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Abstract
Background: Codon substitution probabilities are used in many types of molecular evolution
studies such as determining Ka/Ks ratios, creating ancestral DNA sequences or aligning coding
DNA. Until the recent dramatic increase in genomic data enabled construction of empirical
matrices, researchers relied on parameterized models of codon evolution. Here we present the
first empirical codon substitution matrix entirely built from alignments of coding sequences from
vertebrate DNA and thus provide an alternative to parameterized models of codon evolution.

Results: A set of 17,502 alignments of orthologous sequences from five vertebrate genomes
yielded 8.3 million aligned codons from which the number of substitutions between codons were
counted. From this data, both a probability matrix and a matrix of similarity scores were computed.
They are 64 × 64 matrices describing the substitutions between all codons. Substitutions from
sense codons to stop codons are not considered, resulting in block diagonal matrices consisting of
61 × 61 entries for the sense codons and 3 × 3 entries for the stop codons.

Conclusion: The amount of genomic data currently available allowed for the construction of an
empirical codon substitution matrix. However, more sequence data is still needed to construct
matrices from different subsets of DNA, specific to kingdoms, evolutionary distance or different
amount of synonymous change. Codon mutation matrices have advantages for alignments up to
medium evolutionary distances and for usages that require DNA such as ancestral reconstruction
of DNA sequences and the calculation of Ka/Ks ratios.

Background
Models for codon substitutions are used in computational
biology for a wide range of applications such as recon-
structing ancestral DNA sequences, determining Ka/Ks
ratios to identify periods of adaptive evolution and align-
ing coding DNA.

Methods for estimating mutation matrices from observed
substitutions in sequence alignments of proteins were
established by Dayhoff [1]. These matrices contain the
probabilities of amino acid mutations for a given period

of evolution and have long been used for scoring protein
sequence alignments, evolutionary studies and homology
searches.

More than a decade ago, when large-scale protein data-
bases became established, several amino acid substitution
matrices based on observed mutation counts in protein
alignments were constructed [2-4], replacing the original
Dayhoff matrices that were based on relatively few
alignments.
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However, to describe substitutions at the codon level,
parameterized models have been developed [5,6] and are
widely used in the study of molecular evolution.

In the same way that the growth of protein databases
allowed refined construction of amino acid substitution
matrices, the recent increase of nucleotide sequence data
made it possible to apply these methods at the codon
level. The matrices presented here were constructed using
the approach of Gonnet [4]. This implies that pairwise
alignments using full dynamic programming [7,8] were
used in order to count the observed transitions between
codons. The sequence data was taken from the complete
vertebrate genome databases of ENSEMBL [9].

Results
The additional files contain the 64 × 64 matrices pre-
sented here. Various aspects of the matrices will be dis-
cussed in this section. We present the matrix with the exact
counts of the observed substitutions (Additional file 1),
the matrix containing the substitution probabilities
derived therefrom (Additional file 2) and a matrix con-
taining similarity scores for all possible substitutions
(Additional file 3).

Substitution counts
The 17,502 alignments that have been used to construct
the matrix presented here contained 8.3 million aligned
codon pairs. From each of these aligned pairs, the number
of each of the 3730 (61 × 61 + 3 × 3) possible substitu-
tions were counted. The difference between the numbers
of frequent and rare substitution is high with the most fre-
quent substitution (the GAG identity) being observed
153,040 times, and the rarest substitution, between TGG
and GAG, being counted only 45 times, about 3400 times
less often.

To estimate the precision of the count of the rarest substi-
tution, a binomial distribution of the counts can be
assumed. The substitution with minimal count cmin occurs
with probability p = 45/(8.3·106) = 5.4·10-6. The variance
of a binomial distribution is σ2 = N(1 - p)p and thus for
very small p, the variance of cmin is almost equal to cmin =
45 and the standard deviation σ is 6.7.

This means that although a very large amount of data is
used to construct the matrix, it is just enough to produce
codon counts that are of a tolerable accuracy for rare tran-
sitions. Only a further increase of high-quality genomic
data will allow the clustering of the data into specific sub-
sets. These possibilities will be discussed below.

Substitution probabilities
The mutation matrix M constructed from the counts con-
tains the substitution probabilities for the individual

codons. Entry Mi,j gives the probability that codon j
mutates to codon i. (As a consequence, each column of M
sums to 1).

A convenient measure to express the amount of mutations
in a matrix is the percentage identity

with fi being the natural frequencies of the codons. For the
matrix reported here, p is .35, meaning that in the align-
ments used, 65% of the codons have undergone substitu-
tion (to any other codon, thereby involving up to three
nucleotide changes).

It is also possible to calculate the percentage of identical
amino acids resulting from this matrix:

In the second sum, i goes over all codons that code for the
same amino acid as j does. The result for pAA is .69, there-
fore 31% of the amino acids are expected to mutate. This
allows the determination of the relationship between the
codon substitution matrices and amino acid substitution
matrices, because the amino acid PAM distance can be
derived from the percentage of amino acid identity.

Analogously to the definition of 1 PAM, 1 Codon-PAM
can be defined as the distance at which 1% of the codons
undergo substitution. Again, a codon substitution can
involve up to three nucleotide base changes. The substitu-
tion matrix for any distance d is approximated by raising
the 1 CodonPAM matrix to the power of d.

The relationship between CodonPAM, PAM and f2 is
shown in Figure 2. It shows that amino acid PAM
increases almost linearly with CodonPAM. The curve is
slightly steeper for the low distances and flattens with
increasing distance. The amount of synonymous substitu-
tion decays from 1 to .51 (f2 being a measure of synony-
mous mutation described in the Methods section).

Mutation scores
Since the substitution probabilities are influenced by the
codon frequencies, it is not possible to see directly which
substitutions occur more than expected and which occur
less. This issue is corrected in the scoring matrix D, where
entry Di,j expresses how much more likely it is that codons
i and j were derived from a common ancestral codon com-
pared to a random pairing of them. A higher score for a
transition means that this transition is indeed more likely
than one with a lower score. The scoring matrix is
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symmetric, i.e. the transition from codon i to j has the
same score as the transition from j to i.

Table 1 displays average scores for different categories of
substitutions. It confirms the fact that synonymous substi-
tution scores are generally higher than non-synonymous
scores. But it can also be seen that as more nucleotides
change, the scores become lower. Synonymous substitu-
tions in which all three bases change, have lower scores
than non-synonymous substitutions with only one base
change.

Discussion
Synonymous mutations
It has been observed that different genes have different
Ka/Ks ratios and therefore the fraction of synonymous
substitutions will differ between different gene pairs hav-
ing a certain PAM distance. This is because there are no

strong selective constraints on synonymous substitutions
and therefore the number of these substitutions accumu-
lates in a clock-like manner [10] while the number of non-
synonymous substitutions is governed by functional
constraints.

Increasing amounts of genomic data would allow the con-
struction and comparison of matrices from alignments
with differing amounts of synonymous and non-synony-
mous substitutions, representing a two-dimensional array
of matrices, where one dimension is the evolutionary dis-
tance and the other corresponds to the amount of synon-
ymous change. Unfortunately, the current size of the
nucleotide databases does not yet allow such a clustering
of the available data. Instead, the alignments selected to
construct the matrices were filtered to fall within a win-
dow of synonymous mutations, thereby excluding the
most extreme values. (see the Methods section for details).

f2 histogramFigure 1
f2 histogram. Histogram of the f2 values from the 17,502 alignments used to construct the matrix.
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Figure 1 shows the distribution of the alignments' f2
values.

Range of applicability
One possible application of scoring matrices is protein
and coding DNA alignment. In order to compare align-
ments based on amino acid substitution matrices and the
codon matrices presented here, the likelihood scores are
compared. Since these scores express the probability ratios
of the two sequences having evolved from a common
ancestor to them being aligned by random chance, they
serve as a confidence measure of an alignment. The higher
the score, the higher the likelihood that the alignment is
by reasons of ancestry than by random chance.

As the likelihood scores serve as an indicator of alignment
quality, orthologous sequences for species pairs of various
distance and classes were used to determine when codon

CodonPAM vs PAM and f2Figure 2
CodonPAM vs PAM and f2

Table 1: Analysis of the scores. Average scores for different 
categories of substitutions. The stop codons are excluded from 
this analysis.

n Substitutions Avg. Score

Identity 61 12.9

Synonymous: all 87 8.7
Synonymous: 1 base change 67 10.0
Synonymous: 2 base changes 14 6.6
Synonymous: 3 base changes 6 -1.7

Non-syn.: all 1743 -7.3
Non-syn.: 1 base change 196 -1.3
Non-syn.: 2 base changes 770 -5.9
Non-syn.: 3 base changes 777 -10.3

All Substitutions 1891 -5.9
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matrix based alignments produced higher scores than
amino-acid PAM matrices.

Table 2 displays for several pairs of species, the number of
orthologs used to perform the alignment analysis, the
average PAM distance between these orthologs (found by
selecting the highest-scoring PAM matrix) and the average
ratio of codon based scores to amino acid based scores. A
number greater than 1 means that on an average, the
codon based scores were higher.

The result is that for closely related species, the codon
based scores are always higher, but the more distant two
species are, the better the performance of the amino acid
based alignments. An interesting point is that although
codon mutations in different sets of species were found to
be significantly different (χ2 tests, data not shown here),
the above finding holds not only for the vertebrates, from
which the matrices were constructed, but also for the
invertebrates, yeasts and even bacteria.

From the results in Table 2, a PAM distance smaller than
50 would favor the use of codon substitution matrices
instead of amino acid based matrices.

Conclusion
Because codon substitution matrices are substantially big-
ger than amino acid matrices and also because some of
the substitutions are extremely rare compared to the most
frequent ones, large amounts of genomic data are neces-
sary to model the transitions accurately. The 17,502 align-
ments used here produce enough aligned codons to fulfill
this criterium, but do not allow further clustering of the
data set in order to create more specific matrices.

The codon substitution matrix presented here is to our
knowledge the first based entirely on empirical data and
can serve in many fields of computational biology. We
have found that at long distances, when the synonymous
mutations have reached saturation, amino acid matrices
are better suited for alignments and long-distance homol-
ogy searching. Codon mutation matrices have advantages
for alignment up to medium evolutionary distances and
for usages that require DNA such as ancestral reconstruc-
tion of DNA sequences and the calculation of Ka/Ks
ratios.

Methods
The basic methods to create scoring matrices are well
established. The construction of codon substitution
matrices is analogous to that of amino acid transition
matrices. The main difference lies in the fact that codon
matrices are much larger (4096 elements (64 × 64)
instead of 400 elements (20 × 20)). In addition, the stop
codons need special consideration. Substitutions between
stop codons and sense codons are assumed to be very rare
because the effect of such substitutions on the function of
the protein would probably be very serious thus the
chance of acceptance is very small and usually limited to
the 3' end of the nucleotide sequence. This makes it
almost impossible to observe such events. Therefore,
these substitutions are not included in the matrices pre-
sented here. Substitutions between stop codons, however,
are counted and thus also contained in the matrices. This
means that the 64 × 64 matrices are block diagonal com-
posed of a 61 × 61 matrix for the coding codons and a 3 ×
3 matrix describing substitutions between stop codons.

Using orthologs
The matrices are constructed from pairwise alignments of
orthologous sequences from five vertebrates – human
(Homo sapiens), mouse (Mus musculus), chicken (Gallus
gallus), frog (Xenopus tropicalis) and zebrafish (Brachydanio
rerio). The complete genome databases from ENSEMBL
[9] were used for this purpose. Using only orthologs has
the advantage that no gene is overrepresented in the data
set. This is because a particular gene can have many paral-
ogous genes in a genome, but we allowed at most one
ortholog per other genome.

Table 2: Range of applicability. Ratios of likelihood scores for 
amino acid and codon based alignments for orthologs between 
several species pairs, where N is the number of orthologs used.

N Avg. PAM Scores ratio

Homo sapiens
vs. Mus musculus 14655 17.4 1.150
vs. Gallus gallus 9272 29.3 1.060
vs. X. tropicalis 9953 39.1 1.026
vs. B. rerio 7507 43.7 1.013

Drosophila melanogaster
vs. A. gambiae 5059 57.3 .995
vs. H. sapiens 3371 77.5 .959
vs. C. elegans 2156 88.8 .945

Saccharomyces cerevisiae
vs. C. glabrata 3467 52.7 1.002
vs. A. gossypii 2909 61.4 .978
vs. H. sapiens 1187 94.1 .931

Escherichia coli
vs. E. coli strain O6 3156 2.0 1.323
vs. Salmonella typhi 2557 14.2 1.067
vs. P. aeruginosa 1234 71.6 .980
vs. B. japonicum 765 90.2 .959
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Circular tours
When counting the substitutions in alignments from all
pairs of species, substitutions that occurred early in the
tree are counted more often than those that happened
later, because paths between two species include the
branches near the root more often than those near the
leaves. This bias can be prevented by using only species
pairs along a circular tour. This way every branch of the
tree (and therefore every substitution that ever happened
in the history of the genes) examined, is counted at most
twice. Concretely, this means that only the orthologs
between human and mouse (3107 pairs), mouse and
chicken (3691 pairs), chicken and frog (3671 pairs), frog
and fish (3441 pairs) and fish and human (3592 pairs)
are counted, resulting in 17,502 alignments.

Counting substitutions
These alignments must fulfill several criteria: 1) they
should all be of similar evolutionary distance because
substitution probability depends on evolutionary dis-
tance. A trade-off exists for the acceptable range of dis-
tances as including a broad range of distances, increases
the amount of data but at the same time blurs the distance
specific information. 2) The alignments must be of a dis-
tance that is high enough to allow the observation of rarer
substitutions. 3) There must be enough alignments to
have statistically significant data for the rare substitutions.
After some observations performed on a subset of the
data, a distance range of 25 to 60 PAM (57% to 78% iden-
tity) of the protein alignments was found to best satisfy
these criteria.

Another selection criterium was based on the amount of
synonymous substitutions between the sequences to
eliminate saturation effects from the observed synony-
mous substitutions. One way to estimate the amount of
synonymous substitution is f2, the percentage of con-
served synonymous codons at two-fold redundant amino
acid sites. Two identical sequences have an f2 value of 1
and it will decay to a value near .5 for increasing amounts
of substitutions. An f2 range between .50 and .95 was
found to exclude the most extreme cases of synonymous
substitutions while leaving enough alignments to fill the
matrices.

Figure 1 shows the distribution of f2 values for all align-
ments within the PAM range of 25 to 60. The sequence
pairs with f2 values between .50 and .95 are shown in
green and were used to construct the matrices, while the
alignments corresponding to the red bins were discarded.

Full dynamic programming [4,7,8] was employed in order
to construct the alignments. The DNA alignment was
obtained by mapping the coding DNA to the aligned pro-
teins. Directly aligning the DNA was not yet possible,

because no a priori knowledge about codon similarities
was assumed. However, in the refinement steps (see fur-
ther below), the DNA itself was aligned using the codon
substitution matrices from the previous refinement
round.

Once the sequences were aligned, the actual substitution
matrices could be computed. This included counting the
observed codon substitutions in the collected alignments
and storing them in a 64 × 64 count matrix C. Since the
direction of a substitution is not known, for each observed
substitution between codons i and j, Ci,j as well as Cj,i is
increased by 1/2. Insertion or deletion sites were ignored
since they provide no information about actual substitu-
tions. From the count matrix, the mutation matrix was
derived according to equation 3:

Calculating similarity scores
The transition scores for a given substitution matrix
express the relative probabilities of two codons originat-
ing from a common ancestor compared to the probability
of them being paired by random chance. The logarithm is
taken to make the scores additive, thereby speeding up the
computation of alignment scores. D is calculated as

where fi is the frequency of codon i in the observed data
set. The factor 10 is used for purely historical reasons.

In an iterative process, the sequence pairs were aligned
again with dynamic programming [7,8] but this time
directly on the codon sequences using the substitution
matrices obtained before. Exponentiation of the mutation
matrix was used to approximate matrices for different evo-
lutionary distances [12], allowing a maximum-likelihood
estimation of the best-fitting matrix to align the
sequences. From these new alignments new mutation
matrices and finally scoring matrices were constructed in
the way described above, until after six iterations a suffi-
cient convergence of the matrix was reached.
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