chromium Chip
(10 x Genomics). 3’ v3.1 chemistry was used to process all other tissues. cDNA and
gene expression libraries were generated according to the manufacturer’s instructions
(10 x Genomics). cDNA and gene expression library fragment sizes were assessed with
a DNA High Sensitivity Bioanalyzer Chip (Agilent). cDNA and gene expression librar-
ies were quantified using the Qubit dsDNA High Sensitivity assay kit (Thermo Fisher
Scientific). Gene expression libraries were multiplexed and sequenced on an Illumina

sequencer.

SnRNA-seq expression quantification and correction for ambient RNA

The raw sequencing reads were demultiplexed using Cell Ranger mkfastq (10 x Genom-
ics). We trimmed the reads from the BIDMC liver samples for polyA tails and the tem-
plate switching oligo 5'- AAGCAGTGGTATCAACGCAGAGTACATrGrGrG -3" with
cutadapt v.2.7 [94]. The reads were aligned to generate the count matrix using Cell
Ranger count (10 x Genomics) on Terra with the cellranger_workflow in Cumulus [95].
The reads were aligned to a custom-built Human GRCh38 and SARS-CoV-2 (“GRCh38_
premrna_and_SARSCoV2”) RNA reference. The GRCh38 pre-mrna reference captures
reads mapping to both exons and introns [92]. The SARS-CoV-2 viral sequence (FASTA
file) and accompanying gene annotation and structure (GTF file) are as previously
described [96]. The GTF file was edited to include only CDS regions, with added regions
for the 5" UTR (“SARSCoV2_5prime”), 3" UTR (“SARSCoV2_3prime”), and anywhere
within the Negative Strand (“SARSCoV2_NegStrand”) of SARS-CoV-2. Trailing A’s
at the 3" end of the virus were excluded from the SARSCoV2 fasta file [7]. CellBender
remove-background [97] was run to remove ambient RNA and other technical artifacts
from the count matrices. The workflow is available publicly as cellbender/remove-back-
ground (snapshot 11) and documented on the CellBender GitHub repository as v0.2.0:
https://github.com/broadinstitute/CellBender.
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Filtering of low-quality cells and sample integration

We filtered out nuclei with fewer than 400 UMlIs, 200 genes, or greater than 20% of
UMIs mapped to mitochondrial genes. Furthermore, we discarded samples with less
than 100 nuclei. We retained all nuclei that pass the quality metrics described above.
Subsequently, snRNA-seq data from individual samples were combined into a single
expression matrix and analyzed using Seurat v.3.2.3 [98—100]. The UMI counts for each
nuclei were divided by the total counts for that nuclei, and multiplied by a scale factor of
10,000. Then, values are log-transformed using loglp resulting in log(1 + 10,000*UMIs/
Total UMISs) for each nucleus.

Subsequently, highly variable genes were identified using Seurat’s FindVariableFeatures
function. Then, data dimensionality was reduced to the top 15 principal components by
PCA using the top 2000 highly variable genes. The lower dimensional embedding was
then corrected for technical noise using each sample as a separate batch with Harmony
[101]. Neighbors were computed using the Harmony-corrected embedding. The UMAP
and Leiden clusters were computed using the resulting nearest neighbor graph.

Doublet detection

We used a two-step procedure to identify doublets. First, we identified doublets in
each sample with the re-implementation of the Scrublet [102] algorithm in Pegasus
[7, 95]. Second, we integrated and clustered all samples and identified clusters signifi-
cantly enriched for doublets. All nuclei in the enriched clusters were flagged as potential
doublets.

In brief, we integrated the nuclei that passed the quality control, normalized each
nuclei to feature counts per 100 K counts (FP100K) and log transformed the expression
values (log(FP100k + 1)), selected highly variable genes, computed the first 30 principal
components (PCs), corrected the PCs for batch effects using Harmony, and clustered
the cells using the Harmony corrected embedding with the Leiden algorithm. Then,
we tested if each cluster is significantly enriched for doublets using Fisher extract test
controlling at a false discovery rate of 5%. Among the significantly enriched clusters, we
selected those with more than 60% of nuclei identified as potential doublets and marked
all nuclei in these clusters as doublets.

Clustering

We first derived compartments, high-level clusters, encompassing major cell types.
Then, we performed iterative clustering to identify cell types. We used the first 15 PCs
corrected by Harmony to compute the nearest neighbor graph. Then we identified the
compartments using the Leiden algorithm implemented in the FindClusters function in
Seurat. For each compartment, we subsetted the nuclei, selected highly variable genes,
computed the first 15 PCs, corrected the PCs for batch effects using Harmony, com-
puted the nearest neighbor graph with the Harmony embedding, and clustered the
nuclei using the FindClusters function in Seurat.

Batch effect correction
Building on approaches that use residuals from a negative binomial generalized linear
model (NB-GLM) to normalize single-cell data [103—-105], we fitted a NB-GLM using an
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efficient implementation of a Gamma-Poisson GLM [19, 106] with batch as the covari-
ates. We then used the deviance residuals from this model as the expression adjusted for
batch effects. For downstream analysis that required counts, we also generated counts
corrected for batch by expanding and scaling the model described by [18] using a scal-
able implementation of a Gamma-Poisson GLM [19].

Pathway activity score calculation

A pathway score summarizes the expression of a set of functionally related genes [107].
A Gene Ontology [108] set of 989 GO Biological Process terms was used to create a
curated selection of pathways capturing liver parenchymal and non-parenchymal cellu-
lar functions and pathways (Additional file 1: Table S9). Building on the methodology
described in [107, 109], we used a rank-based approach to define the pathway scores,
where the pathway score is the sum of the adjusted ranks of the genes in the pathway
annotation scaled by the square root of the number of genes in the pathway. First, the
ranks based on the UMI counts are calculated per gene for each nucleus solving ties
by selecting the minimum. Then, we scale and center the ranks across each nucleus. In
order to account for the effect of rank sparsity for each gene we split the scaled and cen-
tered ranks by their sign (positive or negative) and regress out with a linear model the
effect of the number of genes detected and the log of the total number of UMIs. Finally,
we use the removeBatchEffect function from limma [110] to adjust the pathway scores
for batch effects. The same approach was used to estimate a score for the curated sig-
natures described by Sinchez-Taltavull et al. (proliferating Kupffer cells) [47], and by
Niethamer et al. (influenza-injury signature) [56].

Differential expression analysis at cluster level

Differential expression analysis was carried out using limma-trend [111, 112] to detect
cluster gene markers. First, genes expressed in at least 5% of the nuclei of at least one
cluster were selected and then UMI counts were normalized using the TMM normaliza-
tion [113] implemented in edgeR v.3.28.1 [114]. Then, a linear model “ ~ Cluster + Batch”
was fitted and modeled the mean—variance relationship with the limma-trend method
[111] and a robust empirical Bayes procedure [115]. We used contrasts to compare
the mean of a given cluster with all others; a gene is considered a cluster marker if the
contrast is significant at an FDR<0.05 and the cluster coefficient is higher than at least
75% of all other clusters. We performed comparisons at two levels: across all compart-
ments (comparing all clusters identified) and within compartments (comparing clusters
only from the same high-level cluster). We used limma to fit the same model “~ Clus-
ter + Batch” on the pathway scores but without the mean—variance trend since the
pathway scores are approximately normally distributed. The criteria to select pathway
markers were identical to the cluster markers.

Healthy reference comparison and differential gene expression

We combined the COVID-19 liver nuclei passing QC and were not marked as doublets
with the control liver snRNA-seq dataset into a single expression matrix. Similarly to
the COVID-19 snRNA-seq analysis, we normalized each nucleus to TP100K and log
transformed the expression values (log(TP100k+ 1)), selected highly variable genes,
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computed the first 30 principal components (PCs), corrected the PCs for batch (we con-
sidered each sample as a separate batch) using Harmony, and clustered the cells using
the Harmony corrected embedding with the Leiden algorithm. We identified 5 high-level
compartments in the combined data set. These high-level clusters matched the compart-
ments identified in the COVID-19 liver data. For each high-level cluster, the first 15 PCs
were corrected for batch effects using Harmony and the nearest neighbor graph was cal-
culated using the Harmony embedding. The nearest neighbor graphs were used to assign
each nucleus from the healthy reference to the relevant cluster.

Differential expression analysis was carried out using limma and mean—variance mod-
eling at the observational level (voom) [111] after summing nuclei per cluster per sample
[116], and the linear model “~ Disease+ SVs’, where SVs are surrogate variables esti-
mated with iterative adjusted surrogate variable analysis (IA-SVA) [117]. The model was
fit to estimate the differences between COVID-19 and healthy livers for each cluster. All
clusters with at least 3 samples per group with >5 nuclei per sample were included in the

analysis.

Determination of significant changes in cell type proportions

A binomial generalized linear mixed model (GLMM) was utilized to study the differ-
ences in cell type abundances between COVID-19 and control livers. Lme4 version
1.1-27.1 was utilized to fit the model ~ Cluster*Condition + (1|Sample), and emmeans
version 1.6.2—1 to compare the odds ratios of COVID-19 vs Control for each cluster
(Additional file 1: Table S5).

Detection of cells with SARS-CoV-2 content above ambient levels
We adapted methods [97, 118, 119] previously described in [7] to designate a single
nucleus as SARS-CoV-2 RNA + or SARS-CoV-2 RNA —. A permutation test was utilized
to determine the probability that the nucleus contained a higher SARS-Cov-2 UMI con-
tent than expected by ambient contamination, while taking into account the fractional
abundance of SARS-Cov-2 aligning UMIs, the abundance of SARS-Cov-2 aligning UMIs
in the ambient pool, and the estimated ambient contamination of the single nucleus.
The fractional abundance of SARS-Cov-2 aligning UMIs per nucleus was defined as
the number of UMIs assigned to all viral genomic features divided by the total num-
ber of UMIs aligning to either the SARS-Cov-2 or GRCh38 reference. The abundance
of SARS-Cov-2 UMIs in the ambient pool was defined as the sum of all SARS-Cov-2
UMIs in the pre-CellBender output within discarded nuclei flagged as “empty” or “low
quality” Hence, the ambient fractional abundance was determined for each sample inde-
pendently. The discarded nuclei were resampled to generate the null distribution of the
SARS-CoV-2 fractional abundance, which was utilized to extract empirical p-values for
the observed fractional abundance of each nucleus. The empirical p-values were adjusted
for multiple comparisons using false discovery rate. Nuclei with at least 2 SARS-Cov-2
UMIs and an FDR<0.05 were assigned as “SARS-CoV-2 RNA +”; “SARS-Cov-2 Ambi-
ent” if having SARS-CoV-2 UMIs but were not significantly higher than the ambient
pool; and “SARS-CoV-2 RNA —” if no SARS-Cov-2 UMIs were detected.
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Differential expression analysis between SARS-Cov-2 RNA + and SARS-Cov-2 RNA — nuclei
In order to test the genes and pathways associated with the presence of SARS-Cov-2
RNA, we used the following approach to account for the biases due to differences in
number of nuclei, quality, and sample-to-sample variability. First, we only considered
cell types with at least 10 SARS-Cov-2 RNA + nuclei (above ambient levels) and within
a given cell type we only considered samples with at least 2 SARS-Cov-2 RNA + nuclei.
Then we subsampled the SARS-Cov-2 RNA — nuclei to match the complexity distribu-
tions. The nuclei were partitioned into 5 bins based on complexity, logl0(Number of
genes/nuclei), and the SARS-Cov-2 RNA — nuclei were subsampled to match the dis-
tribution of the SARS-Cov-2 RNA + nuclei [9]. We resampled the pool of SARS-Cov-2
RNA —nuclei to generate the null distribution for the mean expression and the pathway
scores in order to estimate an empirical p-value for the mean expression in the SAR-
Cov-2 RNA +nuclei. Mean expression was calculated by normalizing the UMI counts
using the trimmed mean of M-values (TMM) normalization [113] and adjusted for
batch effects using limma’s removeBatchEffect function. Pathway scores were estimated
for the selected nuclei and then adjusted for batch effects using limma’s removeBatchEf-
fect function. P-values were adjusted for multiple comparisons using FDR.

Viral enrichment analysis

A viral enrichment score per cluster was calculated as previously [7, 120]. The enrich-
ment score for a given cluster C is defined as follows: Enrichmentl =log( ( Observed(
Vcells in C) +€) / ( Expected( Vcells in C) + €)) =log( ( Vcells in C) +€) / ( ( Vcells in total
* X_c)+€) where Vcells are the SARS-Cov-2 RNA + nuclei, X_c is the proportion of the
total number of nuclei in cluster C out of the total number of nuclei in its corresponding
compartment, and €=0.0001. We only considered samples with at least 5 SARS-Cov-2
RNA + nuclei. We derived the null distribution of each enrichment score by permuting
the data and assigning the same number of SARS-Cov-2 RNA +labels to nuclei, such
that the overall proportion of SARS-Cov-2 RNA + nuclei was fixed, computing the clus-
ter enrichment score and estimating the empirical p-value as the fraction of the per-
mutations that showed a similar or higher enrichment score compared to the observed
enrichment score. Then, we adjusted the empirical p-values for multiple comparisons
using FDR.

Trajectory interference and cell-cell communication analysis

Single-cell pseudotime trajectory was constructed using Slingshot (version 2.0.0) based
on the Harmony embedding matrix. The embedding matrix was re-computed for the
Hepatocyte and Biliary Epithelial cells, excluding the BEC3 doublet cluster, while the
first 20 dimensions were utilized for the subsequent analysis. Lineages were determined
and mapped to the UMAP embedding matrix using the relevant Slingshot protocol
[121]. Cell-cell communication among the distinct cell populations was defined using
the CellChat R package [122]. The average gene expression per cell group was calculated
by applying a threshold of 20% and using the batch-corrected counts. Significant ligand-
receptor interactions and pathways were retained by applying a 0.05 P value cutoff. A
similar approach was followed for the cell-cell communication analysis among the dis-
tinct cell populations and the enriched hepatocytes in SARS-CoV-2 reads (HEP Inf).
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Specifically, significantly enriched cells for Sars-CoV-2 viral reads were marked as HEP
Inf and subsequently removed from the HEP1-HEP7 cell populations prior to repeating
the analysis.

Digital spatial profiling

Liver tissue sections of 5 pm were prepared from formalin-fixed paraffin-embedded
blocks. Tissue integrity was confirmed on slides stained with hematoxylin and eosin
(H&E). Slides were stored in vacuum at 4 °C to preserve RNA integrity. To prepare
the slides for digital spatial profiling (DSP), slides were stained against Pan-Cytoker-
atin, CD68, CD45, and DNA. A Whole Transcriptome Atlas (WTA) probe library
(NanoString) was applied on each slide according to the manufacturer instructions. Four
categories of area of interest (ROI) for transcriptome profiling were manually selected
under a fluorescence-microscope: portal area, and lobular zones 1-3.

Specifically, autopsy FFPE tissues from COVID-19-infected patients were processed
following the GeoMx DSP slide prep user manual (MAN-10087-04). Autopsy slides
were baked in an oven at 65 °C for an hour and then they were processed on a Leica
Bond RX automation platform with a protocol including three major steps: (1) slide
baking, (2) antigen Retrieval 20 min at 100 °C, (3) 1.0 pg/ml Proteinase K treatment
for 15 min. Subsequently, the slide was incubated with the RNA probe mix (WTA and
COVID-19 spike-in panel, Additional file 1: Table S2). After overnight incubation, slides
were washed with buffer and stained with CD68-594 (Novus Bio, NBP2-34736AF647),
CD45-647 (Novus Bio, NBP2-34527AF647), PanCK-488 (eBioscience, 53—9003-82), and
Syto83 (Thermo Fisher, S11364) for 1 h, and loaded on the NanoString GeoMx DSP to
scan 20X fluorescent images. Regions of interest (ROIs) were placed by an expert panel
comprising hepatologists, pathologists, and technology specialists. Portal, periportal,
Zone 1, 2, and 3 regions were prioritized. Following ROI selection, oligos were then UV-
cleaved and collected into 96-well plates. Oligos from each ROI were uniquely indexed
using Illumina’s i5 x i7 dual-indexing system. Four microliters of a GeoMx DSP sample
was used in the PCR reaction. PCR reactions were purified with two rounds of AMPure
XP beads (Beckman Coulter) at 1.2 x bead-to-sample ratio. Libraries were paired-end
sequenced (2 x 75) on a NovaSeq 6000 sequencer. Serial sections were subjected also to
RNA in situ hybridization assay using the RNAScope platform (ACD) and by following
the standard vendor protocol.

NanoString GeoMx DSP data preprocessing

Sequencing reads were compiled into FASTQ files corresponding to each region of
interest (ROI) using bcl2fastq. FASTQ files were demultiplexed and converted to Digi-
tal Count Conversion (DCC) files with NanoString’s GeoMx NGS DnD Pipeline. The
resulting DCC files were converted to an expression count matrix. Raw probe data for
18,372 endogenous genes, with 18,346 genes having one probe per gene and 26 SARS-
CoV-2-related genes having 5 probes per gene, as well as 105 global negative probes
and 8 SARS-CoV-2 negative probes were generated for 71 ROIs, spanning the portal
region, all 3 lobular zones and CD45 regions from 4 patients. The probe counts were
normalized using the TMM normalization method implemented in edgeR v.3.28.1. In
order to account for unwanted variation, we estimated surrogate variables (SVs) using
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Iteratively Adaptive Surrogate Variable Analysis (IA-SVA) [117] specifying the model
“~Region+ Donor” The expression values were subsequently adjusted with limma’s
removeBatchEffect function with Donor as batch and the SVs as covariates.

Integration of snRNA-seq and DSP data

The data from the nanoString DSP assay were utilized to infer the location of the clus-
ters identified in the snRNA-seq data using the caret (6.0.90) and RandomForest (4.6.14)
packages in R 4.0.1. A random forest classifier was trained to predict whether a sample
was located in the lobule or in the portal area using pathway activity scores (PAS) as fea-
tures. The top 200 differentially activated pathways between portal and lobule (100 most
upregulated and 100 most downregulated) identified in the nanoString GeoMx DSP data
were incorporated as features in the classifier. PAS were estimated, corrected for batch
effects, scaled, and centered after summing the nuclei per sample in each cluster. For
training, clusters which could be assigned to the lobular or portal area after expert cura-
tion were utilized, such as hepatocyte clusters in the lobule and cholangiocytes (BECs)
in the portal area. Identified clusters were pseudobulked to reduce noise, and class
imbalance was resolved using SMOTE [123], owing to the fact that lobular hepatocyte
cells significantly outnumbered portal cells. The samples were split into an 80% training
set (224 lobular and 168 portal) and a 20% testing set (30 lobular and 13 portal). Opti-
mal training parameters were identified using fivefold cross validation on the training set
through the caret package, resulting in an area under the curve (AUC) of 0.984. Then,
the classifier was applied to the remaining clusters. Utilizing SMOTE to address class
imbalance, similar results were obtained at the single cell level (Training and CV set:
6944 Lobular and 5208 Portal cells after upsampling, Testing Set: 10,778 Lobular and
434 Portal, resulting in an AUC of 0.998).

NanoString GeoMx DSP pathway activity scores

As in the case of pathway activity scores for snRNAseq data, a similar approach
was utilized for GeoMx DSP datasets. First, ranks were established based on the
raw probe counts for each ROI Then, the ranks were centered and scaled (per ROI).
The pathway score was calculated as the sum of the scaled and centered ranks of the
genes in the pathway annotation scaled by the square root of the number of genes in
the pathway. Unwanted technical variation was accounted for in the pathways scores
by estimating surrogate variables (SVs) using the IA-SVA method with the model
“~Region+ Donor +log(Nuclei Counts)+1og(ROI size)” Then, the pathway scores
were adjusted with limma’s removeBatchEffect function with Donor as batch, the SVs,
log(Nuclei Counts), and log(ROI size) as covariates.

NanoString GeoMx DSP viral scores

A SARS-CoV-2 viral score was calculated for the GeoMx DSP WTA ROIs using the
extended SARS-COV-2 probe set. In particular, the probes for the S and ORFlab SARS-
CoV-2 genes were utilized. First, the ranks per ROI were calculated based on the raw
counts for both the target and negative probes in the SARS-COV-2 probe set, and
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subsequently centered and scaled. Following a similar approach to the pathway activ-
ity scores, the viral score was calculated as the sum of the scaled and centered ranks
for the S and ORFlab probes multiplied by the square root of 2 (the number of genes
in the set). Then, the negative and target probe labels were permuted 10,000 times and
the viral score was calculated for each permutation to estimate the mean and stand-
ard deviation of the viral score. Using these estimates, the observed viral score in each
ROI was centered and scaled. Limma’s removeBatchEffect function with the model
“log(Nuclei counts) +1log(ROI size)” as covariates was utilized to account for ROI size
and nuclei counts within the ROL. Finally, the adjusted viral scores were fit to the linear
model “~0+ Donor” using limma to compare the viral scores between donors. For each
donor, a contrast was fit to compare the mean adjusted viral score with the mean of the
other donors. For example, the contrast for donor L1 is “Donor L1 — (Donor L2 + Donor
L3+ Donor L4)/3”

NanoString GeoMx DSP differential expression analysis

Limma-trend was utilized to perform differential expression analysis with the GeoMx
DSP data. First, batch-corrected expression was fit into the model “~ Region” with the
limma-trend method and a robust empirical Bayes procedure. Contrasts were utilized to
compare the mean of a region against all others, with a gene considered as a region-spe-
cific marker if the contrast was significant at an FDR of 0.05 and the region coefficient
higher than all other regions. Limma was also used to fit the same model “~ Region”
on the pathway scores but without the mean—variance trend since the pathway scores
are approximately normally distributed. The criteria to select pathway markers were the
same as for genes.

For the rotation/scale normalized zonation gradient, ROIs were grouped by lobule and
the distance to the zone 1 ROI was calculated per ROI, per lobule. Distances were nor-
malized to be in the [0,1] range. Using the normalized distances, the model “~ Normal-
ized Distance” was fit with the batch corrected values, the limma-trend method, and a
robust empirical Bayes procedure. We used the coefficient for the normalized distance
to identify genes that have an increasing and decreasing pattern across the zonation gra-
dient. For the pathway scores, the same model was fit without the mean—variance trend.

NanoString CosMx Molecular Imager sample preparation and data analysis

A 5-um section from a biobanked control liver sample was profiled using the CosMx
spatial molecular imager as described in He et al. [124]. In brief, the sample was mounted
to a histological slide, and a flow cell for reagent administration was affixed to the slide.
The panel was profiled with the 1000-plex Universal Cell Characterization panel and was
imaged with stains for PanCK (blue channel), CK8/18 (green), CD45 (red), a cytoplas-
mic membrane cocktail (yellow), and DAPI (UV). Reagents were flowed across the slide
by the CosMx machine to cyclically image each of the targets in the panel, which were
decoded based on their assigned barcode sequences and localization as described previ-
ously. Segmentation was performed using a consensus model of DAPI channel alone and
the composite projection of all other stains. Transcripts were assigned to cells based on
the consensus model, and cells with less than 20 transcripts were removed from analysis.
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NanoString CosMx cell annotation

InSituType [125] was used to match healthy liver data from scRNA-seq and snRNA-seq
to CosMx data in a supervised manner. Briefly, annotations from [16] were collapsed
into 5 major cell types: hepatocytes, immune cells, endothelial cells, mesenchymal cells,
and biliary endothelial cells. Then, reference profiles were calculated by aggregating
expression profiles. To initially inform the posterior distributions for cell classification,
cells were cohorted using fluorescent markers (PanCK, CD45, DAPI), after Gaussian
transformation. Background was estimated using the negative probes.

NanoString CosMx reference integration

The COVID-19 liver nuclei passing QC and not marked as doublets were integrated with
the control liver CosMx dataset. First, cells with at least 50 total counts and at least 50
probes with non-zero counts were selected. Subsequently, the CosMx data were sub-
setted based on the InSituType labels into major cell types. For each cell type, probes
with non-zero counts in at least 15% of the cells were selected. The COVID-19 liver
nuclei from the matching cell type were integrated with the CosMx liver data into a sin-
gle expression matrix, normalized to TP100K, and log transformed (log(TP100K + 1)).
Following scaling and centering of the log normalized expression values, the first 30
principal components (PCs) were computed and corrected for platform (CosMx and
snRNA-seq), and then for batch (each sample as a separate batch) using Harmony.
Finally, the shared nearest neighbor graph (SNN) using the Harmony corrected embed-
ding was calculated and utilized to match each cell from the CosMX data set to the clos-
est nuclei from the COVID-19 liver for cluster label assignment.

Quantitative RT-PCR against SARS-CoV-2
Total RNA was extracted from liver tissue samples using a QIAcube HT (Qiagen) and
RNeasy 96 QIAcube HT Kit (Qiagen). RNA was reverse transcribed into cDNA with
superscript VILO (Invitrogen). SARS-CoV-2 N (nucleocapsid) gene was cloned into a
pcDNA3.1 expression plasmid and transcribed using an AmpliCap-Max T7 High Yield
Message Maker Kit (Cellscript) to be utilized as a standard. qPCR was performed in
duplicates using a QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems).
Viral load was calculated as RNA copies per microgram of total RNA, with a quantita-
tive assay sensitivity of 50 copies. Primers utilized for SARS CoV-2 N genes were:
2019-nCoV_N1-Forward: 5 -GACCCCAAAATCAGCGAAAT-3’, 2019-nCoV_
N1-Reverse: 5'-TCTGGTTACTGCCAGTTGAATCTG-3’, and 2019-nCoV_N1-Probe:
5 -FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1-3".

Subgenomic mRNA assay

SARS-CoV-2 E gene subgenomic mRNA (sgmRNA) was assessed by RT-PCR as in
Wolfel et al. [40]. A Tagman custom gene expression assay (Thermo Fisher Scientific)
was utilized to target the E gene sgmRNA [40]. Standard curves were used to calculate
sgmRNA in copies per microgram of total RNA with an assay sensitivity of 50 copies.
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RNAScope

RNA in situ hybridization (ISH) was performed with the RNAScope Multiplex Fluo-
rescent Kit (ACDBio, Newark, CA). All three probes (Hs-TMPRSS2, Hs-ACE2-C2,
V-nCoV2019-S-C3) were designed by ACDBio to ensure target specificity. FFPE liver
biopsy sections at 5 pum were first de-paraffinized using xylene and ethanol, and incu-
bated in the pretreatment buffer with protease and incubated in a HybEZ oven (ACD-
Bio). The staining of mRNA was achieved by hybridization with the target probes over
the pretreated liver tissue, followed by sequential treatment of amplification reagents
provided in the RNAScope kit. Each section was dehydrated before being mounted with
Pertex (ACDBio). A probe against a housekeeping gene PPIB was used as a positive con-
trol (ACDBio).

Histology, immunohistochemistry, and special tissue staining

Connective tissue stain (Sirius red) and immunohistochemistry (IHC) were performed
using formalin-fixed, paraffin-embedded liver biopsy of four COVID-19 patients. For
Sirius red staining, liver sections were dewaxed, rehydrated, and stained for 2 min with
hematoxylin, then 30 min with a picrosirius red solution (ab246832, Abcam). For IHC
staining, antigen retrieval of dewaxed and rehydrated paraffin-embedded liver sections
was performed using sodium citrate pH=6 for a-SMA and pepsin for CK19, respec-
tively, followed by blocking with 10% goat serum for 30 min, and incubation with anti-
a-SMA (Cell Signaling Technology, 19,245, 1:400) and anti-CK19 (Sigma-Aldrich,
MAB3238, 1:100) primary antibody overnight at 4 °C. After incubation with biotinylated
secondary antibody for 1.5 h, detection was performed with the Vectastatin Elite ABC-
HRP kit (Vector Laboratories, SP-6100) with the DAB Peroxidase Substrate kit (Vector
Laboratories, SK-4100), followed by counterstaining with hematoxylin.
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