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Abstract

Background: The use of biological molecular network information for diagnostic and prognostic purposes and
elucidation of molecular disease mechanism is a key objective in systems biomedicine. The network of regulatory
miRNA-target and functional protein interactions is a rich source of information to elucidate the function and the
prognostic value of miRNAs in cancer. The objective of this study is to identify miRNAs that have high influence on
target protein complexes in prostate cancer as a case study. This could provide biomarkers or therapeutic targets
relevant for prostate cancer treatment.

Results: Our findings demonstrate that a miRNA’s functional role can be explained by its target protein connectivity
within a physical and functional interaction network. To detect miRNAs with high influence on target protein
modules, we integrated miRNA and mRNA expression profiles with a sequence based miRNA-target network and
human functional and physical protein interactions (FPI). miRNAs with high influence on target protein complexes
play a role in prostate cancer progression and are promising diagnostic or prognostic biomarkers. We uncovered
several miRNA-regulated protein modules which were enriched in focal adhesion and prostate cancer genes. Several
miRNAs such as miR-96, miR-182, and miR-143 demonstrated high influence on their target protein complexes and
could explain most of the gene expression changes in our analyzed prostate cancer data set.

Conclusions: We describe a novel method to identify active miRNA-target modules relevant to prostate cancer
progression and outcome. miRNAs with high influence on protein networks are valuable biomarkers that can be used
in clinical investigations for prostate cancer treatment.
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Background
A major challenge in biomedical research is to understand
the underlying mechanisms of human disease. Great effort
has been spent on determining genes associated with
human diseases. However, most human diseases, and can-
cer in particular, cannot be attributed to single gene but
arise due to complex interactions among multiple compo-
nents of the cell, including genes, proteins, and miRNAs
[1]. miRNAs are a large family of gene regulators, found
in both plants and animals, which impact gene activity by
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binding to the 3’UTR of target mRNAs leading to mRNA
degradation or translational inhibition [2,3]. Though miR-
NAs are only 18-22 nucleotides, each can control the
expression of hundreds of genes. It is estimated that
approximately half of the human genome is regulated by
miRNA-mediated gene control [4]. miRNAs play a key
role in regulating diverse cellular functions, such as devel-
opment, proliferation, apoptosis, and metabolism [2] and
are associated with a growing list of diseases including
cancer [5,6]. An increasing body of evidence suggests that
miRNAs impact gene expression in many cancer types
including prostate cancer [7-9]. Several studies have inves-
tigated the role of miRNAs in cancer using mRNA and
miRNA expression profiling [3,10]. Better understanding
the regulatory role of miRNAs in cancer development and
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progression requires exploring their influence on other
components of the cellular system they are a part of.
Doing so, may lead to identifying predictive biomarkers
and developing novel therapeutic strategies for cancer.

Current major challenges in miRNA research are pre-
diction and experimental validation of miRNA-target
interactions, and determination of the functional role of
miRNAs. Computational prediction of miRNAs is chal-
lenging in human genomes because of the imperfect
pairing of the miRNA with the corresponding target site
[11]. Several factors can influence miRNA-mediated gene
control, like 3’UTR length, number of miRNA targets
sites [11], degree of complementary match [12], amount
of target mRNA [12,13], and the competition for tar-
geted mRNA [14]. Unfortunately, current sequence based
predictions produce many false positive interactions and
many of the predicted interactions may not be functional
[15], which means there may be no relationship between
the expression levels of the mRNA and the predicted tar-
geting miRNA. Several studies have tried to solve this
by integrating gene expression data with sequence-based
prediction to remove non-functional interactions and
keep interactions that show negative correlation between
miRNA and their targets [10,16]. Thus, sequence-based
methods provide a general view of the potential miRNA
targets but expression data or other cellular context infor-
mation is required to more accurately predict miRNA-
target interactions.

Determining the role of individual miRNAs in cellu-
lar regulatory processes is still a major challenge. The
function of many miRNAs remains unknown, and even
for relatively well studied miRNAs, only a handful of
their targets have been characterized [17,18]. Delineating
miRNA function through knock-out and overexpression
experiments in model organisms has had limited suc-
cess, possibly because of functional redundancy among
miRNAs or among gene pathways regulated by miRNAs
[19]. A miRNA downregulates its targets, thus negative
correlation in expression levels between a miRNA and
its direct targets indicates that the miRNA is functional.
Several studies have attempted to extract miRNA-target
modules based on the correlation between miRNAs and
targets [20] and based on graph theory [21]. However,
these results are complicated by indirect effects - a sin-
gle miRNA may target many mRNA targets that may
influence other genes, thus negative correlation between
miRNA and targets does not indicate a direct interaction
between miRNA and target.

Interactions between miRNA and targets are not solely
dependent on the 3’UTR of the target, but depend on
what other competing 3’UTR targets are expressed in a
given cellular context. Limited attempts have been made
to investigate the impact of miRNAs on protein interac-
tors of the target. It has been shown that protein-protein

interaction (PPI) network topological features help to
filter out false positive targets [22], and help to prior-
itize miRNAs in prostate cancer [23]. Recent evidence
showed that some protein complexes are enriched with
single miRNA targets and some complexes are enriched
with miRNA cluster targets [24]. For example, SMAD3-
SMAD4-FOXO3 complex is enriched with miR-1284 tar-
gets, and MAD1-SIN3A-HDAC2 complex is enriched
with targets of the miR-510-514 and miR-1912-1264 clus-
ters. Other studies demonstrated that PPI context of
miRNA targets provides more representative information
about miRNA function compared to using only direct
targets [25]. Direct targets of miRNAs and their part-
ners jointly showed higher modularity levels compared
with miRNA direct targets alone [25]. Analyzing prop-
erties of miRNA targets is a promising approach to
miRNA function prediction. mirPath [26] is a compu-
tational tool developed to identify molecular pathways
enriched in miRNA targets set. mirPath extracts miRNA
targets from other tools such as TargetScan [27], PITA
[28], and then miRNA function is predicted by assess-
ing whether the predicted targets of a given miRNA
are enriched for particular functional annotations. Such
enrichment based methods suffer from several limita-
tions. First, they solely depend on the miRNA-target
prediction algorithms that are noisy. Second, predicted
miRNA targets are usually large (hundreds to thousands
of genes) and this leads to heterogeneous functional anno-
tations that make it difficult to gain high confidence
predictions. Integrating expression data is a promising
approach to reduce noise in enrichment results. The
miRNA body map [29] is a web tool developed for miRNA
functional annotation in normal and diseased human tis-
sues that integrates expression data to reduce heterogene-
ity in functional annotations. FAME [30] is another tool
with three main applications in the area of miRNA func-
tional analysis. Firstly, it infers miRNA function directly
using sets of genes sharing common annotations and sec-
ondly, infers miRNA function indirectly using matched
mRNA/miRNA expression data. Thirdly, FAME predicts
the function of genomic clusters of miRNAs. Integrating
the protein context of miRNA targets is another promis-
ing dimension for miRNA function prediction. miRUPnet
[31] is another miRNA function prediction framework
that predicts miRNA function based on the upstream
context of miRNA and not downstream. It infers the
miRNA function by functionally analyzing the context
of its transcription factors in a protein-protein interac-
tion network. Using information about TFs upstream of
a miRNA results in the discovery of additional biologi-
cal processes not seen in miRNA targets (downstream).
These observations shed light on the influence of miR-
NAs on the PPI subnetwork involving the targets, and
highlight the importance of considering target protein
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interactors when searching for functional miRNA-target
interactions.

In the post-genomics era, a crucial task in molecular
biology is to understand miRNA regulation in the con-
text of biological networks. Since miRNAs target proteins
that are part of either protein complexes or signaling path-
ways, it is important to study the influence of miRNAs
on protein networks in disease progression. Character-
izing the role of miRNAs in the context of protein net-
works has emerged recently in several studies [25,32-34].
By analyzing the interactions between miRNAs and cel-
lular signaling networks, miRNAs were found to pre-
dominantly target proteins of the same signaling pathway
and target highly connected scaffolds and most down-
stream network components such as signaling transcrip-
tion factors. miRNAs were also found to less frequently
target upstream components of the signaling pathways
like membrane receptors and ligands [34]. Hsu et al
[25] demonstrated that many miRNA-targeted genes are
hub proteins and bottleneck proteins in protein interac-
tion networks (PPIN) and thus have higher betweeness
centrality. When these hub or bottleneck proteins are
repressed by individual or multiple miRNAs, they may
consequently influence large part of the interacting pro-
teins and thus control key components of the PPIN. Their
analysis showed that the target proteins of individual
miRNAs tend to interact with more proteins than other
non-miRNA targets. Positive correlation between protein
connectivity (degree in PPIN) and the number of miRNAs
targeting the corresponding protein has been observed by
Liang and Li [32]. This means that proteins with large
numbers of partners in the PPIN network need more miR-
NAs to control their expression. miRNA induced influ-
ence can propagate in the regulatory network by targeting
master transcription factors. Cui et al [33] found that 42%
of 9348 gene that are regulated by TFs, are miRNA targets,
and the average TF binding site count of miRNA targets is
significantly higher than that of non miRNA targets. This
suggests that gene expression regulation by miRNAs at
the post-transcriptional level is coordinated with that of
TFs at the transcriptional level and genes targeted by more
miRNAs have more TF binding sites.

In this work we introduce a new method to character-
ize miRNA function based on its effect on the expression
of the target and its neighbors in a functional interaction
network. Unlike previous methods that weight miRNA-
target interactions based on sequence complementarity or
gene expression correlation alone, we estimate the over-
all influence of a miRNA on its target based on the target
gene expression level and the gene expression levels of
the interaction neighborhood of the target. miRNAs with
high influence are validated using independent miRNA
expression datasets, and by analyzing the biological path-
way enrichment of target protein modules. We then used

our miRNA-target influence network to predict the over-
all influence of each miRNA on individual prostate cancer
patients to find those miRNAs associated with aggressive
cancer. We show that miRNAs with high influence on pro-
tein complexes and biological processes are likely involved
in cancer progression and have potential prognostic sig-
nificance.

Methods
miRNA targets
Human miRNA target predictions for miRNA with con-
served 3’UTR were taken from TargetScan 5.1 [27], and
experimentally validated miRNA and their targets were
taken from mirTarBase [35] and miRecord [36]. We used
the union of mirTarBase and miRecord as a source of
experimentally validated miRNA-target interactions(3976
interactions between 345 miRNA and 2277 gene).

Functional protein interaction (FPI) networks
We used combined undirected functional protein inter-
actions (FPI) as described in [37]. FPI includes annotated
functional protein interactions from Reactome, Panther,
CellMap, BioCarta, KEGG and TRED, and includes inter-
actions derived from physical protein interaction, co-
expression data, domain-domain interaction data. FPI
was constructed using a naive Bayes classifier (NBC) to
distinguish high-likelihood FIs from non-functional pair-
wise relationships. We also used physical protein inter-
actions from the HPRD database [38]. FPI functional
interaction network includes HPRD interactions, but the
two networks have distinct topological features. We also
used another curated human signaling network from
Cui et al [39].

miRNA and mRNA expression data
We used mRNA and miRNA expression data from the
MSKCC Prostate Oncogenome Project (Taylor data)that
is available at the Gene Expression Omnibus (GEO acces-
sion number: GSE21032) [40]. The data contains expres-
sion levels of 26443 genes across 179 samples (131
primary cancer, 19 metastatic, and 29 normal samples),
and expression of 370 miRNAs across 140 samples. We
used the expression data of 139 samples with both mRNA
and miRNA data for our analysis. To validate the miRNA
results we obtained using the Taylor data, we used local-
ized prostate cancer miRNA expression data from inde-
pendent prostate patient cohort (GSE23022 [41]) and
prostate cell lines (NCI60) [42].

miRNA-target influence(miRTI) network construction
The initial miRNA-target network is defined by a
sequence based search (Seq); Seq(miR, t)=1, if t is
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a potential target for miR based on the TargetScan
conserved sequence based prediction, otherwise
Seq(miR, t)=0 . The relationship between the miRNA
expression level (miR) and that of its (t) was computed
using mutual information:

MImiR,t =
∑

d∈miR

∑
r∈t

p(d, r) log
(

p(d, r)
p(d)p(r)

)
(1)

p(d, r) is the joint probability density function(pdf) of
miR and t, and P(d) and p(r) are the marginal pdf ’s of miR
and t respectively.

We propose that the influence of a miRNA (miR) on its
target(t) depends on three variables. First is the strength
of the negative correlation between miRNA and target
expression profiles. CorrmiR(miR, t) = MI(miR, t), if
Seq(miR, t)=1, and CorrmiR(miR, t)=0, if Seq(miR, t)=0.
We only considered miR and t pairs with negative
Pearson’s correlation and Seq(miR, t)=1. This step is
needed to filter out miRNA-target pairs with high MI due
to positive correlation.

Second is the direct impact of the miRNA on the
expression of the partners of the target. We calculated
mutual information (MI) between the expression pro-
files of each target and its FPI partners (CorrFPI), where
CorrFPI(ti, tj) = MI(ti, tj) if ti is linked to tj in FPI, and
CorrFPI(ti, tj)=0 otherwise. We used the maximum MI
between the target and its partners to represent the direct
influence of miRNA on the target partners.

Third is the indirect influence of miRNA on the expres-
sion of the target through its partners. The indirect impact
of a miRNA on its target through its partners is defined as
W, where W (miR, t) = ∑

k MI(miR, k)× MI(k, t) where k
is the partners of t in FPI.

We assess the influence of a miRNA (miR) on its poten-
tial target mRNA (t) by integrating these three evidences.
Figure 1A provides a schematic description of integrat-
ing gene expression and FPI to identify miRNA influence
on a protein target. The miRTI network was calculated
by combining the three evidences of association between
miRNA(miR) and its targets(t) as:

miRTI(miR, t) = CorrmiR(miR, t) ∗ W (miR, t)
∗ MAX(CorrFPI(t, k)) (2)

Using the miRNA-target influence(miRTI) network to
measure the influence of miRNAs on prostate cancer
progression
We used the miRTI network to predict miRNAs with
influence on gene expression profiles of prostate cancer
samples (PCs). We model the gene expression of prostate

cancer samples as a linear combination of miRNA effects
on their targets [43], as follows:

PCs(i) =
miR∑
j=1

miRTIj ∗ βj + λPα(β) (3)

where

Pα(β) =
miR∑
j=1

[
1
2
(1 − α)β2

j + α|βj|] (4)

is the elastic-net penalty. Pα is a compromise between
the ridge regression penalty (α =0), and the lasso penalty
(α =1). In this model we set α to be 0.5 as a middle value
between (α =0)(ridge regression) and (α =1) (lasso regres-
sion). Setting (α =0.5) will reduce sparsity achieved using
lasso regression while still panelizing correlated predic-
tors. This penalty is particularly useful when there are
many correlated predictor variables as in the case of miR-
NAs. We tried several values of α and we saw that when
α changes from 0 to 0.5 or 1, it dramatically changes the
minimum λ value and the number of non-zero values in
the solution. Setting α to 0 produced large number of
non-zero values in the solution (113) and α=1 produced
small number of non-zero values (11) that lead to a very
sparse solution that might affect predictors of small effect
on the response. Setting α to 0.5 leads to a solution of
medium sparsity with 31 non-zero elements (Additional
file 1: Figure S1). However, changing α around 0.5 (0.3-0.7)
does not change minimum λ value a lot (difference is 0.01)
which does not impact number of non-zero elements.
We have selected α to be 0.5 because when it is 0.5, the
minimum λ leads to the minimum MSE. β is the regres-
sion coefficient of each variable, which indicates how the
expression level of each miRNA can explain the gene
expression profile of prostate cancer samples. λ is a factor
that determines the sparsity of the solution, as λ increases,
the number of nonzero components of β decreases. In
this study, we selected 100 values of λ and used those
that minimize the mean square error. More details on λ

optimization with respect to α is shown in Additional
file 1: Figure S1. Elastic-net regression was fit using ten-
fold cross validation. We used glmnet package available
at http://www-stat.stanford.edu/ tibs/glmnet-matlab/ to
solve the regression model. For each patient we predicted
the influence of the miRNA set on the patient’s gene
expression profile. Figure 1B describes the steps to con-
struct the input of the model and its output. The resulting
miRNA-patient influence profile was used to associate a
miRNA with a sample’s outcome.

Detection of transcriptional activity centers in prostate
cancer
Several studies have shown that a functional interaction
network provides information about the function of a
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Figure 1 Overview of constructing miRNA-target influence (miRTI) network and its application. A. miRTI is constructed by integrating
matched miRNA and mRNA expression data with FPI and miRNA-target networks. The influence of a miRNA on its target is based on combining
three variables; strength of negative correlation between miRNa and its target, direct influence of miRNA on target partners and indirect influence of
miRNA on target through partners. B. After constructing the miRTI, we used it to predict miRNA-patient influence network using elastic-net
regression model. The gene expression profile of each PCs is a linear combination of the influence of miRNAs on its targets.

gene of interest using the guilt by association concept
[44,45]. We define activity score for each gene based on
the importance of the neighbor genes, similar to other
studies [46]. First, we computed the differential expression

significance of each gene (R) in the prostate cancer gene
expression data using the Student’s t-test. The bigger R
is, the more significant the expression of the gene is. We
then used the prostate cancer CorrFPI network to define
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the strength of the relationship between the gene of inter-
est and its neighbors in the FPI network. ActivityScore for
gene(i) is defined as:

ActivityScore(i) = [
1
N

N∑
d=1

CorrFPI(i, d)

∗ R(d)] ∗ MAX(CorrFPI(i, d) ∗ R(d))

(5)

Where N is the total number of neighbor genes.

Using the miRNA-target influence(miRTI) network to
identify miRNA influence on genes with high activity
center scores
The ActivityScore measure reflects transcriptional activ-
ity of genes in modules rather than single genes. Here we
model the expression activity of genes as a linear com-
bination of the miRNAs’ expression. We used the miRTI
network that represents the influence of each miRNA on
each genes activity centers score to predict miRNAs that
explain the transcriptional activity center score using the
same regression model as used above:

ActivityScore(i) =
miR∑
j=1

miRTIj ∗ βj + λPα(β) (6)

The output of this model is a coefficient for each miRNA
that represents how each miRNA explains the expression
activity score of the genes.

Results
Global correlation between functional protein network
topology and miRNA regulation
To gain a global view of miRNA regulation of the FPI
network, we analyzed the relationship between the FPI
network topological features and miRNA regulation using
two protein-protein interaction datasets (FPI, HPRD) and
two miRNA-target networks (TargetScan) and miRecord
(union of miRecord and mirTarBase known targets). We
found a strong positive correlation between protein con-
nectivity and the number of miRNAs targeting the cor-
responding protein (Figure 2) and a negative correlation
between protein clustering coefficient and number of tar-
geting miRNAs (Table 1), across all networks we analyzed.
Other network topological measures, like betweenness,
did not show significant correlation. This means that pro-
teins with large numbers of partners in the FPI network
need more miRNAs to control their expression, and pro-
tein modules, such as complexes that are highly connected
(thus have high clustering coefficients) need a smaller
number of miRNAs. We also performed this analysis on
randomly generated protein and miRNA-target networks
and did not observe any significant trend. These results
are in agreement with a recent studies by Liang and Li

Figure 2 Positive correlation between protein connectivity and
number of miRNAs targeting the protein. We used FPI and HPRD
protein networks and TargetScan predictions to assess the
correlation. Protein networks and TargetScan predictions are noisy
and incomplete, therefore we randomized the protein network and
miRNA-target networks to ensure that the positive correlation is not
due noise.

[32] who found positive correlation between protein con-
nectivity and average number of miRNA target site types.
These findings motivated us to consider the protein net-
work when estimating the influence of a miRNA on its
target.

Prostate cancer miRNAs target functionally associated
genes
We manually collected a list of 54 miRNAs that were
experimentally validated to play a role in prostate can-
cer from several piblushed sources (Additional file 1).
30 out of 54 have known targets as shown in Table
S1. We also extracted 132 experimentally supported
prostate miRNAs from miR2Disease [47] and HMDD
[48] databases. We next asked if the targets of the
experimentally validated prostate miRNAs are function-
ally related. For each miRNA, we predicted its targets
using TargetScan and then performed pathway enrich-
ment analysis on the targets using the DAVID online soft-
ware (http://david.abcc.ncifcrf.gov/). Enrichment analysis
results (Figure 3) revealed that prostate related miRNAs
target proteins that are often in the same pathways and are

Table 1 Correlation between protein network structure
and miRNA activity

Protein connectivity Clustering coefficient

R2 (p-value) R2 (p-value)

FPI-TargetScan 0.73 (0.004) -0.77 (0.01)

HPRD-TargetScan 0.85 (0.001) -0.28 (0.2)

FPI-miRecord 0.80 (0.002) -0.148(0.8)

HPRD-miRecord 0.64 (0.009) -0.537(0.02)

Random -0.26 (0.54) 0.22 (0.5)

Spearman’s rank correlation of protein connectivity and clustering coefficient vs.
number of targeting miRNAs, significance of correlation is indicated by p-value
in brackets, FDR < 0.005.
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Figure 3 Prostate cancer miRNA targets are enriched with
pathways associated with cancer. We used TargetScan for miRNA
target prediction and DAVID for target pathway enrichment analysis.
Links between miRNAs and pathways indicate that the Benjamini
corrected enrichment p-value is less than 5 × 10−5.

functionally related. Figure 4 shows that the correspond-
ing miRNA targets are functionally related and connected
in protein networks. This motivated us to consider the
target protein context to assess the influence of miRNAs.

The FPI network helps reveal miRNA-target modules that
play a functional role in prostate cancer
We identified miRNAs that are functionally active in
prostate cancer, i.e. they have a high influence on the
protein partners of their targets using the miRNA-
target influence (miRTI) network that was constructed
based on prostate cancer expression data and FPI net-
work. We selected the top miRNA-target interactions
(Figure 5) with values greater than the upper quar-
tile. We observed that the targets of high influence
miRNAs are functionally related, which could explain,
at a high-level, the mode of action of miRNAs. To
investigate the functionality of the predicted miRNA-
target modules and further assess the robustness of
our predictions, we followed two tracks. First, the
enriched pathways of miRNA targets (81 proteins) were
characterized. Enrichment analysis revealed that pre-
dicted targets are highly associated with focal adhesion
and prostate cancer pathways (p-value< 1 × 10−20).

Figure 4 Prostate cancer miRNAs target functionally related proteins. Targets of miRNAs that play a role in prostate cancer progression
showed to be functionally related. Most of the miRNAs target proteins related to histone deacytelation and cadherin pathways.
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Figure 5 Functional miRNA-target network extracted based on the influence of miRNAs on target protein complexes. A miRNA-target link
(red) indicates that the miRNA (diamond) influences the gene expression of the target and proteins functionally interacting with it (circles). Links
between two targets (blue) indicate that they are interacting in the FPI network. Cytoscape [49] was used for network visualization.

As a control, we compared the predicted miRTI net-
work (Figure 5) that was generated using Cytoscape [49]
with the Corrmir network (Additional file 1: Figure S2),
which only represents correlation between miRNAs and
their target without considering the downstream regu-
lation of miRNAs on FPI target neighbors. Targets in
Corrmir also were enriched in focal adhesion and prostate
cancer, but not as significantly (p-value< 1 × 10−11).
We also randomly generated a functional miRNA-target
network by randomizing the FPI and the Seq miRNA-
target networks and target did not show any significant
enrichment. In the second track, we extracted the expres-
sion profile of miRNAs predicted to have high influence
in two independent prostate cancer miRNA expression
datasets prostate cell line NCI60 [42], and a prostate
patient cohort (GSE23022 [41]). Here, it is worth mention-
ing that we do not extract differentially expressed genes

from NCI60 and GSE23022, but rather we only extract
the expression of our miRNA list predicted to have high
influence on targets. In both datasets, miRNAs predicted
to have high influence on target interactors demonstrated
diagnostic and prognostic significance. miRNAs predicted
to have high influence based on our approach (70 miR-
NAs) are associated with prostate cancer better than those
derived from the Corrmir network and miRNA-target net-
work generated from the random FPI network based on
multiple functional analysis strategies. First, a large pro-
portion of predicted high influence miRNAs (29 out of
70 based on our 54 prostate miRNA list, and 40 out of
70 based on the miRNAs extracted from HMDD and
miR2Disease) are known to play a role in prostate can-
cer development (Table S1). Several oncogene miRNAs
like miR-221, miR21, miR-125b, and miR-106b were iden-
tified in addition to several tumor suppressor miRNAs
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like miR-34a, miR-20a, miR-1, miR15a and miR-16 [3,5,9].
Second, high influence miRNAs are better able to accu-
rately discriminate prostate cancer from normal samples.
miRNAs with high-influence on protein complexes were
able to classify patients in the Taylor data [40] into nor-
mal vs. cancer patients with 97% classification accuracy
using a linear SVM, better than prostate miRNAs (54
miRNAs) that were extracted from the literature, which
gave 92% classification accuracy. Randomly generated sets
of miRNAs of size 50 gave an average accuracy of 63%.
To further validate the robustness of the high influence
miRNAs, we extracted their expression profiles from two
independent prostate miRNA expression profiling stud-
ies (NCI60,GSE23022) and showed that predicted high
influence miRNAs are accurate prostate cancer biomark-
ers. Both the high influence miRNA and experimentally
verified prostate miRNA lists performed equally well on
the NCI60 data (91% classification accuracy), but high-
influence miRNAs performed better than known prostate
miRNAs on GSE23022 (87% and 77%, respectively). Ran-
domly generated lists of the same size gave an average of
57% accuracy for NCI60 and 52% for GSE23022. Third,

predicted functional target modules of the high-impact
miRNAs are associated with multiple cancer pathways
and prostate cancer related pathways, like TGF-B signal-
ing pathway, and they are involved in several other cancers
like glioma, melanoma and bladder (Figure 6). Also they
were highly enriched with cell motion and cell migration
GO terms (corrected P-value < 0.0005). Pathway enrich-
ment map [50] was used to show the map of enriched
biological concepts. This potentially indicates that these
genes are important in prostate metastasis. We further
extracted 50 prognostic miRNAs from the Taylor data that
are associated with aggressive prostate cancer by grouping
prostate samples into aggressive prostate cancer (cluster 5
in Taylor study) as one group and the other clusters as the
other group. The Top 50 differentially expressed miRNAs
were extracted using SAM. 21 out of our 70 high-influence
miRNAs were in common with aggressive miRNAs from
the Taylor data (p < 0.0001).

Since TargetScan and FPI interaction data are noisy, we
repeated the experiments using a highly curated human
signaling network and curated miRNA-target interac-
tions from miRecord and miRTarBase. The predicted

Figure 6 Pathway enrichment map [50] of first degree partners of targets of functional miRNAs predicted in Figure 3. A. Nodes represent
significant enriched pathways, links indicate the gene overlap between pathways. Node size represents the pathway enrichment significance, the
larger the node, the more significant the enrichment pathway is. Results revealed that the targets of miRNAs and their partners are highly associated
with focal adhesion and path-ways in cancer.
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interaction network (Additional file 1: Figure S8) was
found to be modular and partners of miRNA targets are
found in highly dense network regions. 31 miRNAs were
identified to have high influence on protein signaling net-
work. 27 of them are in the list of 54 prostate miRNAs
(p=0.0001) we collected from literature (Additional file 1:
Table S1). Although the topological structure of the tar-
get modules are not very similar to modules in Figure 5
due to difference in the protein networks and miRNA-
target interactions used to find them, the miRNA targets’
partners are modular and form subnetworks of potential
dysregulated proteins. 13 of the 31 miRNAs predicted to
have high influence on signaling network were in com-
mon with the 70 miRNAs predicted to have high influence
on the FPI network (p=0.0003). These results suggest that
the completeness of protein interactions network plays a
crucial role to identify high influence miRNAs.

Functional miRNA-target modules are prognostic
biomarkers that help identify patients with aggressive
tumors
We investigated the relationship between the prostate
cancer expression profile of miRNAs and outcome using
Taylor expression data. We used hierarchical clustering to

group patients into two groups (high vs. low risk) based
on the miRNA expression profile across all samples. Our
findings indicate that the predicted high influence miR-
NAs are significantly associated with cancer recurrence
(Figure 7, logrank p=0.0097, HR: 2.8). We compared the
prognostic effectiveness of the high impact miRNAs with
three miRNA lists. The first is miRNAs with experimen-
tally validated targets in prostate cancer (logrank p=0.015,
HR:1.4) (Additional file 1: Figure S3). The second is differ-
entially expressed miRNAs between normal and primary
prostate identified from Taylor miRNA expression data
(logrank p= 0.019, HR: 1.3) (Additional file 1: Figure S4),
and the last list is aggressive prostate specific miRNAs
identified from Taylor data (logrank p=0.00046, HR:3.1)
(Additional file 1: Figure S5). Randomly generated lists of
miRNAs performed poorly to separate high vs. low risk
patients (logrank p=0.7, HR:0.9). The aggressive prostate
specific miRNAs are the most accurate miRNAs to pre-
dict cancer recurrence; however, their mode of action
is unclear. The identified high influence miRNAs, which
have a predicted mode of action (Figure 5) based on our
method, were effective at separating high vs. low risk
patients (p=0.0097). We then used target expression from
Taylor data to find association between cancer recurrence

Figure 7 Kaplan -Meier survival of high-influence miRNAs. KM are shown for patients classified according to the expression of the functional
miRNAs identified in Figure 4. The expression of the functional miRNAs was extracted from the Taylor miRNA data and hierarchical clustering was
used to group patients into high and low risk categories. Results revealed that functional miRNAs could be prognostic biomarkers.
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and target expression, and we used target expression from
the Swedish prostate cohort (GSE8402 [51]) to find asso-
ciation between targets and cancer specific death. Results
revealed that targets were associated with both recur-
rence (logrank p=0.001, HR:2.4) and cancer specific death
(0.0034, HR:1.9). Unfortunately miRNA expression is not
available for the Swedish cohort, so we could not conduct
association between cancer specific death and miRNAs.
Altogether, the above results show that the miRNA-target
modules, which are the set of proteins targeted by one
or more miRNAs, are significant prognostic modules for
prostate cancer.

Patient specific miRNA influence helps predict cancer
recurrence
We next investigated if patient specific miRNA influ-
ence has prognostic value for cancer recurrence. Using
the miRTI network and the gene expression profiles of
patients as input to our regression model in Eq.(3), we
predicted the influence of each miRNA on the expres-
sion profile of each patient based on the influence of each
miRNA on its targets. As a result, we obtained a patient
specific miRNA influence matrix. We used this matrix
(miRNA-patient) to identify clinically distinct patient
groups. We also used the Seq network instead of miRTI

as input to the regression model for comparison. We
found that using miRTI to predict patient specific miRNA
influence (Figure 8, logrank p=0.007, HR:2.2) is substan-
tially more informative than using the binary Seq network
(logrank p= 0.507, HR:0.7) (Additional file 1: Figure S6) in
predicting cancer recurrence. This further supports our
results showing that considering protein interaction con-
text to assess the clinical value of miRNA is informative.

Identification of miRNAs of high-influence on principal
regulators
We next used the miRTI network to identify miRNAs that
can explain the ActivityScore of the target genes. In the
previous section, we used the miRTI network to predict
the gene expression profile of prostate cancer samples.
In this section, we propose another application for the
miRTI network to identify miRNA influence on target
gene expession. Integrating biological networks proved
effective to help identify biomarkers that can explain most
of the gene expression change [52]. ActivityScore for each
gene is calculated based on the observed effect (R) of its
neighbors; genes that have high ActivityScore are defined
as principal regulators. We observed two sets of principal
regulators; one with significant P and one with non-
significant P (Additional file 1: Figure S7). The former

Figure 8 Kaplan -Meier survival plots for disease-specific cancer recurrence. KM curves are shown for patients classified according to the
influence of the miRNAs on the expression profile of each patient. The influence is predicted using the regression model.
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set represents genes that are significantly differentially
expressed (DE) and their neighbors are also DE. These
might be transcription factors that are affected in prostate
cancer and they affect their target genes. The latter set
represents genes that are non−DE but their neighbors
are DE. These genes might be regulated at the post-
translational level instead of at the transcriptional level.
For example, a change in the phosphorylation status of
a gene might change its activity and thus affect the gene
expression of its downstream genes. The functional pro-
tein network of the latter set was enriched in zinc-finger
proteins (p= 2 × 10−18), which are known transcription
factors. Figure 9 shows highly connected clusters of pro-
teins of ActivityScore greater than the average score of
all genes and have p-value greater than 0.05. These pro-
teins are enriched in Wnt and cadherin pathways and focal
adhesion (corrected p< 0.005). After calculating the activ-
ity score for each gene, we used the miRTI network to
predict the ActivityScore profile for all genes using our
regression model in Eq.( 6). Results revealed that miR-221,
miR-222, miR-210, miR-542-5p, miR-96, miR-182, and
miR-143 are the miRNAs that can positively explain the

gene activity profile; this means that increasing expression
level of miRNAs will lead to increasing the transcription
of activity centers. miR-221 and miR-222 have been char-
acterized as ongogenes [5] and this supports the positive
association between the two miRNAs and ActivityScore.
miR-128 and miR-18b negatively explain the expression
profile of the ActivityScore of genes which will have neg-
ative effect of activity centers. This suggests that these
miRNAs might act as oncogenes or tumor suppressors.

Since tumor heterogeneity affects the identification of
robust cancer biomarkers, Li et al. [53] found that most
cancer gene signatures are not robust and not repro-
ducible. Thus they proposed a re-sampling based frame-
work to identify robust cancer biomarkers. In this work
we asked the question whether re- sampling might have
an effect on the ActivityScore profile. To answer this ques-
tion, we used Significance Analysis of Microarray (SAM)
[54] that is based on re-sampling to identify differentially
expressed genes and then generate an ActivityScore pro-
file using SAM results. We repeated SAM analysis 100
times; each time we change the permutation number and
generated an ActivityScore profile. The resulting profiles

Figure 9 Interaction network of genes with high ActivityScore. Network of genes with high ActivityScore indicates that these genes are
functionally related and they are highly associated with each other. Cytoscape was used for network visualization.
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demonstrated very significant correlation (R2 = 0.9996)
which indicates that re-sampling does not affect the Activ-
ityScore and that identified activity centers are robust and
reproducible within our data set.

Discussion
Prostate cancer is one of the most commonly diagnosed
malignant tumors in aged men in North America. miR-
NAs that are a family of regulatory molecules are signif-
icantly altered in prostate cancer [5]. However, miRNA’s
mode of action and how the influence of prostate miRNAs
on target expression is involved in prostate cancer pro-
gression is not well known. Over- or under-expression of
specific miRNAs in different tumors makes them potential
therapeutic targets and diagnostic or prognostic biomark-
ers; however, miRNAs that are differentially expressed and
influence their targets and target partners are important
regulators and thus are more promising for diagnostics,
prognostics or therapy.

In this work we use functional protein interactions to
identify miRNAs with high influence on targets and their
partners. We hypothesize that miRNAs that influence a
large number of interacting proteins are more impor-
tant than those that only affect a few proteins. We first
showed that proteins that are highly connected have more
regulating miRNAs compared to those with low connec-
tivity. Thus, identifying miRNAs that regulate highly con-
nected proteins is important to understand how to control
propagation of gene expression changes via miRNAs. We
showed that miRNAs that have been experimentally ver-
ified to play a role in prostate cancer target functionally
related genes. This motivated us to investigate how miR-
NAs that have high influence on protein partners of the
target genes help us to better understand prostate cancer.
In this work we bridge a gap between systems biology and
clinical biology by investigating the association between
miRNAs that have high influence on the system with the
outcome of the system.

We built a miRNA-target influence network (miRTI) by
following miRNA influence of expression in prostate can-
cer of downstream genes in the FPI network and then
proposed three applications of this network. First, we
used it to identify miRNA target functional modules and
complexes. This revealed miRNAs with high-influence on
the target FPI neighborhood, which suggests that these
miRNA are important in prostate cancer. The differ-
ence between high-influence miRNAs and differentially
expressed miRNAs is that high-influence miRNAs are
differentially expressed and have differentially expressed
targets and target interaction neighbors. Validating both
miRNA and targets in the functional modules against
independent miRNA expression datasets from prostate
indicates that they are robust prostate cancer diagnos-
tic biomarkers. Analyzing functional modules of miRNA

targets revealed several results. First, target genes are
enriched in prostate cancer and focal adhesion pathways,
which may help explain the progression and metastasis
process as our data includes metastatic samples. Func-
tional modules are also of prognostic significance as
they were associated with cancer recurrence and can-
cer specific death. Moreover, miRTI network (Figure 4)
revealed that some proteins like BTBD7, ANK2, COL12A1
are highly repressed by several miRNAs. On the
other hand, some miRNAs (miRNA-96, miRNA-182,
miRNA-1) are highly influential on target partners as
they regulate several connected proteins. This suggests
that miRNAs have different mode of actions based on
their influence on the expression of the target neighbor-
hood. This might help to define new regulatory classes of
miRNAs based on their mode of action.

The second application of miRTI is to predict patient-
specific miRNA influence by using a regression model.
In this application we used the miRTI network to pre-
dict the gene expression profile of the patients (PCs).
As a result of the regression model, we predict miRNA-
PCs network that shows how much each miRNA explains
the gene expression profile of a patient based on the
weight with which it affects its targets. We applied the
regression model on all patients and generated a matrix
that represents the influence of each miRNA on each
patient. Based on this miRNA influence matrix we were
able to group patients into aggressive and low risk can-
cer patients. Comparing the miRTI with the Seq network
demonstrated that using miRNA-target influence interac-
tions gives more knowledge about miRNA mode of action
than using the binary Seq weights that are based on only
sequence predictions. This result supports our initial con-
clusion that considering the downstream effect of miRNA
on protein partners of target is useful and has prognos-
tic value. We realized that both grouping patients based
on miRNA gene expression and based on patient-specific
miRNA influence from miRNA-PCs network result in
putting high risk patients in one group and low risk
patients in the other group. This indicates that the influ-
ence of each miRNA on each patient is represented in the
mRNA expression of the patient. The availability of dif-
ferential miRNA and mRNA expression profiles from the
same cancer samples enable functional analysis of miR-
NAs in cancer, but there are few cancer cohorts that have
expression levels of miRNA and mRNA from the same
sample. Thus this result is very promising to predict the
expression of miRNAs in patients and predict their out-
come without performing miRNA expression profiling.

The third application of the miRTI network is to predict
miRNAs with high-influence on genes with high activ-
ity center scores (highly active network neighborhoods).
The ActivityScore profile of prostate cancer summarizes
the activity of module proteins rather than the activity of
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single genes as in the second application. Here the miRTI
is used to predict the ActivityScore using the regression
model. The results emphasized the role of some miRNAs
already validated in prostate cancer (miR-221, miR-222,
mir-96 and mir-143), and identified novel miRNAs like
miR-210, miR-542, miR-128 and miR-219 that do not have
a known mode of action in prostate cancer. This means
that these miRNAs could be as important as the already
validated miRNAs, and could explain the summarized
activity of the gene modules. miRNAs identified using
the miRTI and Corrmir networks overlap; both networks
identified miR-182 and miR-96 as important miRNAs.
The advantage of using miRTI over Corrmir, Seq and W to
identify miRNA influence on target partners or on patient
gene expression is that it produces two types of modules,
unlike W that favors the first type of modules and Corrmir
that favors the second type of module. Modules identi-
fied by our approach includes miRNAs like miR-96 and
miR-182 targeting highly interacting proteins, and miR-
NAs like miR-1, and miR-205 that target non-interacting
complexes.

miRNAs have been associated with clinical variables,
prostate cancer recurrence and prostate cancer-specific
death [55]. However, the association between miRNAs
that target protein modules vs. clinical and survival data
has not been well studied. Recent evidence showed that
low miR-1 in human prostate tumors is associated with
early disease recurrence [56], and elevated levels of miR-
96 is associated with high Gleason score and higher risk
of biochemical relapse [55]. In this work we showed that
miRNAs identified using the miRTI method are associ-
ated with cancer recurrence (Figure 7). Also, we showed
that patient-specific miRNA influences predicted using
miRTI are better prognostic biomarkers compared with
binary, non-weighted miRNA-target interactions. This
indicates that there is a link between the influence of
miRNA on target partners and its influence on outcome,
but more analysis on larger cohorts and biological experi-
ments are required to prove this result.

Comparing the three applications of miRTI revealed
consistent results. They all indicate the significant role of
specific miRNAs (miR-221, miR-222, miR-210, miR-542-
5p, miR-96, miR-182, and miR-143) in prostate cancer.
For instance, miR-96 and miR-182 are members of the
same gene cluster and thus this supportes the effective-
ness of integrating protein networks to identify miRNAs
with similar mode of action. ActivityScore functional anal-
ysis indicates that zinc-finger proteins, zinc homeostasis,
focal adhesion, and Wnt signaling are enriched in genes
with high ActivityScore (p-value < 1 × 10−10). Evidence
showed that zinc homeostasis is regulated by the miR-
96-183-182 cluster. This is in agreement with our results
that demonstrate that miR-96 and miR-182 explain most
of the genes ActivityScore that is significantly enriched

in zinc homeostasis. Other predicted miRNAs (miR-143,
miR-542) may play a role in zinc homeostasis, focal adhe-
sion, and cytoskeleton organization.

The large scale protein interactions and miRNA tar-
get prediction data we used were useful to help elucidate
the mechanistic role of miRNAs in disease progression.
Although the interaction datasets are far from complete
and suffer from noise, our results were consistent across
choice of PPI network. Using additional protein interac-
tion networks, different miRNA target prediction algo-
rithms, and different expression data sets will likely reveal
more miRNAs with high-influence on cancer progres-
sion. Another future direction for this work is designing
a systematic method to combine the three variables that
determine the influence of miRNAs on the target partners.

Finally, this study on bridging the gap between clinical
bioinformatics and network-based biomarkers provides
clear evidence that protein interaction information is use-
ful to identify diagnostic and prognostic cancer biomark-
ers, and to ameliorate the understanding of the functional
mechanisms of miRNAs.

Conclusion
We have developed a novel method to identify active
miRNA-target modules relevant to prostate cancer pro-
gression and outcome. miRNAs with high influence on
protein networks are valuable biomarkers that can be
used in clinical investigations for prostate cancer treat-
ment. Combining the effects of miRNAs on targets and
target partners provides better understanding of miRNAs
function.
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